Analytical Calculation of Air Gap Magnetic Field Distribution in Vernier Motor

Size: px
Start display at page:

Download "Analytical Calculation of Air Gap Magnetic Field Distribution in Vernier Motor"

Transcription

1 IEEE PEDS 017, Honolulu, USA 1-15 June 015 Analytical Calculation of Air Gap Magnetic Field Distribution in Vernier Motor Hyoseok Shi, Noboru Niguchi, and Katsuhiro Hirata Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University Abstract This Paper aims to analyze the characteristics of a surface permanent magnet vernier motor (SPMVM) according to its design parameters such as a magnet thickness on its rotor and stator slot opening ratio based on its operational principle. The vernier motor is a kind of electric motors with a magnetic gear effect and has high torque characteristics at low speeds without mechanical gears. The vernier motor also has various advantages such as low noises and maintenance-free operations. The SPMVM is operated using space harmonics of the magnetic flux density distribution in the air gap which is created by the magnetomotive force (MMF) due to the permanent magnet and air gap permeance. This paper presents an analytical calculation method of the vernier motors, and their results are compared with those of -D finite elements method (FEM). Firstly, the operational principle of the SPMVM and the magnetic flux density in the air gap are described in detail. Secondly, the harmonics of the magnetic flux density in the air gap are analyzed according to the design parameters. Finally, the best design parameters are determined, and the -D FEM results verify the analytical calculation method. Fig pole pairs 18-slot surface permanent magnet vernier motor I. INTRODUCTION Recently, vernier motors have been an issue of growing importance in industrial electrical machine field [1-3]. The SPMVM has a simple structure like a conventional surface permanent magnet synchronous motor (SPMSM) but has the characteristics of a high torque at low speeds. Since the SPMSM rotates at high speeds, it uses a mechanical gear to obtain a desired speed and torque. These mechanical gears have various drawbacks such as noises, vibrations and efficiency decreases. As a way to overcome these disadvantages, a non-contact magnetic gear using magnetic forces has been proposed [4-5]. Since the appearance of the magnetic gears, various types of electrical machines using a magnetic geared effect have been proposed and studied [6-10]. The vernier motor is a kind of motors that uses the operational principle of the magnetic gear and has the feature of a high torque at low speeds similarly to the magnetic gear [11]. Like the magnetic gear, the vernier motor is driven by the harmonics created by the coils and those of the air gap magnetic flux density which is the product of the magnetomotive force (MMF) due to the permanent magnet on the rotor and the air gap permeance of the stator teeth [1-15]. Therefore, it is necessary to examine the design parameters such as a slot opening ratio and permanent magnet thickness which determine the amplitudes and the orders of the harmonics of the magnetic flux density. In this paper, first of all, the Fig /17/$31.00 c 017 IEEE Stator structure with slotting effect permeance, the MMF and the air gap magnetic flux density are described in detail. Secondly, the magnetic flux density and its harmonics calculated by an analytical calculation method described above are verified by the -D FEM results. Finally, a model designed with the best design parameters due to the analytical calculation is verified by -D FEM. II. ANALYTICAL CALCULATION OF AIR GAP MAGNETIC FLUX DENSITY OF SPMVMS An SPMVM has the same operational principle as a magnetic gear and is operated using space harmonics of the magnetic flux density in the air gap. The magnetic flux in the air gap can be represented by the product of the air gap permeance due to the stator teeth and the MMF due to the 47

2 TABLE I MAIN DESIGN PARAMETER Item unit value Motor Type Vernier Motor Operation type 40AC 3Phase Stator Outside Radius [mm] R85 Stator Inside Radius [mm] R50 Stator Yoke Thickness [mm] 8 Stator Teeth Depth [mm] 7 air gap length [mm] 0.6 Rotor Outside Radius [mm] R49.4 Rotor Inside Radius [mm] R0 Stack Length [mm] 130 Magnet Material NMX-S5 [1.45T] Steel sheet 35JN10 permanent magnet in the rotor. An SPMVM with 17 pole pairs and 18 stator slots shown in Fig. 1 is used in an analytical calculation, and its main design parameters are listed in Table I. A. Airgap permeance distribution function An analytical method for modeling the effect of stator slotting of a radial field brushless permanent magnet dc motor was presented in [16]. The air gap permeance of the stator teeth with the stator slotting effect shown Fig. can be described by Fourier decomposition with a unit magnetic potential between the stator teeth and rotor permanent magnet. Therefore, the permeance function P (θ) of the stator teeth can be expressed in the following equation: P (θ) = P 0 + P i cos (in s θ) (1) i=1 where N s is the number of stator teeth. The coefficients P 0, P i in the permeance function can be obtained as follow: [ P i = 4 µ 0 iπ g β P 0 = µ 0 K c g (1 1.6βr open) () g = g + h m µ r (3) (ir open ) (ir open ) K c = [ 1 ( ) [ π r open tan 1 b0 g g ln b 0 4 ] sin (1.6πir open ) ( b0 g )]}] 1 (4) (5) β = ( ) (6) tsr 1 + open g where r open is the slot opening ratio of the slot opening length bs to the slot pitch ts, µ r and µ 0 are the relative Fig. 3. Variation of air gap permeance waveform and spectra by analytical calculation according to slot opening ratio (a) Waveform. (b)spectra permeability of the stator and rotor yokes and the permeability of vacuum, respectively, g is the air gap length and hm is the permanent magnet thickness as shown in Fig.. In (5), the Carters coefficient Kc has been included to account for the increase of the effective air gap due to the stator slotting [17] and g is the replaced air gap length for the computation of Carters coefficient. Fig. 3 shows the variation of the air gap permeance waveform and harmonic spectra. Fig. 3(a) shows that as the slot opening ratio increases, the average value and the shape of each waveform decreased and changes from a square to a sine, respectively. In (1), P0 in the first term, and Pi in the second term mean the average value and the amplitude of each waveform in Fig. 3(a). The harmonics spectra shown in Fig. 3(b) will be verified below. B. Magnetomotive force function The Fourier series expansion of the MMF due to the rotor permanent magnet is described by F (θ + α) = A j cos (j 1) (θ + α)} (7) j=1 48

