= [1] Coulomb s Law. 1. Objective

Size: px
Start display at page:

Download "= [1] Coulomb s Law. 1. Objective"

Transcription

1 PHYS-102 LAB-01 Coulomb s Law 1. Objective The objective of this experiment is to demonstrate that the force between two stationary charges is directly proportional to the product of the charges and inversely to the square of the distance between them. 2. Theory According to Coulomb s Law, the magnitude of the electrostatic force between two charged particles with charges Q 1 and Q 2 and separated by a distance r is given by: Q Q = [1] 1 2 Fe k r 2 Where k = 8.99x10 9 N.m 2 /C 2 is the Coulomb constant. The unit of charge is taken as a Coulomb (C). The constant k is also written as k = 1/4πε o where the constant ε o is called the permittivity of free space ε o = 8.854x10-12 C 2 / N.m 2. Since force is a vector quantity, in the vector form Coulomb s law is expressed as: Figure 1. The free body force diagram of two charged particles.

2 Where r 12is a unit vector directed from Q 1 to Q Experimental Procedure The basis of this experiment is very simple. Two graphite-coated spheres are charged and the force between them is measured. This is done to study the dependence of the electrostatic force on [1] the separation between the charges and [2] on the product of the two charges. We will study only the proportionality of electrostatic force on the separation distance and the product of the charges. The separation distance dependence is studied by charging the two spheres and measuring the force between them by varying the distance between the charged spheres. The charge product dependence is similarly studied by varying the charge on the two spheres kept at a fixed distance and measuring the resulting force. Note: You will measure the force between the two spheres by measuring torque resulting in a torsion (angular twist) in the wire holding the one of the charged spheres on a light insulating lever. One end of the wire is fixed were as another one can be rotated. The amount of rotation is proportional to the force between the spheres. The torsion balance can be calibrated to precisely determine this constant of proportionality between deflection θ (the twist) and the force. However, in this experiment we will not do so. 3.1 Apparatus 1. A Coulomb s Law apparatus with associated accessories. Two views of the apparatus in schematic form are shown below. 2. A high-voltage power supply. 3. Faraday Ice Pail, charge producers, electrometer and associated accessories

3 Figures 1a and 1b. Schematic views of the Coulomb s Law Apparatus.

4 3.2 Experimental Procedure Important precautions 1. The wire in the torsion pendulum is very fragile and should be handled with utmost caution. Do not adjust screws holding the wire. You should never tap the sphere attached to the torsion wire from above. Do not touch the spheres with your bare hands as it can contaminate and damage the spheres graphite coating. 2. When using the high-voltage power supply, you should never touch anything except the spheres the high-voltage probe. Do not point the probe toward any other person or your own body. Use the probe with one hand, keeping the other hand free. Do not handle the probe if you are wet or are standing on a wet floor. 3. Discharge and re-charge both spheres before every measurement. Always charge spheres at maximal distance from each other, afterwards bringing the sphere on the adjustable support to shorter distances. Initial setting. 1. Move the sliding base to the 4-cm mark and set the sphere support rod so that the sliding sphere is very close to but not actually touching the suspended sphere. Do not readjust the rod for the remainder of the experiment. 4 cm is the minimal distance between centers of the spheres. 2. Make sure the spheres are fully discharged (touch them with the green grounded probe) and move the sliding sphere as far as possible from the suspended sphere. Rotate the torsion dial to align black lines at the counter weight vane and on the fixed plate (this is null position). Write down the angle on the torsion dial θ 0. This angle is corresponding to zero force between spheres. 3.3 Distance Dependence 1. With the spheres at maximum distance, charge both the spheres to a potential of 6 kv, using the red charging probe connected to the High Voltage Power Supply.

5 2. Position the sliding support at the 14 cm mark, Adjust the torsion dial as necessary to balance the forces and bring the pendulum marker to null position. Record the distance R from the base scale and the angle θ from the torsion dial. Each member of the lab group should perform this measurement separately. 3. Repeat steps 1 and 2 for 10, 9, 8, 7, 6, 5, and 4 cm distance. 4. Plot the distance R as a function of the displacement angle θ - θ 0. Add a power trendline to fit the data using Excel and include the equation of the line, as well the R 2 value, on the chart. 3.4 Charge Dependence 1. Charge both spheres to 6kV. Set the sliding sphere to 4 cm and record the voltage and the displacement angle θ. (Hint: this was the last reading you took from the previous section) 2. Discharge both spheres and bring the sliding sphere to the maximal distance. Recharge both spheres to 5.5 kv bring the sliding sphere to the same distance of 4 cm as in step 1. Record the voltage and displacement angle θ. 3. Repeat step 2 for 5, 4.5, 4, 3.5, and 3 kv. 4. Plot the Voltage as a function of the displacement angle θ. Add a trendline to fit the data using excel and include the equation of the line, as well the R 2 value, on the chart. 3.5 Correction to the data. The Coulomb s law (eq.[1]) applies to point charges. An isolated charged conductive sphere will act as a point charge for measurements made outside the sphere. In the presence of another similar sphere, a redistribution of charge will take place to minimize the potential energy of the charges. This redistribution of charge resulting in a deviation from the point charge approximation can be significant for separation distances comparable to the radii of the spheres. A correction factor will be used to correct for this deviation. This correction factor is B = 1-4[a/R] 3, where a is the radius of the sphere and R is the separation between two

6 spheres. To apply the correction to your data simply divide the measured value of θ (or θ average ) by B. The spheres used in the present Coulomb torsion balance apparatus have an average radius a = 1.75 cm.

