Dan G. Cacuci Department of Mechanical Engineering, University of South Carolina

Size: px
Start display at page:

Download "Dan G. Cacuci Department of Mechanical Engineering, University of South Carolina"

Transcription

1 SECOND-ORDER ADJOINT SENSITIVITY ANALYSIS METHODOLOGY ( nd -ASAM) FOR LARGE-SCALE NONLINEAR SYSTEMS: II. APPLICATION TO A NONLINEAR HEAT CONDUCTION BENCHMARK Dn G. Ccuci Deptment of Mechnicl Engineeing Univesity of South Colin E-mil: ccuci@cec.sc.edu Coesponding utho: Deptment of Mechnicl Engineeing Univesity of South Colin 3 Min Steet Columbi SC 98 USA Emil: ccuci@cec.sc.edu; Phone: (919) ; Oiginlly submitted to J. Comp.Physics on Septembe 7 15 (JCOMP-D ) but still uneviewed s of Jnuy ABSTRACT This wok pesents n illusttive ppliction of the second-ode djoint sensitivity nlysis methodology ( nd -ASAM) to pdigm nonline het conduction benchmk which models conceptul expeimentl test section contining heted ods immesed in liquid led-bismuth eutectic. This benchmk dmits n exct solution theeby mking tnspent the undelying mthemticl deivtions. The genel theoy undelying nd -ASAM indictes tht fo physicl system compising N pmetes the computtion of ll of the fist- nd secondode esponse sensitivities equies (pe esponse) t most N lge-scle computtions using the fist-level nd espectively second-level djoint sensitivity systems (1 st -LASS nd nd -LASS). Fo this illusttive poblem six lge-scle djoint computtions sufficed to compute exctly ll five 1 st -ode nd fifteen distinct nd -ode deivtives of the tempetue esponse to the five model pmetes. The constuction nd solution of the nd -LASS equies vey little dditionl effot beyond the constuction of the djoint sensitivity system needed fo computing the fist-ode sensitivities. Vey significntly only the souces on the ightsides of the het conduction diffeentil opeto needed to be modified; the left-side of the diffeentil equtions (nd hence the solve in lge-scle pcticl pplictions) emins unchnged.

2 Fo the nonline het conduction benchmk the second-ode sensitivities ply the following oles: () They cuse the expected vlue of the esponse to diffe fom the computed nominl vlue of the esponse; fo the nonline het conduction benchmk howeve these diffeences wee insignificnt ove the nge of tempetues (4-9K) consideed. (b) They contibute to incesing the esponse vinces nd modifying the esponse covinces but fo the nonline het conduction benchmk thei contibution ws smlle thn tht stemming fom the 1 st -ode esponse sensitivities ove the nge of tempetues (4-9K) consideed. (c) They compise the leding contibutions to cusing symmeties in the esponse distibution. Fo the benchmk test section consideed in this wok the het souce the boundy het flux nd the tempetue t the bottom boundy of the test section would cuse the tempetue distibution in the test section to be skewed significntly towds vlues lowe the the men tempetue. On the othe hnd the model pmetes enteing the nonline tempetue-dependent expession of the LBE conductivity would cuse the tempetue distibution in the test section to be skewed significntly towds vlues highe the the men tempetue. These opposite effects ptilly cncel ech othe. Consequently the cumultive effects of model pmete uncetinties on the skewness of the tempetue distibution in the test section is such tht the tempetue distibution in the LBE is skewed slightly towd highe tempetues in the coole pt of the test section but becomes incesingly skewed towds tempetues lowe thn the men tempetue in the hotte pt of the test section. Notbly the influence of the model pmete tht contols the stength of the nonlineity in the het conduction coefficient fo this LBE test section benchmk would be stong if it wee the only uncetin model pmete. Howeve if ll of the othe model pmetes e lso uncetin ll hving equl eltive stndd devitions the uncetinties in the het souce nd boundy het flux diminish the impct of uncetinties in the nonline het conduction coefficient fo the nge of tempetues (4-9K) consideed fo this LBE test section benchmk. Ongoing wok ims t genelizing the nd -ASAM to enble the exct nd efficient computtion of highe-ode esponse sensitivities. The vilbility of such highe-ode sensitivities is expected to ffect significntly the fields of optimiztion nd pedictive modeling including uncetinty quntifiction dt ssimiltion model clibtion nd extpoltion. KEYWORDS: second-ode djoint sensitivity nlysis methodology ( nd -ASAM); nonline het conduction led-bismuth eutectic test section; tempetue esponse covinces; tempetue esponse skewness.

3 1. INTRODUCTION The ccompnying PART I [1] of this wok hs pesented the mthemticl fomlism of the Second-Ode Adjoint Sensitivity Anlysis Methodology ( nd -ASAM) fo nonline systems. This is new method fo computing exctly nd efficiently second-ode sensitivities (i.e. functionl deivtives) of nonline system esponses (i.e. system pefomnce pmetes in physicl engineeing biologicl systems) to the pmetes chcteizing lge-scle nonline systems. The definition of system pmetes includes ll computtionl input dt coeltions initil nd/o boundy conditions etc. The nd - ASAM builds on the fist-ode djoint sensitivity nlysis methodology (1 st -ASAM) fo nonline systems oiginlly intoduced in [ 3] nd extends the wok pesented in [4]. Fo ech functionl-type esponse of inteest in physicl system compising N pmetes nd N esponses the nd -ASAM equies one lge-scle computtion using the fist-level djoint sensitivity system (1 st -LASS) fo obtining ll of the fist-ode sensitivities i u α R u α i 1... N followed by t most N lge-scle computtions using the second-level djoint sensitivity systems ( nd -LASS) fo obtining exctly ll of the second- ode sensitivities u α j i u α R i j 1... N. In pctice howeve the numbe of lge-scle computtions equied fo computing exctly ll of the second-ode sensitivities j i u α R u α i j 1... N my be considebly smlle thn N s hs been shown in [5-7]. This ppe is stuctued s follows: Section pesents the illusttive pdigm benchmk which models the nonline het conduction in test section of within poposed expeimentl fcility [89] fo investigting theml-hydulics phenomen chcteizing the opetion nd sfety of the conceptully-designed G4M ecto [8] smll modul ecto concept cooled by led-bismuth eutectic (LBE). This pdigm LBE test section benchmk compises the mjo ingedients needed fo highlighting the slient fetues involved in pplying the nd -ASAM fo nonline systems yet is sufficiently simple to dmit n exct solution theeby mking tnspent the mthemticl deivtions pesented in PART I [1]. Section 3 pesents the ppliction of the nd -ASAM fo obtining the exct expessions of both the fist- nd second-ode sensitivities of the tempetue distibution within the test section. 3