3 where is the number of pole pairs on the rotor. The coefficient A j of the MMF function is the magnetization, which is assumed to be uniform throughout the cross-section of the permanent magnets and is given by [19] A j = B r sin( jπαp α p h m µ 0 j jπα p ) where B r is the permanent magnet remanence, α p is the ratio of the permanent magnet pole arc bp to the pole pitch tp as shown in Fig.. C. Air gap magnetic flux density The air gap magnetic flux density distribution can be obtained by the product of the air gap permeance function P (θ) and the magnetomotive force function F (θ + α) as shown in the following equation: (8) B(θ, α) = P (θ)f (θ + α) = P 0 A j cos (j 1) (θ + α)} + j=1 j=1 i=1 P i A j cos in s (j 1) } θ + (j 1) P } rα in s (j 1) cos in s + (j 1) } θ + (j 1) P } rα in s + (j 1) (9) In (9), the magnetic flux distribution contains three primary harmonic components: 1 fundamental harmonic component (j 1), and two harmonic components in s (j 1). The two harmonic components are created by the modulation of the permeance and MMF. Since a vernier motor is operated with a magnetically geared effect, the number of winding pole pairs of a vernier motor should be equal to either of the two harmonic components and can be obtained by Fig. 4. Comparisons of air gap magnetic density waveforms and spectra by -D FEM and analytical calculation (a) Waveform. (b)spectra P ω = in s (j 1) (10) The amplitude and rotation angle of harmonic components are P i A j and ( j 1) α/(in s ± (j 1), respectively. P j is one of the parameters determining the amplitude of the harmonic order of the flux density. Therefore, as shown in Fig. 3(b), the amplitude of the 17th component corresponding to Pi has a great influence on the harmonics of the permanent magnet flux density. D. Back EMF and Torque In the case of a three-phase surface permanent synchronous motor, the general torque equation is as follows: T e = P ω m = e ui u + e v i v + e w i w ω m (11) where P is the power, ω m is the rotor speed in rad/s, e and i are the back EMF and current of each phase, respectively. For Fig. 5. Comparison of Back EMF according to the slot opening ratio and magnet thickness a conventional surface permanent synchronous motor, the back EMF is the derivative of the flux linkage waveform. However, since the vernier motor has a different operational principle from a conventional surface permanent synchronous motor, the phase EMF can be obtained as follow: 49

4 e ph = dλ dt = dθ ɛ dλ dλ = k r ω ɛ (1) dt dθ ɛ dθ ɛ where e ph is the phase EMF, λ is the flux linkage, θ ɛ is the electrical angle and k r is the ratio of the number of pole pairs of the permanent magnet to winding pole pairs. Substituting (9) into (1), the back EMF can be redefined by e ph = dλ dt = dθ e dλ dλ = k r k w ω e dt dθ e dθ e = k r k w ω dλ m = k r k w dθ e ω Nφ g m π = k r k w ω m N π ( πrro L stk B g1 = k r k w w m NR ro L stk P i A j j=1 i=1 cos in s (j 1) } θ + (j 1) P } rα in s (j 1) cos in s + (j 1) } θ + (j 1) P } rα in s + (j 1) (13) where θ m is the mechanical angle, k w is the winding factor, L s tk is the stack length, R r o is the outer radius of the rotor, φ g and B g1 are the harmonic flux and flux density, respectively. The torque equation can be obtained by dividing (13) by the rotational speed and multiplying the current as follows, ) Fig. 6. Variation of output torque by FEM and analytical calculation T e = 3 e phi ph w m = 3 k rk w NR ro L stk B g1 i ph (14) III. VERIFICATION OF ANALYTICAL CALCULATION EMPLOYING -D FEM Assuming that i and j in (10) are 1, the 17-pole-pairs-18- slot vernier motor is driven using either of the first or 35th harmonics. In this study, the number of the winding pole pairs is one because the first order harmonics are used. Based on the main design parameters listed in Table I, the SPMVM was designed as shown in Fig. 1. FEM analysis was conducted to compare the analytical calculation result. A. Air gap magnetic flux density Fig. 4 (a) and (b) show the comparisons of the air gap magnetic flux density distribution and its harmonics spectra at t=0 sec. It can be seen that the shapes of the waveforms by the FEM and the analytical calculation look quite similar to each other in Fig. 4 (a). The fundamental component 17th harmonic has the highest value, and the first and 35th harmonic components have the next highest value as shown in Fig. 4 (b). As shown in Fig. 4 (b), the error rate between FEM and analytical calculation method is within ±7.1%. B. Back EMF Fig. 7. FEM model of the designed SPMVM Fig. 5 illustrates the distribution of the back EMF root mean square (RMS) value according to the slot opening ratio and the permanent magnet thickness. Both graphs show a similar pattern, and when the opening ratio and permanent magnet thickness are 60% and mm, respectively, the highest induced voltages are observed in each graph. C. Torque As mentioned above, the opening ratio was fixed 60% and the output torque according to the permanent magnet thickness was analyzed when a three-phase current of 10 Arms was input, and the rotor was rotated at 500 rpm. Fig. 6 shows the trend line of the torque with the permanent magnet thickness change. Two lines showed an almost similar pattern and the model with -mm permanent magnet had the best output torque. IV. DESIGN AND ANALYSIS OF THE SPMVM WITH THE BEST DESIGN PARAMETER We designed an SPMVM with 17 pole pairs 18 slots based on the previously verified design parameters. The N-T, T-I and 50