7 LAB-01 Coulomb s Law Name: Sec./Group Date: 4. Prelab 1. Consider a charged metallic spherical shell of radius a = 1.75 cm. The potential at a distance of r = 6.0 cm from the center of the shell is measured to be 1.5kV. What is the charge on the shell? Calculate the potential on the surface of the shell. (Note: V = kq/r. You may also like to read the chapter of your textbook that discusses the Electrostatic Potential.) 2. Using an Excel spreadsheet make a plot of force F vs r, where F and r are as defined in equation [1]. Use Q 1 = Q 2 = 5.0µC and vary r from from 0.5 cm to 10 cm in steps of 0.5cm. Plot F along the vertical axis.

8 3. Using an Excel spreadsheet make a plot of F vs. Q 1 Q 2 in eq.[1]. Take r = 10.0 cm and Q 1 = Q 2 vary from 1.0 µc to 10.0 µc in steps of 1.0 µc. Plot F along the vertical axis.

9

10 LAB-01 Coulomb s Law Name: Sec./Group Date: 5. Data 5.1 Distance Dependence V = (v) R (in cm.) θ (in deg.) θ avg (in deg.) B=1-4[a/R] 3 θ corrected (in deg.)

11

12 LAB-01 Coulomb s Law Name: Sec./Group Date: 5.2 Charge Dependence R = (cm) B =1-4[a/R] 3 V (in kv) θ (in deg.) θ avg (in deg.) B=1-4[a/R] 3 θ corrected (in deg.)

13 6. Analysis Use the computer to create the two graphs as specified in Procedures 3.3 and 3.4. Submit these to your lab instructor. 7. JUST FOR THE FUN OF IT Fun with the Faraday s Cage Often one has to construct large shielded volumes such as rooms in laboratories where sensitive electronic measurements are to be shielded from external electrical interference. Such rooms are also crucial when the electronic communication has to be secured against unauthorized information sharing - also known as spying. Such electrically shielded regions are called Faraday cages. Michael Faraday used a metal ice pail to study how the charges distributed themselves when a charged object was introduced inside the conducting pail (Note: great scientific experiments are often carried out not by using the fanciest of gadgets, but by imaginatively using whatever is easily available). You will be repeating Faraday s experiment with the Faraday cage a cylinder made out of wire mesh isolated from and surrounded by an outer metallic cylinder made from the same wire mesh. Once, say, positively charged object placed in the inner cage positive charges from inner cage will have higher energy than before and therefore will try to escape to the outer cage. Thus difference in potential energy (voltage) will be created. It can be measured by

14 precision voltmeter (electrometer). The voltage (V) will be proportional to the charge Observe carefully and have fun. V Experimental Procedure 1. Rub the two charge producers together to create a charge on them. 2. Insert the blue wand into the lower half of the ice pail (the inner cylinder). Make sure the wand does not touch the surface of the pail. Note the magnitude of the deflection and its direction (to the right or to the left, or positive or negative). 3. Withdraw the wand from the cage and note the electrometer reading again. 4. Insert the wand again, and let the wand touch the inner surface of the inner cylinder. Note the electrometer reading. Remove the wand from the inner cylinder. 5. Ground the ice pail with green wire and then touch the pail again with the wand from step 4 above. Note the electrometer reading. 6. Repeat step 2 with the white wand (or steps 1 and 2 if you observe very small or no deflection). Conclusions:

15 1. What can you conclude from the direction of electrometer deflection in steps 2 and 7 about the polarity of charges on the white and blue wands? 2. What can you conclude from the direction of electrometer deflection in steps 2 and 4 about the polarity of charges on the blue wand and the charge induced on the outer surface of the ice pail? 3. What can you conclude from step 5 about the charge on the wand? What happened to the charge? Make a hypothesis (an educated guess). Suppose you rub the two wands together as in step 1 of Experimental procedure, but this time inside the ice pail. What do you think (and why) the reading on the electrometer would be? Choose from one of the three possible outcomes: [1] deflection to the right [2] deflection to the left [3] no deflection. Now do the experiment and see if you were right.

16

Coulomb s Law PHYS 296

Coulomb s Law PHYS 296 Coulomb s Law PHYS 296 Your name Lab section PRE-LAB QUIZZES 1. What is the purpose of this lab? 2. Two conducting hollow balls of diameter 3.75 cm are both initially charged by a bias voltage of +5000

More information

Coulomb Balance. Figure 1: The Coulomb Balance apparatus.