4 Notbly this ppliction will show tht the constuction nd solution of the second-level djoint sensitivity system ( nd -LASS) equies vey little dditionl effot beyond the constuction of the djoint sensitivity system needed fo computing the fist-ode sensitivities nd tht the ctul djoint computtions needed fo computing ll of the fist- nd secondode esponse sensitivities e f less thn N pe esponse. In Section 4 the 1 st - nd nd -ode sensitivities e employed to popgte model pmete uncetinties fo computing the uncetinties (i.e. vinces nd skewnesses) in the tempetue distibution esponses in the heted LBE test section benchmk. Pticulizing the genel esults fom [1] Section 4 shows tht the nd -ode sensitivities contibute decisively to cusing symmeties in the tempetue esponse distibution. Finlly Section 5 concludes this wok by highlighting the most significnt esults obtined egding the fetues of the expected tempetue distibution in the LBE test section benchmk nlyzed heein. 4

5 . A PARADIGM NONLINEAR HEAT CONDUCTION PROBLEM A cylindicl test section fo pefoming het tnsfe expeiments contins electiclly heted ods nd is filled with liquid led-bismuth eutectic (LBE). The length of the cylindicl test section is 1.7m nd its dius is 15 cm. The theml conductivity denoted s the LBE is consideed to depend linely on the tempetue hving the functionl fom k T of k T k 1 ct (1) whee the nominl vlues of the quntities k nd c e: k Wm K nd c K. Thoughout this wok nominl vlues will be denoted by using the supescipt zeo. Fo simplicity the electiclly heted ods e consideed to povide volumeticlly-distibuted het souce of nominl stength 4 Q Wm 3. The test section is insulted on its ltel sufce. The tempetue t the bottom of the test section is kept t constnt nominl tempetue T 4 K. At the top of the section t z het is emoved by het exchnge t constnt het flux q Wm hving nominl vlue 3 q Wm. To model mthemticlly the het conduction pocess inside the test section descibed in the foegoing it is convenient to tke the cente of the coodinte systems in the cente of the cylinde so tht the test section extends in the xil (veticl) diection fom z. Since the test section is insulted on its dil sufce nd since the length of the cylindicl test section is much gete thn its dius the tempetue vition in the dil diection cn be neglected by compison to the tempetue vitions in the xil diection fo the puposes of this illusttive poblem. Hence the xil tempetue distibution LBE cn be modeled by the following nonline het conduction model: T z in the d dt z k T Q z () 5

6 dt kt qt z z ; (3) Tz T t z ; (4) Notbly both Eqs. () nd (3) e nonline in T z theeby endeing the bove het conduction benchmk poblem idelly suited fo illustting the ppliction of the nd -ASAM to the genel cse of nonline diffeentil equtions subject to nonline boundy conditions. The solution of the bove system of nonline diffeentil equtions cn be solved by using Kichoff s tnsfomtion to obtin the solution Tz 1 1cT c z c (5) whee the function z is defined s 3 q Q z z z z. k 4 k (6) Note tht T z ttins its mximum vlue denoted s T z mx t the loction z mx Q q Q (7) whee it hs the expession mx with z given by Tzmx 1 1cT mx c z c (8) 6

7 z mx Q q kq. (9) Fo the nominl pmete vlues povided in the foegoing the xil vition of the nominl tempetue T z is depicted in Figue 1. In pticul T z tkes on the following vlues t the bottom nd top espectively of the test section: T T 7K. 4 K nd Figue 1: Vition of the nominl tempetue T z. It is of inteest to instll themocouples within the test section in ode to mesue the tempetues t vious xil loctions. A typicl themocouple esponse would indicte the tempetue Tz t some esponse loction denoted s z z. Such esponse is mthemticlly epesented in fom R T; T z T z z z (1) whee z z is the customy Dic delt-functionl. A pticully impotnt loction fo instlling mesuing themocouple is the loction mx z whee T z occus. mx 7

8 Using the nottion fom Pt I [1] the model ( input ) pmetes in this poblem e consideed to be the (five) components of the (column) vecto QqT k c α (11) α Q q T k c with nominl vlues. The dgge will be used thoughout this ppe to denote tnsposition. The model pmetes α e consideed to be fflicted by uncetinties so they cn vy fom thei nominl vlues α by mounts epesented by the component of the vecto of vitions h defined s Q q T k c h (1) In pctice the vitions Q q T k c e usully tken to be the stndd devitions quntifying the uncetinties in the espective model pmetes. 3. APPLICATION OF THE nd -ASAM FOR COMPUTING THE 1 st - AND nd -ORDER SENSITIVITIES Section 3.1 below pesents the computtion of the fist-ode sensitivities long with thei use fo computing the fist-ode contibutions to the stndd devition in the tempetue distibution while Section 3. pesents the computtion of the second-ode sensitivities long with thei use fo computing the second-ode contibutions to the stndd devition nd skewness of the tempetue distibution nd -ASAM Computtion of the Fist-Ode Response Sensitivities As shown in PART I [1] the fist-ode sensitivities of the esponse R T vitions of e e α to the h e genelly obtined by computing the (fist-ode) G-diffeentil Re ; h R e t T e α which is defined s 8