5 a good agreement with the FEM results. Finally, the characteristics of an SPMVM designed with the calculated design variables were verified using -D FEM analysis. Fig. 8. Fig. 9. N-T and T-I characteristics T- η characteristic the T-η characteristics of the SPMVM are computed using - D FEM. The -D FEM model of the SPMVM is shown in Fig. 7. Fig. 8 shows the N-T and T-I characteristics when a sinusoidal voltage was supplied from 10 rpm to 500 rpm. The T-η characteristics are shown in Fig. 9 and the efficiency η is given by P out η = (15) P out + W iron + W copper where P out is the output power, W iron is the iron loss of the laminated cores calculated after FEM and W copper is the copper loss in the coils. As shown in Figs 8 and 9, when the load torque is higher than 50 Nm, the efficiency is lower than 80 V. CONCLUSION This paper expressed an analytical calculation of an SP- MVM with a stator slotting effect and designed a model based on a theoretical approach. We described how to calculate the air gap magnetic flux density and harmonics using an SPMVM operating principle. The analytical calculation method showed REFERENCES [1] L. Xu, G. Liu, W. Zhao, X. Yang, and R. Cheng, Hybrid Stator Design of Fault-Tolerant Permanent-Magnet Vernier Machines for Direct-Drive Applications, IEEE Transactions on Industrial Electronics, vol. 64, pp , 017. [] F. Zhao, M. s. Kim, B. i. Kwon, and J. h. Baek, A Small Axial-Flux Vernier Machine with Ring-Type Magnets for the Auto-Focusing Lens Drive System, IEEE Transactions on Magnetics, vol. PP, pp. 1-1, 016. [3] Y. Kokubo and S. Shimomura, Design of dual rotor - Axial gap PMVM for hybrid electric vehicle, in Electrical Machines and Systems (ICEMS), th International Conference on, 014, pp [4] K. Atallah and D. Howe, A novel high-performance magnetic gear, Magnetics, IEEE Transactions on, vol. 37, pp , 001. [5] N. Niguchi and K. Hirata, Transmission Torque Analysis of a Novel Magnetic Planetary Gear Employing 3-D FEM, Magnetics, IEEE Transactions on, vol. 48, pp , 01. [6] A. Zaini, N. Niguchi, and K. Hirata, Continuously Variable Speed Vernier Magnetic Gear, Magnetics, IEEE Transactions on, vol. 48, pp , 01. [7] N. Niguchi, K. Hirata, A. Zaini, and S. Nagai, Proposal of an axial-type magnetic-geared motor, in Electrical Machines (ICEM), 01 XXth International Conference on, 01, pp [8] N. Niguchi and K. Hirata, Magnetic-geared motors with high transmission torque density, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 34, pp , 015. [9] K. Atallah, W. Jiabin, S. D. Calverley, and S. Duggan, Design and Operation of a Magnetic Continuously Variable Transmission, Industry Applications, IEEE Transactions on, vol. 48, pp , 01. [10] N. Shuangxia, S. L. Ho, and W. N. Fu, Design of a Novel Electrical Continuously Variable Transmission System Based on Harmonic Spectra Analysis of Magnetic Field, Magnetics, IEEE Transactions on, vol. 49, pp , 013. [11] Q. Ronghai, L. Dawei, and W. Jin, Relationship between magnetic gears and vernier machines, in Electrical Machines and Systems (ICEMS), 011 International Conference on, 011, pp [1] K. Okada, N. Niguchi, and K. Hirata, Analysis of a Vernier Motor with Concentrated Windings, Magnetics, IEEE Transactions on, vol. 49, pp , 013. [13] D. Li, R. Qu, W. Xu, J. Li, and T. Lipo, Design Procedure of Dual-stator, Spoke-array Vernier Permanent Magnet Machines, Industry Applications, IEEE Transactions on, vol. PP, pp. 1-1, 015. [14] L. Dawei, Q. Ronghai, L. Jian, X. Linyuan, W. Leilei, and X. Wei, Analysis of Torque Capability and Quality in Vernier Permanent- Magnet Machines, IEEE Transactions on Industry Applications, vol. 5, pp , 016. [15] S. Hyoseok, N. Niguchi, and K. Hirata, Characteristic Analysis of Surface Permanent Magnet Vernier Motor according to Pole Ratio and Winding Pole Number, IEEE Transactions on Magnetics, vol. PP, pp. 1-1, 017. [16] Z. Q. Zhu and D. Howe, Instantaneous magnetic field distribution in brushless permanent magnet DC motors. III. Effect of stator slotting, IEEE Transactions on Magnetics, vol. 9, pp , [17] F. W. Carter, The magnetic field of the dynamo-electric machine, Electrical Engineers, Journal of the Institution of, vol. 64, pp , 196. [18] Z. Q. Zhu, D. Howe, E. Bolte, and B. Ackermann, Instantaneous magnetic field distribution in brushless permanent magnet DC motors. I. Open-circuit field, IEEE Transactions on Magnetics, vol. 9, pp ,

A Novel Pseudo-Direct-Drive Permanent-Magnet Machine with Less Magnet

A Novel Pseudo-Direct-Drive Permanent-Magnet Machine with Less Magnet Machine Copy for Proofreading, Vol. x, y z, 2016 A Novel Pseudo-Direct-Drive Permanent-Magnet Machine with Less Magnet Xin Yin, Pierre-Daniel Pfister * and Youtong Fang Abstract Magnetic gears (MGs), an

More information

Hybrid Excited Vernier Machines with All Excitation Sources on the Stator for Electric Vehicles

Hybrid Excited Vernier Machines with All Excitation Sources on the Stator for Electric Vehicles Progress In Electromagnetics Research M, Vol. 6, 113 123, 16 Hybrid Excited Vernier Machines with All Excitation Sources on the Stator for Electric Vehicles Liang Xu, Guohai Liu, Wenxiang Zhao *, and Jinghua

More information

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars 223 Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars Pelizari, A. ademir.pelizari@usp.br- University of Sao Paulo Chabu, I.E. ichabu@pea.usp.br - University of Sao Paulo

More information

Design and Analysis of Permanent Magnet Motor with Movable Stators

Design and Analysis of Permanent Magnet Motor with Movable Stators Progress In Electromagnetics Research B, Vol. 58, 219 232, 2014 Design and Analysis of Permanent Magnet Motor with Movable Stators Chun-Chi Lai 1, Tzong-Shi Liu 1, *, and Ming-Tsan Peng 2 Abstract Permanent-magnet

More information

Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor

Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor Daisuke Sato Department of Electrical Engineering Nagaoka University of Technology Nagaoka, Niigata,

More information

Analytical Method for Predicting the Air-Gap Flux Density of Dual-Rotor Permanent- Magnet (DRPM) Machine

Analytical Method for Predicting the Air-Gap Flux Density of Dual-Rotor Permanent- Magnet (DRPM) Machine Analytical Method for Predicting the Air-Gap Flux Density of Dual-Rotor Permanent- Magnet (DRPM) Machine W.Xie, G.Dajaku*, D.Gerling Institute for Electrical Drives and Actuators, University of Federal

More information

Static Analysis of 18-Slot/16-Pole Permanent Magnet Synchronous Motor Using FEA

Static Analysis of 18-Slot/16-Pole Permanent Magnet Synchronous Motor Using FEA International Journal of Engineering and Technology Volume 5 No. 3,March, 2015 Static Analysis of 18-Slot/16-Pole Permanent Magnet Synchronous Motor Using FEA M. Rezal 1, Dahaman Ishak 2, M. Sabri 1, Al-Hapis

More information

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor 1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor Bai-zhou Li 1, Yu Wang 2, Qi-chang Zhang 3 1, 2, 3 School of Mechanical

More information

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines Journal of Electrical Engineering 3 (2015) 134-141 doi: 10.17265/2328-2223/2015.03.004 D DAVID PUBLISHING Analytical Model for Sizing Magnets of Permanent Magnet Synchronous Machines George Todorov and

More information

Influence of different rotor magnetic circuit structure on the performance. permanent magnet synchronous motor

Influence of different rotor magnetic circuit structure on the performance. permanent magnet synchronous motor ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(3), pp. 583-594 (2017) DOI 10.1515/aee-2017-0044 Influence of different rotor magnetic circuit structure on the performance of permanent magnet synchronous motor

More information

This is a repository copy of Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines.