Coulomb Balance. Figure 1: The Coulomb Balance apparatus. Coulomb Balance Name Partner Date Introduction In this experiment we will use the Coulomb Balance shown in Figure 1 to determine how the force between two charges depends upon the distance of separation

More information

Physics 111 The Coulomb Balance

Physics 111 The Coulomb Balance Physics 111 The Coulomb Balance Introduction In this experiment we will use the Coulomb balance shown in Figure 1 to determine how the force between two charges depends on the separation between the two

More information

Coulomb s Law. Coloumb s law Appratus Assembly

Coulomb s Law. Coloumb s law Appratus Assembly Coulomb s Law Objectives To demonstrate the veracity of Coulomb's Law. To do this you will show that the Electrostatic Force between two charged bodies is directly proportional to the product of their

More information

Coulomb s Law. Equipment list Qty Item Part Number 1 Coulomb Balance ES Voltage Suppy. Purpose

Coulomb s Law. Equipment list Qty Item Part Number 1 Coulomb Balance ES Voltage Suppy. Purpose Coulomb s Law Equipment list Qty Item Part Number 1 Coulomb Balance ES-9070 1 Voltage Suppy Purpose In this lab we will be examining the forces that stationary charges particles exert on one another to

More information

Electrostatics Experiments Experiment 1: Faraday Ice Pail and Charge Production

Electrostatics Experiments Experiment 1: Faraday Ice Pail and Charge Production Electrostatics Experiments Experiment 1: Faraday Ice Pail and Charge Production PURPOSE: To investigate charge production and charge transfer BACKGROUND: We will be using "charge producers" that consists

More information

Experiment 6. Coulomb s Law - PRELAB. Lab section: Partner's name(s): Grade: 0. Pre-lab Homework (2 points)

Experiment 6. Coulomb s Law - PRELAB. Lab section: Partner's name(s): Grade: 0. Pre-lab Homework (2 points) Name: Date: Course number: MAKE SURE YOUR TA OR TI STAMPS EVERY PAGE BEFORE YOU START! Lab section: Partner's name(s): Grade: Experiment 6 Coulomb s Law - PRELAB 0. Pre-lab Homework (2 points) The pre-lab

More information

Coulomb Law. Purpose In this lab you will use the Coulomb Torsion Balance to show the inverse squared law for electrostatic force between charges.

Coulomb Law. Purpose In this lab you will use the Coulomb Torsion Balance to show the inverse squared law for electrostatic force between charges. Coulomb Law Purpose In this lab you will use the Coulomb Torsion Balance to show the inverse squared law for electrostatic force between charges. Equipment Coulomb Balance and accessories, kilovolt power

More information

Electrostatics x C.

Electrostatics x C. Electrostatics Theory The study of charges at rest is called electrostatics. You are no doubt aware that objects can acquire excess amounts of charge by contact. What happens when you walk across a carpeted

More information

Electrostatics x C.

Electrostatics x C. Electrostatics Name Section Theory The study of charges at rest is called electrostatics. You are no doubt aware that objects can acquire excess amounts of charge by contact. What happens when you walk

More information

LABORATORY I STATIC CHARGE AND COULOMB S LAW

LABORATORY I STATIC CHARGE AND COULOMB S LAW LABORATORY I STATIC CHARGE AND COULOMB S LAW Take one gram of protons and place them one meter away from one gram of electrons. 23 The resulting force is equal to 1.5 x 10 N, or roughly the force it would

More information

General Physics II Lab EM2 Capacitance and Electrostatic Energy

General Physics II Lab EM2 Capacitance and Electrostatic Energy Purpose General Physics II Lab General Physics II Lab EM2 Capacitance and Electrostatic Energy In this experiment, you will examine the relationship between charge, voltage and capacitance of a parallel

More information

Demonstration 1: Faraday Ice Pail and Charge Production

Demonstration 1: Faraday Ice Pail and Charge Production Osservazioni e Misure Lezioni I e II Laboratorio di Elettromagnetismo Demonstration 1: Faraday Ice Pail and Charge Production Equipment Required: Electrometer (ES-9078) Charge Producers (ES-9057B) Earth

More information

Electrostatics. Apparatus:

Electrostatics. Apparatus: Electrostatics Object: This experiment allows you to investigate the production of static charge, conservation of charge and the behavior of charges on conductors, which are interacting via Coulomb forces.

More information

Coulomb s Law. Professor Todd R. Gelbord Report Written By Galib F. Rahman

Coulomb s Law. Professor Todd R. Gelbord Report Written By Galib F. Rahman Coulomb s Law Professor Todd R. Gelbord Report Written By Galib F. Rahman Table of Contents Objective 3 Theory 3 Materials 3 Procedure 3 The Apparatus 3 Part 1: The force as a function of the value of

More information

LAB 01 Electrostatic Charge

LAB 01 Electrostatic Charge LAB 01 Electrostatic Charge Group: (Lab section plus Group letter; for instance 01A for lab section 01, group A) Names: (Principle Coordinator) (Lab Partner) (Lab Partner) Directions: Everyone in your

More information

Lab 6 Electrostatic Charge and Faraday s Ice Pail

Lab 6 Electrostatic Charge and Faraday s Ice Pail Lab 6 Electrostatic Charge and Faraday s Ice Pail Learning Goals to investigate the nature of charging an object by contact as compared to charging an object by induction to determine the polarity of two

More information

IE1. Modul Electricity. Coulomb s Law and ε 0

IE1. Modul Electricity. Coulomb s Law and ε 0 IE1 Modul Electricity Coulomb s Law and ε 0 In this experiment, you will attempt to experimentally verify Coulomb s law. From your measurements you will also determine ε 0, the permittivity of the vacuum.