9 d Re ; h Re h with h h T h. (13) d Applying the bove definition to the esponse defined by Eq. (1) yields the fist-ode diffeentil DR T h of the esponse ( ; ) RT : DR( T α ; h ) T z h z z z h z z z. (14) d T T d Next tking the G-diffeentil of Eqs. () - (4) yields α h z Q1 T ; z d Q d dt k T ht z Qk ck T z k (15) d q dt k T ht z qk ck T z k z z q T α h t z 1 ; ; (16) h z T t z. (17) T z Equtions (15)-(17) coespond to Eqs. (13)-(14) in [1]. Define the Hilbet spce H L to consist of ll sque integble functions f z defined on the domin z nd endowed with the inne poduct [fo two functions f z nd s follows: f z ] f z f z f z f z. (18) 1 9

10 Recll fom the genel theoy pesented in [1] tht the my equie two distinct Hilbe spces denoted in [1] s H nd H u x howeve both of these Hilbet spces coincide with L. Q x espectively. Fo this simple iilusttive poblem Foming now the inne poduct of Eq. (15) with yet undefined function z L nd integting the esulting equtions twice by pts to tnsfe the diffeentil opetions fom h z to T z yields: d z k T ht z zq1 T α ; h z d d d T T T z z k T h z h z k T h z k T. (19) The bove Eq. (19) coesponds to Eq. (15) in [1]. Applying the pinciples outlined in Pt I to Eq. (19) yields the following fist-level djoint sensitivity system (1 st -LASS): z d k T z z z () d z t z (1) z t z. () The 1 st -LASS bove cn be edily solved to obtin the 1 st - level djoint function z kt z zz H zz z. (3) whee H z is the customy Heviside unit-step functionl defined s H z if z nd H z 1 if z. Note tht the 1 st - level djoint function to be the Geen`s function z cn lso be intepeted 1

11 1 Gz z zzhzzz ktz fo the 1 st -LASS i.e. Eqs. () - () since the point z is bity. (4) As shown in the genel theoy in PART I [1] the 1 st -LASS depends on the esponse cf. Eq.(14) which povides the souce tem z z s shown in Eq. (). Note tht this souce tem does not belong to the Hilbet spce L but belongs to the Sobolev spce 1 H L i.e. 1 d x b H L s usully encounteed when computing Geen s functions. By using the well known Lx-Milgm Lemm it cn be shown tht the biline fom on the ight side of the lst equlity in Eq. (19) coecive so tht the 1 st -LASS cn be solved uniquely s hs been done to obtin the expession fo the djoint function 1 z H H L shown in Eq. (3). The mthemticl techniclities equiing the use of Sobolev spces stemming fom the considetion of distibutions s encounteed bove fo the fist-level djoint sensitivity system (1 st -LASS) will lso ise in the constuction of the second-level djoint sensitivity systems ( nd -LASS) s will be seen in the eminde of this wok. Thus even though the foegoing mthemticl techniclities will not be epeted in the sequel ll of the solutions to such nd -LASS should be intepeted in the wek sense in the ppopite Sobolev spce. No confusion should ise howeve since the espective solutions fo the nd -LASS will be unique nd will be obtined explicitly just s it ws in Eq. (3) fo the fist-level djoint function z. Using the esults in Eqs. (15) - () in Eq. (14) tnsfoms the ltte into the fom: 1 DR( T α ; h ) z Q T α ; h d T kt z q1 T α h z ;. (5) Q T α h nd Using Eqs. (15) nd (16) espectively to eplce the expessions of 1 ; q T α h in Eq. (35) yields 1 ; T z T z T z T z T z DR( T α ; h ) Q q T k c Q q T k c (6) 11

12 whee the the 1 st -ode sensitivities of T z to the epective model pmetes hve the following expessions: T z S1 T ; α z (7) Q T z S T ; α (8) q 3 T z d S T α k T (9) ; T z T z 1 S4 T ; α Q z q k k (3) T z d dt z S5T ; α z k T z c dt T T z k T z k. k z T z (31) The bove expessions indicte tht ll of the 1 st -ode sensitivities cn be computed excly nd efficiently using qudtues (integtions) once the djoint function hs been obtined by solving the 1 st -LASS. Thus eplcing the expession of z given in Eq. (3) in Eqs. (7) (31) nd cying out the espective integtions ove z yields the following evluted expessions fo the 1 st -ode sensitivities of the esponse T z to the model pmetes: T z 1 3 z z Q k T z 4 (3) T z z q kt z (33) 1

13 T z 1 ct T 1c T z T z 1 Q 3 z z q z 4 z k kk T z k T z (34) (35). T T z k T z T z z T c k T z 1 c c T z (36) One of the min uses of sensitivities is fo nking the eltive impotnce of pmete vitions in influencing vitions in esponses. Reltive sensitivities e used fo this pupose since they e dimensionless numbes. The eltive sensitivity of esponse the i th -pmete el i is defined s Si R i i R e e R e to. The eltive sensitivities of T z e depicted in Figues -6 s functions of the bity loction z. Figue : Reltive sensitivity of T z to Q. Figue 3: Reltive sensitivity of T z to q. 13

14 Figue 4: Reltive sensitivity of T z to T. Figue 5: Reltive sensitivity of T z to k. Figue 6: Reltive sensitivity of T z to c. As Figues though 6 indicte the eltive impotnce of the vious model pmetes depends on the position z. Rnking them by the lgest ttinble mximum bsolute vlues of thei eltive sensitivities the impotnce of the model pmetes is s follows: the het souce Q ; the boundy het flux q ; the mbient tempetue T ; the line het conductivity coefficient k ; nd the nonline het conductivity coefficient c. 3.. nd -ASAM Computtion of the Second-Ode Response Sensitivities As discussed in the genel theoy pesented in PART I [1] the fundmentl philosophicl considetion nd stting point fo computing the second-ode esponse sensitivities 14