This is a repository copy of Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines. This is a repository copy of Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/874/

More information

Analysis of Half Halbach Array Configurations in Linear Permanent-Magnet Vernier Machine

Analysis of Half Halbach Array Configurations in Linear Permanent-Magnet Vernier Machine Journal of Magnetics 22(3), 414-422 (2017) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 https://doi.org/10.4283/jmag.2017.22.3.414 Analysis of Half Halbach Array Configurations in Linear Permanent-Magnet

More information

MODELING surface-mounted permanent-magnet (PM)

MODELING surface-mounted permanent-magnet (PM) Modeling of Axial Flux Permanent-Magnet Machines Asko Parviainen, Markku Niemelä, and Juha Pyrhönen Abstract In modeling axial field machines, three dimensional (3-D) finite-element method (FEM) models

More information

Keywords: Electric Machines, Rotating Machinery, Stator faults, Fault tolerant control, Field Weakening, Anisotropy, Dual rotor, 3D modeling

Keywords: Electric Machines, Rotating Machinery, Stator faults, Fault tolerant control, Field Weakening, Anisotropy, Dual rotor, 3D modeling Analysis of Electromagnetic Behavior of Permanent Magnetized Electrical Machines in Fault Modes M. U. Hassan 1, R. Nilssen 1, A. Røkke 2 1. Department of Electrical Power Engineering, Norwegian University

More information

Analytical Method for Magnetic Field Calculation in a Low-Speed Permanent-Magnet Harmonic Machine

Analytical Method for Magnetic Field Calculation in a Low-Speed Permanent-Magnet Harmonic Machine Vol. 5 No.5/ May. 2011 Analytical Method for Magnetic Field Calculation in a Low-Speed Permanent-Magnet Harmonic Machine ABSTRACT Magnetic-gearing effect has become increasingly attractive when designing

More information

Optimal Design of PM Axial Field Motor Based on PM Radial Field Motor Data

Optimal Design of PM Axial Field Motor Based on PM Radial Field Motor Data Optimal Design of PM Axial Field Motor Based on PM Radial Field Motor Data GOGA CVETKOVSKI LIDIJA PETKOVSKA Faculty of Electrical Engineering Ss. Cyril and Methodius University Karpos II b.b. P.O. Box

More information

Cogging Torque Reduction in Surface-mounted Permanent Magnet Synchronous Motor by Axial Pole Pairing

Cogging Torque Reduction in Surface-mounted Permanent Magnet Synchronous Motor by Axial Pole Pairing EVS28 KINTEX, Korea, May 3-6, 215 Cogging Torque Reduction in Surface-mounted Permanent Magnet Synchronous Motor by Axial Pole Pairing Soo-Gyung Lee 1, Kyung-Tae Jung 1, Seung-Hee Chai 1, and Jung-Pyo

More information

Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines

Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines Sung-An Kim, Jian Li, Da-Woon Choi, Yun-Hyun Cho Dep. of Electrical Engineering 37, Nakdongdae-ro, 55beon-gil,

More information

AXIAL FLUX INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SINUSOIDALLY SHAPED MAGNETS

AXIAL FLUX INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SINUSOIDALLY SHAPED MAGNETS AXIAL FLUX INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SINUSOIDALLY SHAPED MAGNETS A. Parviainen, J. Pyrhönen, M. Niemelä Lappeenranta University of Technology, Department of Electrical Engineering

More information

Performance analysis of variable speed multiphase induction motor with pole phase modulation

Performance analysis of variable speed multiphase induction motor with pole phase modulation ARCHIVES OF ELECTRICAL ENGINEERING VOL. 65(3), pp. 425-436 (2016) DOI 10.1515/aee-2016-0031 Performance analysis of variable speed multiphase induction motor with pole phase modulation HUIJUAN LIU, JUN

More information

Power density improvement of three phase flux reversal machine with distributed winding

Power density improvement of three phase flux reversal machine with distributed winding Published in IET Electric Power Applications Received on 4th January 2009 Revised on 2nd April 2009 ISSN 1751-8660 Power density improvement of three phase flux reversal machine with distributed winding

More information

A new hybrid method for the fast computation of airgap flux and magnetic forces in IPMSM

A new hybrid method for the fast computation of airgap flux and magnetic forces in IPMSM 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER) A new hybrid method for the fast computation of airgap flux and magnetic forces in IPMSM Emile Devillers, Michel

More information

2002 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2002 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 00 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

Analysis of Anti-Notch Method to the Reduction of the Cogging Torque in Permanent Magnet Synchronous Generator

Analysis of Anti-Notch Method to the Reduction of the Cogging Torque in Permanent Magnet Synchronous Generator International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 1301 Analysis of Anti-Notch Method to the Reduction of the Cogging Torque in Permanent Magnet Synchronous Generator

More information

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR-621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I Unit I Introduction 1. What are the three basic types

More information

Analytical Model for Permanent Magnet Motors With Surface Mounted Magnets

Analytical Model for Permanent Magnet Motors With Surface Mounted Magnets 386 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 18, NO. 3, SEPTEMBER 2003 Analytical Model for Permanent Magnet Motors With Surface Mounted Magnets Amuliu Bogdan Proca, Member, IEEE, Ali Keyhani, Fellow,

More information

Cogging Torque Reduction in Surface-mounted Permanent Magnet Synchronous Motor by Axial Pole Pairing

Cogging Torque Reduction in Surface-mounted Permanent Magnet Synchronous Motor by Axial Pole Pairing EVS28 KINTEX, Korea, May 3-6, 215 Cogging Torque Reduction in Surface-mounted Permanent Magnet Synchronous Motor by Axial Pole Pairing Soo-Gyung Lee 1, Kyung-Tae Jung 1, Seung-Hee Chai 1, and Jung-Pyo

More information

Analysis and Design of a Dual-Rotor Axial-Flux Vernier Permanent Magnet Machine

Analysis and Design of a Dual-Rotor Axial-Flux Vernier Permanent Magnet Machine Analysis and Design of a Dual-Rotor Axial-Flux Vernier Permanent Magnet Machine Tianjie Zou, Student Member, IEEE, Ronghai Qu, Senior Member, IEEE, Jian Li, Member, IEEE, and Dawei Li, Student Member,

More information

Proposal of short armature core double-sided transverse flux type linear synchronous motor

Proposal of short armature core double-sided transverse flux type linear synchronous motor Proposal of short armature core double-sided transverse flux type linear synchronous motor Shin Jung-Seob a, Takafumi Koseki a and Kim Houng-Joong b a The University of Tokyo, Engineering Building #2 12F,7-3-1

More information

Chapter 5 Three phase induction machine (1) Shengnan Li

Chapter 5 Three phase induction machine (1) Shengnan Li Chapter 5 Three phase induction machine (1) Shengnan Li Main content Structure of three phase induction motor Operating principle of three phase induction motor Rotating magnetic field Graphical representation

More information

Torque Ripple Reduction Using Torque Compensation Effect of an Asymmetric Rotor Design in IPM Motor

Torque Ripple Reduction Using Torque Compensation Effect of an Asymmetric Rotor Design in IPM Motor Journal of Magnetics 22(2), 266-274 (2017) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 https://doi.org/10.4283/jmag.2017.22.2.266 Torque Ripple Reduction Using Torque Compensation Effect of an Asymmetric