More information

Lab 1: Electrostatics Edited 9/19/14 by Joe Skitka, Stephen Albright, DGH & NET

Lab 1: Electrostatics Edited 9/19/14 by Joe Skitka, Stephen Albright, DGH & NET Lab 1: Electrostatics Edited 9/19/14 by Joe Skitka, Stephen Albright, DGH & NET Figure 1: Lightning Exhibit, Boston Museum of Science http://www.mos.org/sln/toe/ Objective Students will explore the manifestation

More information

PHYS-102 LAB 2. Millikan Oil Drop Experiment

PHYS-102 LAB 2. Millikan Oil Drop Experiment PHYS-102 LAB 2 Millikan Oil Drop Experiment 1. Objective The objectives of this lab are to: 2. Theory Verify the atomic nature of electricity. Determine the size of the charge on an electron. In today

More information

Capacitance & Capacitors, Energy Stored in Capacitors Challenge Problems

Capacitance & Capacitors, Energy Stored in Capacitors Challenge Problems Problem 1: Capacitance & Capacitors, Energy Stored in Capacitors Challenge Problems A parallel-plate capacitor is charged to a potential V 0, charge Q 0 and then disconnected from the battery. The separation

More information

Downloaded from

Downloaded from Question 1.1: What is the force between two small charged spheres having charges of 2 10 7 C and 3 10 7 C placed 30 cm apart in air? Repulsive force of magnitude 6 10 3 N Charge on the first sphere, q

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #2: Electrostatics. qq k r

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #2: Electrostatics. qq k r NORTHRN ILLINOIS UNIVRSITY PHYSICS DPARTMNT Physics 11 &M and Quantum Physics Spring 018 Lab #: lectrostatics Lab Writeup Due: Mon/Wed/Thu/Fri, Jan. 9/31/Jan. 1/, 018 Background You ve learned a lot about

More information

VERIFYING COULOMB S LAW

VERIFYING COULOMB S LAW Verifying Coulomb s Law 21 Name Date Partners VERIFYING COULOMB S LAW Materials: hanging metal coated pith ball stationary metal coated pith ball teflon rod silk Source: Fishbane, Gasiorowicz, and Thornton,

More information

Class XII Chapter 1 Electric Charges And Fields Physics

Class XII Chapter 1 Electric Charges And Fields Physics Class XII Chapter 1 Electric Charges And Fields Physics Question 1.1: What is the force between two small charged spheres having charges of 2 10 7 C and 3 10 7 C placed 30 cm apart in air? Answer: Repulsive

More information

1 Coulomb s law, Capacitance and Dielectrics

1 Coulomb s law, Capacitance and Dielectrics 1 Coulomb s law, Capacitance and Dielectrics This exercise serves as an illustration of the contents of the chapters 2.1, 2.54 and 4 of the textbook: Coulomb s law, Capacitance and Dielectrics. Coulomb

More information

PHYSICS LAB Experiment 9 Fall 2004 THE TORSION PENDULUM

PHYSICS LAB Experiment 9 Fall 2004 THE TORSION PENDULUM PHYSICS 83 - LAB Experiment 9 Fall 004 THE TORSION PENDULUM In this experiment we will study the torsion constants of three different rods, a brass rod, a thin steel rod and a thick steel rod. We will

More information

Physics (

Physics ( Question 2.12: A charge of 8 mc is located at the origin. Calculate the work done in taking a small charge of 2 10 9 C from a point P (0, 0, 3 cm) to a point Q (0, 4 cm, 0), via a point R (0, 6 cm, 9 cm).

More information

Pre-lab Quiz/PHYS 224 Coulomb s Law and Coulomb Constant. Your name Lab section

Pre-lab Quiz/PHYS 224 Coulomb s Law and Coulomb Constant. Your name Lab section Pre-lab Quiz/PHYS 4 Coulomb s Law and Coulomb Constant Your name Lab section 1. What do you investigate in this lab?. Two identical parallel conducting plates in vacuum form a capacitor. The surface area

More information

Chapter 10. Electrostatics

Chapter 10. Electrostatics Chapter 10 Electrostatics 3 4 AP Physics Multiple Choice Practice Electrostatics 1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity. A solid conducting sphere

More information

Electrostatic Charge Distribution (Charge Sensor)

Electrostatic Charge Distribution (Charge Sensor) 65 Electrostatic Charge Distribution (Charge Sensor) E&M: Electrostatic charge distribution Equipment List DataStudio file: 65 Charge Distribution.ds Qty Items Part Numbers 1 PASCO Interface (for one sensor)

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Torsional Pendulum and Moment of Inertia Introduction A torsional pendulum, or torsional oscillator, consists of a disk-like mass suspended from a thin rod or wire. When the mass is twisted

More information

Where, ε 0 = Permittivity of free space and = Nm 2 C 2 Therefore, force

Where, ε 0 = Permittivity of free space and = Nm 2 C 2 Therefore, force Exercises Question.: What is the force between two small charged spheres having charges of 2 0 7 C and 3 0 7 C placed 30 cm apart in air? Answer.: Repulsive force of magnitude 6 0 3 N Charge on the first

More information

Electric Flux. To investigate this, we have to understand electric flux.