15 S R R ws to conside the fist-ode sensitivities to be ij i j j i esponses of the fom α S T ; i This fct ws explicitly indicted in the i espective definitions povided by Eqs. (7) though (31). Bsed on this fundmentl considetion the nd -ASAM poceeds by computing the fist-ode G-diffeentil S T ; α of ech of the functionls ; i vlues using the definition of the G-diffeentil nmely: o Si T α t the point ; T α of nominl o d o ; ; S i T α ht h h Si T ht h α h d (37) fo n bity scl F nd vectos illusttive exmple thee will be the symmety popety R R ht h h H H H. Fo ou N N 1 15 distinct second-ode deivtives due to i j j i. The sensitivities ij S will be computed next in the ode of pmete impotnce/nking s discussed in the pevious subsection Computtion of the Second-Ode Response Sensitivities S T z Q 1i i Applying the definition shown in Eq. (37) to Eq. (7) yields the G-diffeentil o DS T h h o α T h of the fist-ode sensitivity 1 ; 1 ; ; S T α in the fom o d DS1 T ; α ; ht h h z h z. (38) d The function h in Eq. (38) is the solution of the system of equtions obtined by G- diffeentiting Eqs. () - () nmely 15

16 dh z d z kt kc h T z d z k 1 c T z ckt z z (39) dh z t z (4) h z t z. (41) The quntity following fom of Eq. (39) d z in Eq. (39) cn be eplced by using Eq. () to obtin the kt h T z dh z c z z 1 c T z k T z c zz Q T α ; h. 1 z k 1 c T z (4) o As Eq. (38) indictes the entie contibution to DS1 T ; ; ht h α h comes fom the indiect-effect tem; thee is no diect-effect tem contibution to o DS T ht h 1 ; α ; h. Applying next the genel theoeticl considetions leding to Eq. (34) of PART I [1] Eqs. (15) nd (4) e witten in the following block-mtix fom: d kt 1 ; ht z Q T α h c z z d ; 1 h z k T Q T α h 1 ct z z. (43) Following the pocedue outlined in [1] intoduce the vecto Ψ H H nd define the inne poduct between two functions () () () () h z h z h z nd () () z () z T Ψ s follows: 16

17 () () () () 1 T 11 1 h z Ψ h z z h z z. (44) Following the sequence of opetions leding to Eq. (37) of [1] fom the inne poduct of z z Ψ () () () with Eq. (43) to obtin the following sequence of equlities: d kt ht z c z z d h z k T () () 11 z 1 z 1 ct z () () z z Q T α ; h 1 1 d c z z kt () 11 c T z z ht z h z () 1 d z k T Q T α; h P T α ; h h h ; () () T 11 1 (45) () () whee the biline concomitnt P T ; ht h ; 11 1 α h hs the fom () () () P T α ; h ; T h 11 1 z 11 T T z () () d11 z () dh z d k T 1 z k T h z z k T h z 1 d k T h z z. (46) As genelly shown in [1] the definition of the nd -level djoint function Ψ () () () is now completed by equiing the tem on the ight side on the lst equlity in Eq. (45) to epesent the sme functionl s the ight side of Eq. (38) which yields the following second-level djoint sensitivity system ( nd -LASS): 17

18 1 d c z z kt () c T z 11 z () 1 d z k T 1 (47) As genelly discussed in [1] the boundy conditions fo the bove nd -LASS e obtined by using the boundy conditions given in Eqs. (16) (17) (4) nd (41) in Eq. (46) to eliminte ll unknown vlues of P T α ; h h ; () () T 11 1 conditions fo the nd -LASS: h z nd T h z espectively in the biline concomitnt. These considetions led to the following boundy d () 11 z t z (48) () 11 z t z. (49) d k T () 1 z t z (5) () 1 z t z. (51) Inseting the bove boundy conditions togethe with those those given in Eqs. (16) (17) (4) nd (41) into Eq. (46) educes the biline concomitnt α T to the quntity ˆ ; () () 11 ; 1 P T ; h h ; () () 11 1 following fom: P T α h which hs the () ˆ () () () d 11 PT α ; 11 1 ; hq1t α; h 11 z T. z k T (5) z z Finlly using Eqs. (5) (47) nd (38) in Eq. (45) leds to the following expession fo the second-ode diffeentil expession DS1 T ; α ; ht h h 18

19 () () ; α ; T h α ; h α ; h 1 DS T h h z Q T z Q T z d ;. () () 11 q1t α h 11 z T z k T z (53) Solving Eqs. (47) (5) nd (51) yields the following expession fo the nd -level djoint function () 1 z : () z. z z k T z 4 (54) Solving Eqs. (47) - (49) yields the following expession fo the nd -level djoint function () 11 z : with () zct z; α z z. 4 z z z H z z (55) kc CT z; α. 3 k T z (56) Replcing Q1 T α ; h nd ; Q T α h with the coesponsing expessions fom Eqs. 1 (15) nd (4) espectively yields the following expession fo the diffeentil DS T ht h 1 ; α ; h : whee T z T z DS1 T ; α ; ht h h Q q Q Qq T z Q T k c T z T z T z QT Qk Qc () 11 z (57) (58) 19

20 T z Qq () 11 z z (59) T z d z () 11 k T QT z (6) T z 1 () () () Q z z z z q z Qk z k (61) T z () d dt z k 11 z T z Qc T z dt () () 1 z z z k 11 1 z T z ct z z k T z zt z () () () T d11 1 d 11 1 z k T z. (6) Replcing Eqs. (54) nd (55) in the bove expessions nd cying out the integtions ove z yields the following expessions fo the bove nd -ode sensitivities: T z 1 3 C T z; α z z (63) Q 4 4 T z 1 3 C T z; α z z z (64) Qq 4 T z kt ( ) 3 C T z; α z z (65) QT 4 T z CT z ; 1 α z c T z z z (66) Qk c 4

21 T z k Qc ; α C T z T z T z c T z c 3 z z 4. (67) The eltive sensitivities The nd -ode eltive sensitivities S 1i el depicted in Figues 7-11 s functions of the bity loction z. T z Q i Q T z i e Figue 7: Reltive sensitivity T z Q Q Tz. Figue 8: Reltive sensitivity T z Qq Qq T z Figue 9: Reltive sensitivity T z QT QT T z. Figue 1: Reltive sensitivity T z Qk Qk T z 1