More information

General Characteristic of Fractional Slot Double Layer Concentrated Winding Synchronous Machine

General Characteristic of Fractional Slot Double Layer Concentrated Winding Synchronous Machine J Electr Eng Technol Vol. 8, No. 2: 282-287, 2013 http://dx.doi.org/10.5370/jeet.2013.8.2.282 ISSN(Print) 1975-0102 ISSN(Online) 2093-7423 General Characteristic of Fractional Slot Double Layer Concentrated

More information

White Rose Research Online URL for this paper:

White Rose Research Online URL for this paper: This is a repository copy of Eddy-current loss in the rotor magnets of permanent-magnet brushless machines having a fractional number of slots per pole. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/861/

More information

Development of a Double-Sided Consequent Pole Linear Vernier Hybrid Permanent-Magnet Machine for Wave Energy Converters

Development of a Double-Sided Consequent Pole Linear Vernier Hybrid Permanent-Magnet Machine for Wave Energy Converters Development of a Double-Sided Consequent Pole Linear Vernier Hybrid Permanent-Magnet Machine for Wave Energy Converters A. A. Almoraya, N. J. Baker, K. J. Smith and M. A. H. Raihan Electrical Power Research

More information

DESIGN AND ANALYSIS OF AXIAL-FLUX CORELESS PERMANENT MAGNET DISK GENERATOR

DESIGN AND ANALYSIS OF AXIAL-FLUX CORELESS PERMANENT MAGNET DISK GENERATOR DESIGN AND ANALYSIS OF AXIAL-FLUX CORELESS PERMANENT MAGNET DISK GENERATOR Łukasz DR ZIKOWSKI Włodzimierz KOCZARA Institute of Control and Industrial Electronics Warsaw University of Technology, Warsaw,

More information

2972 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 51, NO. 4, JULY/AUGUST Jian Li, Member, IEEE, and Thomas A. Lipo, Life Fellow, IEEE

2972 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 51, NO. 4, JULY/AUGUST Jian Li, Member, IEEE, and Thomas A. Lipo, Life Fellow, IEEE 97 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 51, NO. 4, JULY/AUGUST 015 Design Procedure of Dual-Stator Spoke-Array Vernier Permanent-Magnet Machines Dawei Li, Student Member, IEEE, Ronghai Qu,

More information

TRACING OF MAXIMUM POWER DENSITY POINT FOR AXIAL FLUX TORUS TYPE MACHINES USING GENERAL PURPOSE SIZING EQUATIONS

TRACING OF MAXIMUM POWER DENSITY POINT FOR AXIAL FLUX TORUS TYPE MACHINES USING GENERAL PURPOSE SIZING EQUATIONS TRACING OF MAXIMUM POWER DENSITY POINT FOR AXIAL FLUX TORUS TYPE MACHINES USING GENERAL PURPOSE SIZING EQUATIONS M. Ramanjaneyulu Chowdary Dr.G.S Raju Mr.V.Rameshbabu M.Tech power electronics Former BHU

More information

Magnetic vibration analysis of a new DC-excited multitoothed switched reluctance machine. Liu, C; Chau, KT; Lee, CHT; Lin, F; Li, F; Ching, TW

Magnetic vibration analysis of a new DC-excited multitoothed switched reluctance machine. Liu, C; Chau, KT; Lee, CHT; Lin, F; Li, F; Ching, TW Title Magnetic vibration analysis of a new DC-excited multitoothed switched reluctance machine Author(s) Liu, C; Chau, KT; Lee, CHT; Lin, F; Li, F; Ching, TW Citation The 2014 IEEE International Magnetics

More information

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 0-0 Contents Transformer. An overview of the device. Principle of operation of a single-phase transformer 3.

More information

Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear

Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear IEEJ Journal of Industry Applications Vol.3 No.1 pp.62 67 DOI: 10.1541/ieejjia.3.62 Paper Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear Michinari Fukuoka a) Student

More information

Unified Torque Expressions of AC Machines. Qian Wu

Unified Torque Expressions of AC Machines. Qian Wu Unified Torque Expressions of AC Machines Qian Wu Outline 1. Review of torque calculation methods. 2. Interaction between two magnetic fields. 3. Unified torque expression for AC machines. Permanent Magnet

More information

4 Finite Element Analysis of a three-phase PM synchronous machine

4 Finite Element Analysis of a three-phase PM synchronous machine Assignment 4 1-1 4 Finite Element Analysis of a three-phase PM synchronous machine The goal of the third assignment is to extend your understanding on electromagnetic analysis in FEM. This assignment is

More information

Design and analysis of a HTS vernier PM machine. IEEE Transactions on Applied Superconductivity. Copyright IEEE.

Design and analysis of a HTS vernier PM machine. IEEE Transactions on Applied Superconductivity. Copyright IEEE. Title Design and analysis of a HTS vernier PM machine Author(s) Li, J; Chau, KT Citation Ieee Transactions On Applied Superconductivity, 2010, v. 20 n. 3, p. 1055-1059 Issued Date 2010 URL http://hdl.handle.net/10722/129194

More information

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008] Doubly salient reluctance machine or, as it is also called, switched reluctance machine [Pyrhönen et al 2008] Pros and contras of a switched reluctance machine Advantages Simple robust rotor with a small

More information

Loss analysis of a 1 MW class HTS synchronous motor

Loss analysis of a 1 MW class HTS synchronous motor Journal of Physics: Conference Series Loss analysis of a 1 MW class HTS synchronous motor To cite this article: S K Baik et al 2009 J. Phys.: Conf. Ser. 153 012003 View the article online for updates and

More information

SCIENCE CHINA Technological Sciences. Nonlinear magnetic network models for flux-switching permanent magnet machines

SCIENCE CHINA Technological Sciences. Nonlinear magnetic network models for flux-switching permanent magnet machines SCIENCE CHINA Technological Sciences Article March 2016 Vol.59 No.3: 494 505 doi: 10.1007/s11431-015-5968-z Nonlinear magnetic network models for flux-switching permanent magnet machines ZHANG Gan, HUA

More information

Proposal of C-core Type Transverse Flux Motor for Ship Propulsion Increasing Torque Density by Dense Stator Configuration

Proposal of C-core Type Transverse Flux Motor for Ship Propulsion Increasing Torque Density by Dense Stator Configuration ADVANCED ELECTROMAGNETICS, Vol., No., December 01 Proposal of C-core Type Transverse Flux Motor for Ship Propulsion Increasing Torque Density by Dense Stator Configuration Yuta Yamamoto 1 *, Takafumi Koseki

More information

Step Motor Modeling. Step Motor Modeling K. Craig 1

Step Motor Modeling. Step Motor Modeling K. Craig 1 Step Motor Modeling Step Motor Modeling K. Craig 1 Stepper Motor Models Under steady operation at low speeds, we usually do not need to differentiate between VR motors and PM motors (a hybrid motor is