Electric Flux. To investigate this, we have to understand electric flux. Problem 21.72 A charge q 1 = +5. nc is placed at the origin of an xy-coordinate system, and a charge q 2 = -2. nc is placed on the positive x-axis at x = 4. cm. (a) If a third charge q 3 = +6. nc is now

More information

AP Physics C. Electric Potential and Capacitance. Free Response Problems

AP Physics C. Electric Potential and Capacitance. Free Response Problems AP Physics C Electric Potential and Capacitance Free Response Problems 1. Two stationary point charges + are located on the y-axis at a distance L from the origin, as shown above. A third charge +q is

More information

Exam 2 Practice Problems Part 1

Exam 2 Practice Problems Part 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Exam 2 Practice Problems Part 1 Problem 1 Electric Field and Charge Distributions from Electric Potential An electric potential V ( z ) is described

More information

Ch 24 Electric Flux, & Gauss s Law

Ch 24 Electric Flux, & Gauss s Law Ch 24 Electric Flux, & Gauss s Law Electric Flux...is related to the number of field lines penetrating a given surface area. Φ e = E A Φ = phi = electric flux Φ units are N m 2 /C Electric Flux Φ = E A

More information

General Physics Laboratory Experiment Report 2nd Semester, Year 2018

General Physics Laboratory Experiment Report 2nd Semester, Year 2018 PAGE 1/11 Exp. #2-1 : Measurement of the Electrostatic Constant and the Electric Permittivity in Vacuum by Using a Torsion Balance and Understanding of Coulomb's Law Student ID Major Name Team # Experiment

More information

Book page. Coulombs Law

Book page. Coulombs Law Book page Coulombs Law A Coulomb torsion balance A Coulomb torsion balance is used to measure the force between two charged objects Coulomb's Torsion Balance Two conducting spheres fixed on insulating

More information

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW !! www.clutchprep.com CONCEPT: ELECTRIC CHARGE e Atoms are built up of protons, neutrons and electrons p, n e ELECTRIC CHARGE is a property of matter, similar to MASS: MASS (m) ELECTRIC CHARGE (Q) - Mass

More information

LECTURE 15 CONDUCTORS, ELECTRIC FLUX & GAUSS S LAW. Instructor: Kazumi Tolich

LECTURE 15 CONDUCTORS, ELECTRIC FLUX & GAUSS S LAW. Instructor: Kazumi Tolich LECTURE 15 CONDUCTORS, ELECTRIC FLUX & GAUSS S LAW Instructor: Kazumi Tolich Lecture 15 2! Reading chapter 19-6 to 19-7.! Properties of conductors! Charge by Induction! Electric flux! Gauss's law! Calculating

More information

PS 12b Lab 1a Basic Electrostatics

PS 12b Lab 1a Basic Electrostatics Names: 1.) 2.) 3.) PS 12b Lab 1a Basic Electrostatics Learning Goal: Familiarize students with the concepts of charge, charge interaction, charge transfer, and polarization. We will also illustrate a way

More information

- Like charges repel Induced Charge. or by induction. Electric charge is conserved

- Like charges repel Induced Charge. or by induction. Electric charge is conserved Course website: http://course.physastro.iastate.edu/phys112/ Here you will find the syllabus, lecture notes and other course information Links to the website are also on Blackboard: Phys 112 (Spring 2017)

More information

Quiz Fun! This box contains. 1. a net positive charge. 2. no net charge. 3. a net negative charge. 4. a positive charge. 5. a negative charge.

Quiz Fun! This box contains. 1. a net positive charge. 2. no net charge. 3. a net negative charge. 4. a positive charge. 5. a negative charge. Quiz Fun! This box contains 1. a net positive charge. 2. no net charge. 3. a net negative charge. 4. a positive charge. 5. a negative charge. Quiz Fun! This box contains 1. a net positive charge. 2. no

More information

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason.

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2014 F 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2. Figure shows the field lines on a positive charge. Is the work done

More information

Coulomb s Law and Coulomb s Constant

Coulomb s Law and Coulomb s Constant Pre-Lab Quiz / PHYS 224 Coulomb s Law and Coulomb s Constant Your Name: Lab Section: 1. What will you investigate in this lab? 2. Consider a capacitor created when two identical conducting plates are placed

More information

13 - ELECTROSTATICS Page 1 ( Answers at the end of all questions )

13 - ELECTROSTATICS Page 1 ( Answers at the end of all questions ) 3 - ELECTROSTATICS Page ) Two point charges 8 and - are located at x = 0 and x = L respectively. The location of a point on the x axis at which the net electric field due to these two point charges is

More information

The force on a straight current-carrying conductor in a magnetic field is given by,

The force on a straight current-carrying conductor in a magnetic field is given by, EXPERIMENT 12 Current Balance Introduction The current balance is used to measure the force of repulsion between identical, oppositely directed, currents in parallel conductors. In this experiment you

More information

PHYS102 - Gauss s Law.

PHYS102 - Gauss s Law. PHYS102 - Gauss s Law. Dr. Suess February 2, 2007 PRS Questions 2 Question #1.............................................................................. 2 Answer to Question #1......................................................................