22 Figue 11: Reltive sensitivity T z Qc Qc T z As Figues 7 though 11 indicte the the eltive impotnce (mgnitude) of the nd -ode eltive sensitivities S 1i el T z Q i Q T z i depends on the position z. Rnking them by the lgest ttinble mximum bsolute vlues of these eltive sensitivities the impotnce of the model pmetes is s follows: the het souce Q ; the boundy het flux q ; the line het conductivity coefficient k ; the mbient tempetue T ; nd the nonline het conductivity coefficient c. By compison to the impotnce nking of the 1 st -ode eltive sensitivities the model pmetes k nd T hve switched plces in tht the eltive sensitivity T z QT QT T z T z Qk Qk T z hs become bout 3 times s lge s the eltive sensitivity. Futhemoe the eltive sensitivity impotnce nking of the ptil sensitivities S 1i el T z Qc Qc T z T z Q i. Q T z i hs become thid in the

23 3... Computtion of the Second-Ode Response Sensitivities S T z q i i Applying the definition shown in Eq. (37) to Eq. (8) yields the G-diffeentil o DS T h h o α T h of the fist-ode sensitivity ; ; ; S T α in the fom o DS T ; α ; ht h h hz z (68) As befoe the function h in Eq. (68) is the solution of Eqs. (4) (4). Following the sme pocedue s in the pevious sub-section leds to the following expession fo the ptil- o diffeentil DS T ; ; ht h α h : () () ; α ; T h α ; h α ; h 1 DS T h h z Q T z Q T 1 1 z d ; () () 1 q1t α h 1 z T z k T z (69) whee the nd -level djoint function () () () 1 second-level djoint sensitivity system ( nd -LASS): Ψ is the solution of the following 1 d c z z kt () c T z 1 z () d z z k T (7) d () 1 z t z (71) () 1 z t z. (7) 3

24 d k T () z t z (73) () z t z. (74) Solving Eqs. (7) - (74) yields the following expessions fo the components of the nd -level Ψ : djoint function () () () 1 nd 1 z CT z ; α z z z z H z z (75) () () 1 z. z z Hz kt z (76) The second-ode sensitivities S T z q will hve fomlly the sme i i expessions s those shown Eqs. (58) (6) except tht the function () () () be eplced by the function Ψ () () () 1 to obtin: Ψ will T z qq () 1 z (77) T z q z () 1 z (78) T z d z () 1 k T qt z (79) T z 1 () () () Q 1 1 z z z z q z qk z k (8) 4

25 T z z T z () () () T d1 1 d 1 k T z qc kt z z. (81) Replcing Eqs. (75) nd (76) in the bove expessions nd cying out the integtions ove z yields the following explicit expessions fo the bove nd -ode sensitivities: T z () () 1 11 z qq Qq T z z z 1 3 CT z; α z z z 4 (8) T z C T z z ; α (83) q T z C T z k T z qt ; α (84) T z 1 C T z c T z z z qk c ; α 1 (85) T z k ; C T z α c T z T z z T z. (86) qc c The symmety of the second-ode sensitivity T z q Q implies the equlity between Eqs. (8) nd (59) which in tun povides stingent independent veifiction of the ccucy of computing the second-level djoint functions () () () () () () 1 Ψ. The nd -ode eltive sensitivities S i el in Figues 1-15 s functions of the bity loction Ψ nd T z q i q T z z. i e depicted 5

26 Fig. 1: Reltive sensitivity T z q q Tz Fig. 13: Reltive sensitivity T z qt qt T z Fig. 14: Reltive sensitivity T z qk qk T z Fig. 15: Reltive sensitivity T z qc qc T z Figues 1 though 15 indicte the the eltive impotnce (mgnitude) of the nd -ode eltive sensitivities S i el T z q i q T z i depends on the position z. Rnking them by the lgest ttinble mximum bsolute vlues of these eltive sensitivities the impotnce of the model pmetes is s follows: the het souce Q ; the boundy het flux q ; the line het conductivity coefficient k ; the nonline het conductivity coefficient c ; nd the mbient tempetue T. 6

27 3..3. Computtion of the Second-Ode Response Sensitivities S T z T 3i i Applying the definition shown in Eq. (37) to Eq. (9) yields the G-diffeentil o DS T h h o α T h of the fist-ode sensitivity 3 ; 3 ; ; S T α in the fom 3 DS T h h o ; α ; T h d d h 1 k k c c T ht z d o o α T h α T h ; ; ; ; DS T h h DS T h h 3 3 diect indiect (87) whee the diect-effect tem is defined s DS3 T h h o ; α ; T h diect z d k 1 c T z ckt zc kht z z (88) while the indiect-effect tem is defined s o dh 3 ; ; DS T α ht h h k T z z. (89) indiect z The diect-effect tem defined in Eq. (88) cn be evluted immeditely by noting fom Eq. (3) tht z d 1 k T z z (9) nd by using the bove esult in Eq. (88) to obtin o 1 DS3 T ; α ; h 1. T h h k c T c k T T c k diect k T z (91) 7

28 On the othe hnd the indiect-effect tem defined in Eq. (89) needs to be evluted by constucting the coesponding nd -LASS fo nd -level djoint function Ψ () () () by following the genel genel pinciples of the nd -ASAM pesented in PART I [1]. Applying these pinciples leds to the following expession fo the indiect-effect tem defined in Eq. (89): DS3 T h h o ; α ; T h indiect α ; h α ; h () () 31 z Q 1 T 3 z Q T 1 z d ; () () 31 q1t α h 31 z T z k T z (9) whee the nd -level djoint function () () () Ψ is the solution of the following nd - LASS: 1 d c z z kt () c T z 31 z () 3 d z k T (93) d () 31 z t z (94) () 31 z t z. (95) d k T () 3 z t z (96) () 3 z 1 t z. (97) 8