More information

Design and Analysis of Interior Permanent Magnet Synchronous Motor Considering Saturated Rotor Bridge using Equivalent Magnetic Circuit

Design and Analysis of Interior Permanent Magnet Synchronous Motor Considering Saturated Rotor Bridge using Equivalent Magnetic Circuit Journal of Magnetics 19(4), 404-410 (2014) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2014.19.4.404 Design and Analysis of Interior Permanent Magnet Synchronous Motor

More information

Generators for wind power conversion

Generators for wind power conversion Generators for wind power conversion B. G. Fernandes Department of Electrical Engineering Indian Institute of Technology, Bombay Email : bgf@ee.iitb.ac.in Outline of The Talk Introduction Constant speed

More information

Characteristics Analysis of Claw-Pole Alternator for Automobiles by Nonlinear Magnetic Field Decomposition for Armature Reaction

Characteristics Analysis of Claw-Pole Alternator for Automobiles by Nonlinear Magnetic Field Decomposition for Armature Reaction IEEJ Journal of Industry Applications Vol.6 No.6 pp.362 369 DOI: 10.1541/ieejjia.6.362 Paper Characteristics Analysis of Claw-Pole Alternator for Automobiles by Nonlinear Magnetic Field Decomposition for

More information

Analytical and numerical computation of the no-load magnetic field in induction motors

Analytical and numerical computation of the no-load magnetic field in induction motors Analytical and numerical computation of the no-load induction motors Dan M. Ionel University of Glasgow, Glasgow, Scotland, UK and Mihai V. Cistelecan Research Institute for Electrical Machines, Bucharest

More information

Levitation and Thrust Forces Analysis of Hybrid-Excited Linear Synchronous Motor for Magnetically Levitated Vehicle

Levitation and Thrust Forces Analysis of Hybrid-Excited Linear Synchronous Motor for Magnetically Levitated Vehicle 564 Journal of Electrical Engineering & Technology Vol. 7, No. 4, pp. 564~569, 2012 http://dx.doi.org/10.5370/jeet.2012.7.4.564 Levitation and Thrust Forces Analysis of Hybrid-Excited Linear Synchronous

More information

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April -2015 SIMULATION

More information

EXPERIMENTAL COMPARISON OF LAMINATION MATERIAL CASE OF SWITCHING FLUX SYNCHRONOUS MACHINE WITH HYBRID EXCITATION

EXPERIMENTAL COMPARISON OF LAMINATION MATERIAL CASE OF SWITCHING FLUX SYNCHRONOUS MACHINE WITH HYBRID EXCITATION EXPERIMENTAL COMPARISON OF LAMINATION MATERIAL CASE OF SWITCHING FLUX SYNCHRONOUS MACHINE WITH HYBRID EXCITATION Emmanuel Hoang, Sami Hlioui, Michel Lécrivain, Mohamed Gabsi To cite this version: Emmanuel

More information

THE series parallel hybrid electric vehicle (SP-HEV) is

THE series parallel hybrid electric vehicle (SP-HEV) is IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 11, NOVEMBER 2015 6737 Analysis of a Novel Magnetic-Geared Dual-Rotor Motor With Complementary Structure Le Sun, Student Member, IEEE, Ming Cheng,

More information

Regular paper. Design and FE Analysis of BLDC Motor for Electro- Mechanical Actuator

Regular paper. Design and FE Analysis of BLDC Motor for Electro- Mechanical Actuator P.Srinivas* J. Electrical Systems 11-1 (2015): 76-88 Regular paper Design and FE Analysis of BLDC Motor for Electro- Mechanical Actuator JES Journal of Electrical Systems This paper presents the design

More information

Unbalanced magnetic force and cogging torque of PM motors due to the interaction between PM magnetization and stator eccentricity

Unbalanced magnetic force and cogging torque of PM motors due to the interaction between PM magnetization and stator eccentricity Microsyst Technol (2016) 22:129 1255 DOI 10.1007/s0052-016-2839-x TECHNICAL PAPER Unbalanced magnetic force and cogging torque of PM motors due to the interaction between PM magnetization and stator eccentricity

More information

Guangjin Li, Javier Ojeda, Emmanuel Hoang, Mohamed Gabsi, Cederic Balpe. To cite this version:

Guangjin Li, Javier Ojeda, Emmanuel Hoang, Mohamed Gabsi, Cederic Balpe. To cite this version: Design of Double Salient Interior Permanent Magnet Machine Based on Mutually Coupled Reluctance Machine for Increasing the Torque Density and Flux-Weakening Capability Guangjin Li, Javier Ojeda, Emmanuel

More information

Design of a high-speed superconducting bearingless machine for flywheel energy storage systems. Li, WL; Chau, KT; Ching, TW; Wang, Y; CHEN, M

Design of a high-speed superconducting bearingless machine for flywheel energy storage systems. Li, WL; Chau, KT; Ching, TW; Wang, Y; CHEN, M Title Design of a high-speed superconducting bearingless machine for flywheel energy storage systems Author(s) Li, WL; Chau, KT; Ching, TW; Wang, Y; CHEN, M Citation IEEE Transactions on Applied Superconductivity,

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

More information

DESIGN AND ANALYSIS OF A THREE-PHASE THREE-STACK CLAW POLE PERMANENT MAGNET MOTOR WITH SMC STATOR

DESIGN AND ANALYSIS OF A THREE-PHASE THREE-STACK CLAW POLE PERMANENT MAGNET MOTOR WITH SMC STATOR DESGN AND ANALYSS OF A THREE-PHASE THREE-STACK CLAW POLE PERMANENT MAGNET MOTOR WTH SMC STATOR YO. Guo", 1.0. Zhu*, P.A. Watterson*, and W. Wu** *Faculty of Engineering, University of Technology, Sydney,

More information

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18,

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2006 196 A Method for the Modeling and Analysis of Permanent

More information

Cogging Torque Reduction in Permanent-Magnet Brushless Generators for Small Wind Turbines

Cogging Torque Reduction in Permanent-Magnet Brushless Generators for Small Wind Turbines Journal of Magnetics 20(2), 176-185 (2015) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2015.20.2.176 Cogging Torque Reduction in Permanent-Magnet Brushless Generators

More information

UNIT I INTRODUCTION Part A- Two marks questions

UNIT I INTRODUCTION Part A- Two marks questions ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR-621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DESIGN OF ELECTRICAL MACHINES UNIT I INTRODUCTION 1. Define specific magnetic

More information

Dynamic Performance Analysis of Permanent Magnet Hybrid Stepper Motor by Transfer Function Model for Different Design Topologies