More information

Experiment Two (2) Torsional testing of Circular Shafts

Experiment Two (2) Torsional testing of Circular Shafts Experiment Two (2) Torsional testing of Circular Shafts Introduction: Torsion occurs when any shaft is subjected to a torque. This is true whether the shaft is rotating (such as drive shafts on engines,

More information

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START. Laboratory Section: Partners Names: Last Revised on December 15, 2014

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START. Laboratory Section: Partners Names: Last Revised on December 15, 2014 Laboratory Section: Partners Names: Last Revised on December 15, 2014 Grade: EXPERIMENT 7 Absolute Volt & Electrostatic Potential 0. Pre-Lab Homework [2 pts] 1. In the first part of this lab you will be

More information

Electrostatics II. Introduction

Electrostatics II. Introduction Electrostatics II Objective: To learn how excess charge is created and transferred. To measure the electrostatic force between two objects as a function of their electrical charges and their separation

More information

PHYS208 RECITATIONS PROBLEMS: Week 2. Gauss s Law

PHYS208 RECITATIONS PROBLEMS: Week 2. Gauss s Law Gauss s Law Prob.#1 Prob.#2 Prob.#3 Prob.#4 Prob.#5 Total Your Name: Your UIN: Your section# These are the problems that you and a team of other 2-3 students will be asked to solve during the recitation

More information

Consider a point P on the line joining the two charges, as shown in the given figure.

Consider a point P on the line joining the two charges, as shown in the given figure. Question 2.1: Two charges 5 10 8 C and 3 10 8 C are located 16 cm apart. At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.

More information

The Capacitor. +q -q

The Capacitor. +q -q The Capacitor I. INTRODUCTION A simple capacitor consists of two parallel plates separated by air or other insulation, and is useful for storing a charge. If a potential difference is placed across the

More information

1. Electrostatic Lab [1]

1. Electrostatic Lab [1] 1. Electrostatic Lab [1] Purpose: To determine the charge and charge distribution on insulators charged by the triboelectric effects and conductors charged by an Electrostatic Voltage Source. Equipment:

More information

Equipotentials and Electric Fields

Equipotentials and Electric Fields Equipotentials and Electric Fields PURPOSE In this lab, we will investigate the relationship between the equipotential surfaces and electric field lines in the region around several different electrode

More information

Electric Field Mapping Lab 2. Precautions

Electric Field Mapping Lab 2. Precautions TS 2-12-12 Electric Field Mapping Lab 2 1 Electric Field Mapping Lab 2 Equipment: mapping board, U-probe, resistive boards, templates, dc voltmeter (431B), 4 long leads, 16 V dc for wall strip Reading:

More information

Chapter 22 Gauss s Law

Chapter 22 Gauss s Law Chapter 22 Gauss s Law Lecture by Dr. Hebin Li Goals for Chapter 22 To use the electric field at a surface to determine the charge within the surface To learn the meaning of electric flux and how to calculate

More information

AP/Honors Lab 18.1 Coulomb s Law

AP/Honors Lab 18.1 Coulomb s Law Name School Date AP/Honors Lab 18.1 Coulomb s Law Purpose To observe the effect of the electrostatic force on light-weight charged objects. To experimentally determine the charge on a sphere small sphere

More information

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law Electric Flux Gauss s Law: Definition Chapter 22 Gauss s Law Applications of Gauss s Law Uniform Charged Sphere Infinite Line of Charge Infinite Sheet of Charge Two infinite sheets of charge Phys 2435:

More information

Lab 1 Electrostatics 1

Lab 1 Electrostatics 1 Lab 1 Electrostatics 1 Apparatus: Scotch tape, fake fur, plastic rod, wood dowel, ring stand and clamp, foil rods on string, copper sphere or brass mass on insulating stand, brass mass You have all heard

More information

INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS

INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS Roll Number SET NO. General Instructions: INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS CLASS: XII Sub. Code: 04 Time Allotted: Hrs 0.04.08 Max. Marks: 70. All questions are compulsory. There are

More information

PHY222 Lab 1 Electric Charge Positive and negative electric charge, electroscope, phenomenon of electrical induction

PHY222 Lab 1 Electric Charge Positive and negative electric charge, electroscope, phenomenon of electrical induction PHY222 Lab 1 Electric Charge Positive and negative electric charge, electroscope, phenomenon of electrical induction Print Your Name Print Your Partners' Names Instructions September 4, 2015 Before the

More information

FOR PROOFREADING ONLY

FOR PROOFREADING ONLY Journal of Science Education and Technology, Vol. 11, No. 3, September 2002 ( C 2002) What Do We Expect From Students Physics Laboratory Experiments? Ricardo Trumper 1,2 INTRODUCTION Access to laboratories

More information

3. A solid conducting sphere has net charge of +6nC. At electrostatic equilibrium the electric field inside the sphere is:

3. A solid conducting sphere has net charge of +6nC. At electrostatic equilibrium the electric field inside the sphere is: Conceptual Questions. Circle the best answer. (2 points each) 1. If more electric field lines point into a balloon than come out of it, you can conclude that this balloon must contain more positive charge

More information

PHYS 272 (Spring 2018): Introductory Physics: Fields Homeworks

PHYS 272 (Spring 2018): Introductory Physics: Fields Homeworks PHYS 272 (Spring 2018): Introductory Physics: Fields Homeworks Note: the 1st homework is simply signing the honor pledge (but still it is compulsory); the actual homework starts with #2. And, please sign

More information

1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a negative charge and the wool

1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a negative charge and the wool Electric Force and Electric Field PSI AP Physics 2 Multiple Choice 1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a negative charge and the wool (A) acquires

More information

Physics Lecture: 09

Physics Lecture: 09 Physics 2113 Jonathan Dowling Physics 2113 Lecture: 09 Flux Capacitor (Schematic) Gauss Law II Carl Friedrich Gauss 1777 1855 Gauss Law: General Case Consider any ARBITRARY CLOSED surface S -- NOTE: this