29 Solving Eqs. (93) - (97) yields the following expessions fo the components of the nd -level djoint function () () () Ψ : nd 31 z CT z ; α kt z z z Hz z (98) () z k T z k T () 3. (99) Adding Eqs. (88) nd (9) nd identifying the coefficients multiplying the espective pmete vitions yields the following expessions fo the nd -ode sensitivities S T z T : 3i i T z T z d z () () z kt T Q Q T z kt ( ) 3 CT z; α z z 4 T z T z d z () () 1 31 z kt T z q qt z CT z; α kt z () T z d z d31 z ck kt T α C T z ; k T z k T T z 1 ct Q T k k T z k () 31 α z () q () 3 z z 31 z z k 1 k C T z ; k T z z (1) (11) (1) (13) 9

30 T z kt kkt CT z ;. α z T c T z T z (14) T c kt z c The symmety of the second-ode sensitivity T z T Q implies the equlity between the eltions expessed in Eq. (1) nd (65). This equlity povides n independent veifiction of the coectness of the espective expessions s well s veifiction of the solution ccucy of computing the second-level djoint functions () () () () () () Ψ nd Ψ. Futhemoe the symmety of the second-ode sensitivity T z T q implies the equlity between the eltions expessed in Eq. (11) nd (79). This equlity povides n independent veifiction of the coectness of the espective expessions s well s veifiction of the solution ccucy of computing the second-level djoint functions Ψ () () () 1 nd Ψ () () () The nd -ode eltive sensitivities S 3i el T z T i T T z i bity loction z. e depicted in Figues s functions of the Fig. 16: Reltive sensitivity T z T T Tz Fig. 17: Reltive sensitivity T z Tk T k T z 3

31 Fig. 18: Reltive sensitivity T z Tc T c T z As Figues 16 though 18 indicte the the eltive impotnce (mgnitude) of the nd -ode eltive sensitivities S 3i el T z T i T T z i depends on the position z. Rnking them by the lgest ttinble mximum bsolute vlues of these eltive sensitivities the impotnce of the model pmetes is s follows: the boundy het flux q s peviously depicted in Figue 13; nd the het souce Q s peviously depicted in Figue 9. On the othe hnd Figues indicte tht the emining pmetes (nmely the line het conductivity coefficient k the mbient tempetue T nd the nonline het conductivity coefficient c ) e much less impotnt Computtion of the Second-Ode Response Sensitivities S T z k 4i i Applying the definition shown in Eq. (37) to Eq. (3) yields the G-diffeentil o DS T h h o α T h of the fist-ode sensitivity 4 ; 4 ; ; S T α in the fom o o ; α ; T h ; α ; T h o DS4 T α ht h h DS T h h DS T h h 4 4 diect ; ; o whee the diect effect tem is defined s DS4 T ; α ; ht h h indiect diect (15) 31

32 o Q 4 ; ; Q DS T α ht h h k diect z k k q k q k k (16) o while the indiect effect DS4 T ; ; ht h α h tem is defined s indiect o Q q ; ; DS T α ht h h hz h. (17) 4 indiect k k The diect effect tem defined in Eq. (16) cn be evluted by using Eq. (3) to obtin: o ; ; Q Q DS T α ht h h k z z diect 4 k k k T z q k k k k T z q z. (18) The indiect-effect tem defined in Eq. (17) needs to be evluted by constucting the coesponding nd -LASS fo nd -level djoint function () () 4 41 Ψ by following the genel genel pinciples of the nd -ASAM pesented in PART I [1]. Applying these pinciples leds to the following expession fo the indiect-effect tem defined in Eq. (17): o () () ; α ; T h α ; h α ; h 1 DS T h h z Q T z Q T indiect z d ; () () 41 q1t α h 41 z T z k T z whee the nd -level djoint function () () () LASS: (19) Ψ is the solution of the following nd - 3

33 1 d c z z kt () c T z 41 z () 4 Q q d z z k T k k (11) d () 41 z t z (111) () 41 z t z. (11) d k T () 4 z t z (113) () 4 z t z. (114) Solving Eqs (11) (114) yields the following expessions fo the nd -level djoint function Ψ : () () () nd () 3 41 zct z; α z z z 4 z z z H z z (115) () 1 Q 3 q 4 z z z 4 z z H z kt z k k (116) Replcing Eq. (115) nd (116) in Eq. (19) cying out the integtions ove z nd the ensuing lgeb yields the following expession fo the indiect-effect tem 5 ; α ; h : o DS T ht h indiect 33

34 o Q ck z 3 4 ; ; DS T α ht h h Q k 3 z z indiect k k T z 4 ck z q ck z T k T k 3 q z k T z k k T z c k z k T z z c T 3 T z c k T z k 1 c T z k T z 3. (117) Summing the expession fo the indiect effect tem given in Eq. (117) with the expession of the diect effect tem given in Eq. (18) nd identifying the coefficients of the espective pmete vitions yields the following expession fo the nd -ode deivtives S T z k : 4i i T z CT z ; 1 α z c T z z z (118) k Q c 4 T z 1 C T z c T z z z kq c ; α 1 (119) T z k T C T z ; α k T z (1) T z z CT z z k kk T z ; α (11) T z k z ; α (1) CT z c T z T z zt kc c The symmety of the second-ode sensitivity 34 T z k Q implies the equlity between the eltions expessed in Eq. (118) nd (66). This equlity povides n independent veifiction of the coectness of the espective expessions s well s veifiction of the solution ccucy of computing the second-level djoint functions () () () () () () Ψ nd Ψ. Futhemoe the symmety of the second-ode sensitivity