Dynamic Performance Analysis of Permanent Magnet Hybrid Stepper Motor by Transfer Function Model for Different Design Topologies International Journal of Electrical and Computer Engineering (IJECE) Vol.2, No.2, April 2012, pp. 191~196 ISSN: 2088-8708 191 Dynamic Performance Analysis of Permanent Magnet Hybrid Stepper Motor by Transfer

More information

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION Journal of ELECTRICAL ENGINEERING, VOL. 55, NO. 5-6, 24, 138 143 PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION Martin Lipták This paper

More information

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Page 359 World Electric Vehicle Journal Vol. 3 - ISSN 232-6653 - 29 AVERE Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Tao Sun, Soon-O Kwon, Geun-Ho Lee, Jung-Pyo

More information

Field Calculation of Permanent-Magnet Synchronous Motors 365 shows, approximately, the eect of rotor saliency and its equivalent airgap geometric func

Field Calculation of Permanent-Magnet Synchronous Motors 365 shows, approximately, the eect of rotor saliency and its equivalent airgap geometric func Scientia Iranica, Vol. 13, No. 4, pp 364{372 c Sharif University of Technology, October 2006 Research Note A New Analytical Method on the Field Calculation of Interior Permanent-Magnet Synchronous Motors

More information

THE UNIVERSITY OF ADELAIDE. Design of Permanent Magnet Machines for Field-Weakening Operation. School of Electrical and Electronic Engineering

THE UNIVERSITY OF ADELAIDE. Design of Permanent Magnet Machines for Field-Weakening Operation. School of Electrical and Electronic Engineering THE UNIVERSITY OF ADELAIDE School of Electrical and Electronic Engineering Design of Permanent Magnet Machines for Field-Weakening Operation Chun Tang A thesis presented for the degree of Doctor of Philosophy

More information

Torque Analysis of Permanent Magnet Hybrid Stepper Motor using Finite Element Method for Different Design Topologies

Torque Analysis of Permanent Magnet Hybrid Stepper Motor using Finite Element Method for Different Design Topologies International Journal of Power Electronics and Drive System (IJPEDS) Vol.2, No.1, March 212, pp. 17~116 ISSN: 288-8694 17 Torque Analysis of Permanent Magnet Hybrid Stepper Motor using Finite Element Method

More information

Modeling and Design Optimization of Permanent Magnet Linear Synchronous Motor with Halbach Array

Modeling and Design Optimization of Permanent Magnet Linear Synchronous Motor with Halbach Array Modeling and Design Optimization of Permanent Magnet Linear Synchronous Motor with Halbach Array N. Roshandel Tavana, and A. Shoulaie nroshandel@ee.iust.ir, and shoulaie@ee.iust.ac.ir Department of Electrical

More information

Design Optimization and Analysis of a Dual-Permanent-Magnet-Excited Machine Using Response Surface Methodology

Design Optimization and Analysis of a Dual-Permanent-Magnet-Excited Machine Using Response Surface Methodology Energies 2015, 8, 10127-10140; doi:10.3390/en80910127 Article OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Design Optimization and Analysis of a Dual-Permanent-Magnet-Excited Machine

More information

Optimum design of a double-sided permanent magnet linear synchronous motor to minimize the detent force

Optimum design of a double-sided permanent magnet linear synchronous motor to minimize the detent force Energy Equip. Sys./ Vol. 5/No1/March 2017/ 1-11 Energy Equipment and Systems http://energyequipsys.ut.ac.ir www.energyequipsys.com Optimum design of a double-sided permanent magnet linear synchronous motor

More information

A Microscopic Investigation of Force Generation in a Permanent Magnet Synchronous Machine

A Microscopic Investigation of Force Generation in a Permanent Magnet Synchronous Machine A Microscopic Investigation of Force Generation in a Permanent Magnet Synchronous Machine S. Pekarek, Purdue University (W. Zhu UM-Rolla), (B. Fahimi University of Texas-Arlington) February 7, 25 1 Outline

More information

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Arumugam, Puvaneswaran and Dusek, Jiri and Mezani, Smail and Hamiti, Tahar and Gerada, C. (2015) Modeling and analysis of eddy current losses in permanent magnet machines with multi-stranded bundle conductors.

More information

This is a repository copy of Analytical modelling of modular and unequal tooth width surface-mounted permanent magnet machines.

This is a repository copy of Analytical modelling of modular and unequal tooth width surface-mounted permanent magnet machines. This is a repository copy of Analytical modelling of modular and unequal tooth width surface-mounted permanent magnet machines. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/86803/

More information

Normal Force and Vibration Analysis of Linear Permanent-Magnet Vernier Machine

Normal Force and Vibration Analysis of Linear Permanent-Magnet Vernier Machine Journal of Magnetics 22(4), 579-589 (207) ISSN (Print) 226-750 ISSN (Online) 22-6656 https://doi.org/0.428/jmag.207.22.4.579 Normal Force and Vibration Analysis of Linear Permanent-Magnet Vernier Machine

More information

Comprehensive Analysis and Evaluation of Cogging Torque in Axial Flux Permanent Magnet Machines

Comprehensive Analysis and Evaluation of Cogging Torque in Axial Flux Permanent Magnet Machines Comprehensive Analysis and Evaluation of Cogging Torque in Axial Flux Permanent Magnet Machines A. P. Ferreira, Member, IEEE, A. V. Leite, Member, IEEE and A. F. Costa Abstract Evaluation and minimization

More information

ELECTRICALMACHINES-I QUESTUION BANK

ELECTRICALMACHINES-I QUESTUION BANK ELECTRICALMACHINES-I QUESTUION BANK UNIT-I INTRODUCTION OF MAGNETIC MATERIAL PART A 1. What are the three basic rotating Electric machines? 2. Name the three materials used in machine manufacture. 3. What

More information

Development of a new linear actuator for Androids

Development of a new linear actuator for Androids 8 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 19-3, 8 Development of a new linear actuator for Androids Masayuki MISHIMA, Hiroshi ISHIGURO and Katsuhiro HIRATA, Member,

More information

Third harmonic current injection into highly saturated multi-phase machines

Third harmonic current injection into highly saturated multi-phase machines ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(1), pp. 179-187 (017) DOI 10.1515/aee-017-001 Third harmonic current injection into highly saturated multi-phase machines FELIX KLUTE, TORBEN JONSKY Ostermeyerstraße

More information

Design and Analysis of a Linear Permanent- Magnet Vernier Machine With Improved Force Density

Design and Analysis of a Linear Permanent- Magnet Vernier Machine With Improved Force Density 2072 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 63, NO. 4, APRIL 2016 Design and Analysis of a Linear Permanent- Magnet Vernier Machine With Improved Force Density Wenxiang Zhao, Senior Member,

More information

Magnetic gear with intersecting axes and straight stationary pole-pieces

Magnetic gear with intersecting axes and straight stationary pole-pieces Research Article Magnetic gear with intersecting axes and straight stationary pole-pieces Advances in Mechanical Engineering 2018, Vol. 10(11) 1 10 Ó The Author(s) 2018 DOI: 10.1177/1687814018808865 journals.sagepub.com/home/ade

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents Revision Checklist Revision otes Transformer...4 Electromagnetic induction...4 Lenz's law...5 Generator...6 Electric motor...7 Magnetic field...9 Magnetic flux...