More information

= (series) Capacitors in series. C eq. Hence. Capacitors in parallel. Since C 1 C 2 V 1 -Q +Q -Q. Vab V 2. C 1 and C 2 are in series

= (series) Capacitors in series. C eq. Hence. Capacitors in parallel. Since C 1 C 2 V 1 -Q +Q -Q. Vab V 2. C 1 and C 2 are in series Capacitors in series V ab V + V Q( + C Vab + Q C C C Hence C C eq eq + C C C (series) ) V ab +Q -Q +Q -Q C and C are in series C V V C +Q -Q C eq C eq is the single capacitance equivalent to C and C in

More information

Physics 15b PSI Week 2: Capacitance

Physics 15b PSI Week 2: Capacitance Physics 15b PSI Week 2: Capacitance Chapter 1 of Purcell introduces charge and its relationship to electric field fields, with the concept of the electrical potential added in Chapter 2. Chapter 3 introduces

More information

Lab 10 Circular Motion and Centripetal Acceleration

Lab 10 Circular Motion and Centripetal Acceleration Lab 10 Circular Motion and Centripetal Equipment Calculator, Computer, PASCO 850 Universal Interface Partially-assembled Centripetal Force Apparatus Photogate Cable Pair of Banana Wires Objective Verify

More information

C Electric Force & Field Practice Problems PSI Physics

C Electric Force & Field Practice Problems PSI Physics C Electric Force & Field Practice Problems PSI Physics Name Multiple Choice 1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a positive charge and the wool:

More information

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. 1. A charge q 1 = +5.0 nc is located on the y-axis, 15 µm above the origin, while another charge q

More information

Chapter (2) Gauss s Law

Chapter (2) Gauss s Law Chapter (2) Gauss s Law How you can determine the amount of charge within a closed surface by examining the electric field on the surface! What is meant by electric flux and how you can calculate it. How

More information

Electrostatic and Electromagnetic Exam Wednesday

Electrostatic and Electromagnetic Exam Wednesday Name: KEY Period: Electrostatic and Electromagnetic Exam Wednesday 3-9-2016 This is a review guide none of these questions are on the test. You have to understand the skills necessary to answer these questions

More information

Phys102 Second Major-181 Zero Version Coordinator: Kunwar, S Monday, November 19, 2018 Page: 1

Phys102 Second Major-181 Zero Version Coordinator: Kunwar, S Monday, November 19, 2018 Page: 1 Coordinator: Kunwar, S Monday, November 19, 2018 Page: 1 Q1. A neutral metal ball is suspended by a vertical string. When a positively charged insulating rod is placed near the ball (without touching),

More information

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1 Review Spring Semester 2014 Physics for Scientists & Engineers 2 1 Notes! Homework set 13 extended to Tuesday, 4/22! Remember to fill out SIRS form: https://sirsonline.msu.edu Physics for Scientists &

More information

PHY 112L Activity 1 Electric Charges, Potentials, and Fields

PHY 112L Activity 1 Electric Charges, Potentials, and Fields PHY 112L Activity 1 Electric Charges, Potentials, and Fields Name: Section: ID #: Date: Lab Partners: TA initials: Objectives 1. Understand the basic properties, such as the magnitude and force, of electric

More information

PHY152H1S Practical 2: Electrostatics

PHY152H1S Practical 2: Electrostatics PHY152H1S Practical 2: Electrostatics Don t forget: List the NAMES of all participants on the first page of each day s write-up. Note if any participants arrived late or left early. Put the DATE (including

More information

THE CAVENDISH EXPERIMENT Physics 258/259

THE CAVENDISH EXPERIMENT Physics 258/259 TM 1977, DSH 1988, 2005 THE CAVENDISH EXPERIMENT Physics 258/259 A sensitive torsion balance is used to measure the Newtonian gravitational constant G. The equations of motion of the torsion balance are

More information

Lab 10: Ballistic Pendulum

Lab 10: Ballistic Pendulum Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Lab 10: Ballistic Pendulum Name: Partners: Pre-Lab You are required to finish this section before coming to the lab it will be checked

More information

Physics Notes Chapter 17 Electric Forces and Fields

Physics Notes Chapter 17 Electric Forces and Fields Physics Notes Chapter 17 Electric Forces and Fields I. Basic rules and ideas related to electricity a. electricity is about charges or charged objects where they are and how they move electrostatics is

More information

Physics Electricity & Op-cs Lecture 8 Chapter 24 sec Fall 2017 Semester Professor

Physics Electricity & Op-cs Lecture 8 Chapter 24 sec Fall 2017 Semester Professor Physics 24100 Electricity & Op-cs Lecture 8 Chapter 24 sec. 1-2 Fall 2017 Semester Professor Kol@ck How Much Energy? V 1 V 2 Consider two conductors with electric potentials V 1 and V 2 We can always pick

More information

Example: Calculate voltage inside, on the surface and outside a solid conducting sphere of charge Q

Example: Calculate voltage inside, on the surface and outside a solid conducting sphere of charge Q Example: Calculate voltage inside, on the surface and outside a solid conducting sphere of charge Q I- on the surface: Lets choose points A and B on the surface Conclusion: Surface of any conductor is