35 T z k q implies the equlity between the eltions expessed in Eq. (119) nd (85). This equlity povides n independent veifiction of the coectness of the espective expessions s well s veifiction of the solution ccucy of computing the second-level djoint functions Ψ () () () 1 nd Ψ () () () second-ode sensitivity. Finlly the symmety of the T z k T implies the equlity between the eltions expessed in Eq. (1) nd (13). This equlity povides n independent veifiction of the coectness of the espective expessions s well s veifiction of the solution ccucy of computing the second-level djoint functions Ψ () () () nd Ψ () () () eltive sensitivities T z k k Tz T z kc nd k c T z functions of the bity loction z.. The nd -ode e depicted in Figues 19 nd s Fig. 19: Reltive sensitivity T z k k Tz Fig. : Reltive sensitivity T z kc k c T z Computtion of the Second-Ode Response Sensitivities S T z c 5i i Applying the definition shown in Eq. (37) to Eq. (31) yields the G-diffeentil o DS T h h o α T h of the fist-ode sensitivity 5 ; 5 ; ; S T α in the fom 35

36 T T T ht 1 T o 1 d DS5 T ; α ; ht h h z z d c c T h o o α T h α T h DS T ; ; h h DS T ; ; h h 5 5 diect indiect (13) whee o T T z T 5 T diect 1 ct z 1 ct z DS T ; α ; h h h T c T z (14) nd c T T z c 5 ; ; T z o T T indiect DS T α h h h h z z z. 1 ct z (15) The indiect-effect tem defined in Eq. (15) needs to be evluted by constucting the coesponding nd -LASS fo nd -level djoint function () () 5 51 Ψ by following the genel genel pinciples of the nd -ASAM pesented in PART I [1]. Applying these pinciples leds to the following expession fo the indiect-effect tem defined in Eq. (15): o () ; α ; T h α ; h DS T h h z Q T indiect z d ; () () 51 q1t α h 51 z T z k T z (16) whee the nd -level djoint function () () 5 51 Ψ is the solution of the following nd -LASS: d () 51 z c T T z c T z 3 k zz z k T z (17) d () 51 z t z (18) 36

37 () 51 z t z. (19) Note tht the bove nd -LASS hs the sme fom s the 1 st -LASS [cf. Eqs. ()-()] except fo diffeent souce tem in Eq. (17). Theefoe the solution of Eqs. (17) (9) cn be witten down by simply modifying ppopitely the solution of the 1 st -level djoint function z in Eq. (3) to obtin () k 51 zct z ; α c T T z c. T z z z H z z z c (13) Replcing Eq. (13) in Eq. (16) cying out the integtions ove z nd the ensuing lgeb yields the following expession fo the indiect-effect tem 5 ; α ; h : o DS T ht h indiect DS5 T α h h o ; ; T h indiect 13 k CT z ; α c T T z c T z Q z z q z c 4 Q 3 q T T z T k T k. z z z c k 4 k (131) Adding Eqs. (131) nd (14) nd identifying the coefficients multiplying the espective pmete vitions yields the following expessions fo the nd -ode sensitivities S T z c : 5i i T z 3 ; k C T z α T z T z c T z z z (13) cq c 4 T z k ; C T z α c T z T z z T z (133) cq c 37

38 T z kt kkt CT z ; α z T c T z T z (134) ct kt z c T z k z ; α (135) CT z c T z T z zt ck c T z k CT z; α T z T z c c c T z c T T z z T (136) The symmety of the second-ode sensitivity T z c Q implies the equlity between the eltions expessed in Eq. (13) nd (67). This equlity povides n independent veifiction of the coectness of the espective expessions s well s veifiction of the solution ccucy of computing the second-level djoint functions () () () () () () Ψ nd Ψ. The symmety of the second-ode sensitivity T z c q implies the equlity between the eltions expessed in Eq. (133) nd (86). This equlity povides n independent veifiction of the coectness of the espective expessions s well s veifiction of the solution ccucy of computing the second-level djoint functions Ψ () () () 1 nd Ψ () () () sensitivity. Futhemoe the symmety of the second-ode T z ct implies the equlity between the eltions expessed in Eq. (134) nd (14). This equlity povides n independent veifiction of the coectness of the espective expessions s well s veifiction of the solution ccucy of computing the second-level djoint functions Ψ () () () nd Ψ () () () symmety of the second-ode sensitivity T z. Finlly the c k implies the equlity between the eltions expessed in Eq. (135) nd (1). This equlity povides n independent veifiction of the coectness of the espective expessions s well s veifiction of the solution ccucy of computing the second-level djoint functions () () () Ψ () () () The nd -ode eltive sensitivity s function of the bity loction z. T z c c Tz Ψ nd is depicted in Figue 1 38

39 Fig. 1: Reltive sensitivity T z c c Tz The computtion of the 1 st - nd nd -ode sensitivities pesented in this Section hve undescoed tht: (i) One djoint computtion ws needed to detemine the 1 st -level djoint function z (ii) (iii) which sufficed to compute using just qudtues ll of the fist-ode sensitivities S R i 1345; i i The mgnitudes of the nd -ode sensitivities e genelly of the sme ode s the mgnitudes of the 1 st -ode sensitivities; Five djoint computtions one ech fo computing the espective nd -level djoint () () () functions Ψ nd subsequently detemining ll of the i i i i nd -ode sensitivities S R ; i j These computtions lso ij i j povide independent solution veifictions of the nd -level djoint functions Ψ () () () i i1 i i due to the symmety of the nd -ode sensitivities. Notbly simil diffeentil opetos ppe on the left-sides of the 1 st - nd nd -LASS which theefoe would use the sme solves of diffeentil equtions; only the souces on the ight sides of these suystems diffe fom ech othe. The 1 st - nd nd - ode sensitivities will be used in the following Section to illustte thei essentil ole fo quntifying stndd devitions nd non-gussin fetues (e.g. symmeties) of the vious esponse distibutions. To quntify ssymeties in distibution t (the vey) lest the thid ode ( skewness ) esponse coeltions need to be computed 39