More information

Experimental Assessment of Unbalanced Magnetic Force according to Rotor Eccentricity in Permanent Magnet Machine

Experimental Assessment of Unbalanced Magnetic Force according to Rotor Eccentricity in Permanent Magnet Machine Journal of Magnetics 23(1), 68-73 (218) ISSN (Print) 1226-175 ISSN (Online) 2233-6656 https://doi.org/1.4283/jmag.218.23.1.68 Experimental Assessment of Unbalanced Magnetic Force according to Rotor Eccentricity

More information

Citation Ieee Transactions On Magnetics, 2001, v. 37 n. 4 II, p

Citation Ieee Transactions On Magnetics, 2001, v. 37 n. 4 II, p Title Design and analysis of a new doubly salient permanent magnet motor Author(s) Cheng, M; Chau, KT; Chan, CC Citation Ieee Transactions On Magnetics, 2001, v. 37 n. 4 II, p. 3012-3020 Issued Date 2001

More information

IEEE Transactions on Applied Superconductivity. Copyright IEEE.

IEEE Transactions on Applied Superconductivity. Copyright IEEE. Title Loss analysis of permanent magnet hybrid brushless machines with and without HTS field windings Author(s) Liu, C; Chau, KT; Li, W Citation The 21st International Conference on Magnet Technology,

More information

ANALYTICAL COMPUTATION OF RELUCTANCE SYN- CHRONOUS MACHINE INDUCTANCES UNDER DIF- FERENT ECCENTRICITY FAULTS

ANALYTICAL COMPUTATION OF RELUCTANCE SYN- CHRONOUS MACHINE INDUCTANCES UNDER DIF- FERENT ECCENTRICITY FAULTS Progress In Electromagnetics Research M, Vol. 24, 29 44, 2012 ANALYTICAL COMPUTATION OF RELUCTANCE SYN- CHRONOUS MACHINE INDUCTANCES UNDER DIF- FERENT ECCENTRICITY FAULTS H. Akbari * Department of Electrical

More information

CPPM Mahine: A Synchronous Permanent Magnet Machine with Field Weakening

CPPM Mahine: A Synchronous Permanent Magnet Machine with Field Weakening CPPM Mahine: A Synchronous Permanent Magnet Machine with Field Weakening Juan A. Tapia, Thomas A. Lipo, Fellow, IEEE Dept. of Electrical and Computer Engineering University of Wisconsin-Madison 45 Engineering

More information

2577. The analytical solution of 2D electromagnetic wave equation for eddy currents in the cylindrical solid rotor structures

2577. The analytical solution of 2D electromagnetic wave equation for eddy currents in the cylindrical solid rotor structures 2577. The analytical solution of 2D electromagnetic wave equation for eddy currents in the cylindrical solid rotor structures Lale T. Ergene 1, Yasemin D. Ertuğrul 2 Istanbul Technical University, Istanbul,

More information

Analytical Solution of Magnetic Field in Permanent-Magnet Eddy-Current Couplings by Considering the Effects of Slots and Iron-Core Protrusions

Analytical Solution of Magnetic Field in Permanent-Magnet Eddy-Current Couplings by Considering the Effects of Slots and Iron-Core Protrusions Journal of Magnetics 20(3), 273-283 (2015) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2015.20.3.273 Analytical Solution of Magnetic Field in Permanent-Magnet Eddy-Current

More information

Cogging torque reduction of Interior Permanent Magnet Synchronous Motor (IPMSM)

Cogging torque reduction of Interior Permanent Magnet Synchronous Motor (IPMSM) Scientia Iranica D (2018) 25(3), 1471{1477 Sharif University of Technology Scientia Iranica Transactions D: Computer Science & Engineering and Electrical Engineering http://scientiairanica.sharif.edu Cogging

More information

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application 797 Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application Ritu Tak 1, Sudhir Y Kumar 2, B.S.Rajpurohit 3 1,2 Electrical Engineering, Mody University of Science & Technology,

More information

Equal Pitch and Unequal Pitch:

Equal Pitch and Unequal Pitch: Equal Pitch and Unequal Pitch: Equal-Pitch Multiple-Stack Stepper: For each rotor stack, there is a toothed stator segment around it, whose pitch angle is identical to that of the rotor (θs = θr). A stator

More information

DESIGN AND COMPARISON OF FIVE TOPOLOGIES ROTOR PERMANENT MAGNET SYNCHRONOUS MOTOR FOR HIGH- SPEED SPINDLE APPLICATIONS

DESIGN AND COMPARISON OF FIVE TOPOLOGIES ROTOR PERMANENT MAGNET SYNCHRONOUS MOTOR FOR HIGH- SPEED SPINDLE APPLICATIONS Special Issue on Science, Engineering & Environment, ISSN: 186-990, Japan DOI: https://doi.org/10.1660/017.40.0765 DESIGN AND COMPARISON OF FIVE TOPOLOGIES ROTOR PERMANENT MAGNET SYNCHRONOUS MOTOR FOR

More information

Analysis of Idle Power and Iron Loss Reduction in an Interior PM Automotive Alternator

Analysis of Idle Power and Iron Loss Reduction in an Interior PM Automotive Alternator Analysis of Idle Power and Iron Loss Reduction in an Interior PM Automotive Alternator by Vlatka Životić-Kukolj M.Eng.Sci. (Research) Electrical and Electronic Engineering, Adelaide University, 2001 B.Eng

More information

Synchronous Machines

Synchronous Machines Synchronous machine 1. Construction Generator Exciter View of a twopole round rotor generator and exciter. A Stator with laminated iron core C Slots with phase winding B A B Rotor with dc winding B N S

More information

Development and analysis of radial force waves in electrical rotating machines

Development and analysis of radial force waves in electrical rotating machines DOI: 10.24352/UB.OVGU-2017-098 TECHNISCHE MECHANIK, 37, 2-5, (2017), 218 225 submitted: June 20, 2017 Development and analysis of radial force waves in electrical rotating machines S. Haas, K. Ellermann

More information

EEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2 - TEST

EEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2 - TEST ATTEMPT ALL QUESTIONS (EACH QUESTION 20 Marks, FULL MAKS = 60) Given v 1 = 100 sin(100πt+π/6) (i) Find the MS, period and the frequency of v 1 (ii) If v 2 =75sin(100πt-π/10) find V 1, V 2, 2V 1 -V 2 (phasor)

More information