More information

SELAQUI INTERNATIONAL SCHOOL, DEHRADUN

SELAQUI INTERNATIONAL SCHOOL, DEHRADUN CLASS XII Write Short Note: Q.1: Q.2: Q.3: SELAQUI INTERNATIONAL SCHOOL, DEHRADUN ELECTROSTATICS SUBJECT: PHYSICS (a) A truck carrying explosive has a metal chain touching the ground. Why? (b) Electric

More information

Phys2120 Spring 2017 Practice Exam 1. Chapters Name

Phys2120 Spring 2017 Practice Exam 1. Chapters Name Name 1. Two point charges are 4 cm apart. They are moved to a new separation of 2 cm. By what factor does the resulting mutual force between them change? 2. An uncharged conductor is supported by an insulating

More information

An Introduction to Electrostatic Charge and Its Related Forces (approx. 1 h 45 min.)(6/2/13)

An Introduction to Electrostatic Charge and Its Related Forces (approx. 1 h 45 min.)(6/2/13) An Introduction to Electrostatic Charge and Its Related Forces (approx. 1 h 45 min.)(6/2/13) Introduction: All solid materials are composed of atoms or molecules which are bound together by electrostatic

More information

Friday July 11. Reminder Put Microphone On

Friday July 11. Reminder Put Microphone On Friday July 11 8:30 AM 9:0 AM Catch up Lecture 3 Slide 5 Electron projected in electric field problem Chapter 23 Problem 29 Cylindrical shell problem surrounding wire Show Faraday Ice Pail no chrage inside

More information

(a) This cannot be determined since the dimensions of the square are unknown. (b) 10 7 N/C (c) 10 6 N/C (d) 10 5 N/C (e) 10 4 N/C

(a) This cannot be determined since the dimensions of the square are unknown. (b) 10 7 N/C (c) 10 6 N/C (d) 10 5 N/C (e) 10 4 N/C 1. 4 point charges (1 C, 3 C, 4 C and 5 C) are fixed at the vertices of a square. When a charge of 10 C is placed at the center of the square, it experiences a force of 10 7 N. What is the magnitude of

More information

Physics Department Week #1 EXPERIMENT I BUILD, AND USE AN ELECTROSCOPE TO EXPLORE PHENOMENA OF ELECTROSTATICS

Physics Department Week #1 EXPERIMENT I BUILD, AND USE AN ELECTROSCOPE TO EXPLORE PHENOMENA OF ELECTROSTATICS 1 PRINCETON UNIVERSITY PHYSICS 104 LAB Physics Department Week #1 EXPERIMENT I BUILD, AND USE AN ELECTROSCOPE TO EXPLORE PHENOMENA OF ELECTROSTATICS This week you will build an electroscope (instructions

More information

Chapter 15. Electric Forces and Electric Fields

Chapter 15. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields First Studies Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified and attracted pieces of

More information

Ph 3455/MSE 3255 Experiment 2: Atomic Spectra

Ph 3455/MSE 3255 Experiment 2: Atomic Spectra Ph 3455/MSE 3255 Experiment 2: Atomic Spectra Background Reading: Tipler, Llewellyn pp. 163-165 Apparatus: Spectrometer, sodium lamp, hydrogen lamp, mercury lamp, diffraction grating, watchmaker eyeglass,

More information

UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS. Level 1: Experiment 2E THE CURRENT BALANCE

UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS. Level 1: Experiment 2E THE CURRENT BALANCE UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS Level 1: Experiment 2E THE CURRENT BALANCE 1 AIMS 1.1 Physics In this experiment you should study the force between parallel current-carrying conductors. You

More information

Electric Fields and Potentials

Electric Fields and Potentials Electric Fields and Potentials INTRODUCTION Physicists use the concept of a field to explain the interaction of particles or bodies through space, i.e., the action-at-a-distance force between two bodies

More information

Physics 212. Lecture 7. Conductors and Capacitance. Physics 212 Lecture 7, Slide 1

Physics 212. Lecture 7. Conductors and Capacitance. Physics 212 Lecture 7, Slide 1 Physics 212 Lecture 7 Conductors and Capacitance Physics 212 Lecture 7, Slide 1 Conductors The Main Points Charges free to move E = 0 in a conductor Surface = Equipotential In fact, the entire conductor

More information

Name Date Time to Complete

Name Date Time to Complete Name Date Time to Complete h m Partner Course/ Section / Grade Capacitance Equipment Doing some simple experiments, including making and measuring the capacitance of your own capacitor, will help you better

More information

WELCOME TO PERIOD 14. Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday.

WELCOME TO PERIOD 14. Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday. WELCOME TO PERIOD 14 Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday. PHYSICS 1103 PERIOD 14 What is an electric circuit? How

More information

r r 4πε 0 r From the relations between measured or known electrical quantities, material properties and apparatus dimensions you can determine ε 0.

r r 4πε 0 r From the relations between measured or known electrical quantities, material properties and apparatus dimensions you can determine ε 0. 8.0T Fall 001 Electrostatic Force 1 Introduction In this experiment you ll investigate aspects of the electrostatic force. This force has such varied roles as making currents flow in wires, holding atoms

More information

Experiment 2 Electric Field Mapping

Experiment 2 Electric Field Mapping Experiment 2 Electric Field Mapping I hear and I forget. I see and I remember. I do and I understand Anonymous OBJECTIVE To visualize some electrostatic potentials and fields. THEORY Our goal is to explore

More information