40 which equie the exct computtion of (t lest) the fist- nd second-ode esponse sensitivities to model pmetes. 4. APPLICATION OF THE nd -ASAM FOR QUANTIFYING NON-GAUSSIAN FEATURES OF THE RESPONSE UNCERTAINTY DISTRIBUTION In genel the model pmetes e expeimentlly deived quntities nd e theefoe subject to uncetinties. Specificlly conside tht the model compises N uncetin pmetes i which constitute the components of the (column) vecto α of model pmetes defined s α 1... N. The usul infomtion vilble in pctice compises the men vlues of the model pmetes togethe with uncetinties (stndd devitions nd occsionlly coeltions) computed bout the espective men vlues. The components of vecto s i nd defined s α... 1 N of men vlues of the model pmetes e denoted i i f f α p α dα. (137) whee the ngul bckets denotes integtion of geneic function f α ove the unknown joint pobbility distibution p α of the pmetes α. The pmete distibution s secondode centl moments ij α e defined s ij α i i j j ij i j; i j 1 N. (138) ii The centl moments ij moments α v i e clled the vince of i while the centl α cov i j ; i j e clled the covinces of i nd j. The stndd 4

41 devition of i is defined s i ii α. When the model unde considetion is used to compute N esponses (o esults) denoted in vecto fom s N 1... ech of these esponses will be implicit functions of the model s pmetes i.e. α. It follows tht α will be vecto-vlued vite which obeys (genelly intctble) multivite distibution in α. Fo lge-scle systems the pobbility distibution pα is not known in pctice nd even if it wee known the induced distibution in α would still be intctble since p α could not be popgted exctly though the lge-scle models used in fo simulting elistic physicl systems. The uncetinties in esponse α ising fom uncetinties in the pmetes α cn be computed by expnding fomlly the esponse α in Tylo seies ound α constucting ppopite poducts of such Tylo seies nd integting fomlly the vious poducts ove the unknown pmete distibution function p α to obtin esponse coeltions. This method fo constucting esponse coeltions stemming fom pmete coeltions is known s the popgtion of eos o popgtion of moments method [see e.g. Ref 7]. Fo illustting the effects of second-ode esponse sensitivities fo the pdigm nonline het conduction benchmk consideed in this wok it suffices to tke fom Ref. [7] esponse coeltions up to thid-ode fo the vey simple cse when: (i) the pmetes e uncoelted nd nomlly distibuted; nd (ii) only the fist- nd second-ode esponse sensitivities e vilble. Fo these pticul conditions the esponse coeltions deived in [7] educe to the following expessions fo the fist thee esponse moments: 41

42 (i) The expected vlue of esponse k denoted hee s UG E k which ises due to uncetinties in uncoelted nomlly-distibuted model pmetes (the supescipt UG indictes uncoelted Gussin pmetes) is given by the expession E N k k k i i1 i UG 1 α (139) whee k α denotes the computed nominl vlue of the esponse; (ii) The covince cov k between two esponses k nd ising fom nomllydistibuted uncoelted pmetes is given by N N UG 1 k k 4 cov k i. i (14) i1i i i1i i The vince v k of esponse k is obtined by setting k in the bove expession l to obtin N N UG 1 k k 4 k i i i1 i i1 i v. (141) As indicted by the expessions in Eqs. (139) - (141) the second-ode sensitivities hve the following impcts on the esponse moments: () They cuse the expected vlue of the esponse UG computed nominl vlue of the esponse k α ; E k to diffe fom the (b) They contibute to the esponse vinces nd covinces; howeve since the contibutions involving the second-ode sensitivities e multiplied by the fouth powe of the pmetes stndd devitions the totl of these contibutions is 4

43 expected to be eltively smlle thn the contibutions stemming fom the fist-ode esponse sensitivities Computtion of Response Stndd Devitions To illustte the impct of 1 st -ode vesus nd -ode sensitivities in contibuting to the uncetinty in the tempetue esponse T z t n bity loction z conside tht the model pmetes Q q T k c e uncoelted nd nomlly distibuted ll hving eltive stndd devitions of 1% i.e. Q Q q q T T k k c c whee Q 1% T k nd q c denote the espective bsolute stndd devitions. It follows fom Eq. (141) tht the contibutions stemming fom the 1 st -ode pmete deivtives (in the bsence of nd - nd highe-ode deivtives) yields the following 1 st -ode stndd devition denoted s Std.Dev T z of FO T z : Std.Dev FO T z T z Tz Q q Q q T z T z T z T k c T k c 1/. (14) The mgnitudes of ech of the tems on the ight side of Eq. (14) quntifies the contibution mde by ech of the model pmetes consided to by uncoelted nd nomlly distibuted to 1 st -ode the stdd devition T z function of z in Figues 6. Std.DevFO. These mgnitudes e plotted s 43

44 T z Q Q K T z q q K z z Fig. : Contibutions to Std. Dev. in T z Fig. 3: Contibutions to Std. Dev. in T z of 1 st -ode sensitivities of Q. of 1 st -ode sensitivities of q. K T z T T K T z k k z z Fig. 4: Contibutions to Std. Dev. in T z Fig. 5: Contibutions to Std. Dev. in T z of 1 st -ode sensitivities of T of 1 st -ode sensitivities of k. 44

45 K T z c c K Std.DevFO T z z z Fig. 6: Contibutions to Std. Dev. in T z Fig. 7: Contibutions to Std. Dev. in T z of 1 st -ode sensitivities of c. of 1 st -ode sensitivities of in ll pmetes. As shown in Figues though 6 the quntities QT z Q nd e monotoniclly incesing the quntity quntities k T z k nd q T z q T T z T displys minimum while the c T z c disply mxim s functions of z. Ech of these behvios is govened by the behvio of the espective 1-st ode deivtives of couse. Since the deivtives T z Q nd T z contibutions cuse the quntity of q e the lgest the espective Std.DevFO T z to incese monotoniclly s function z. Noticbly the smllest contibution to Std.DevFO T z stems fom c T z c indicting tht the pmete c which ctully contols the stength of the nonlineity in the conduction eqution is not vey impotnt in the tempetue nge unde considetion (4 8 K). It follows fom Eq. (141) tht the contibutions stemming fom the 1 st -ode pmete deivtives (in the bsence of nd - nd highe-ode deivtives) yields the following 1 st -ode stndd devition denoted s Std.Dev T z of FO T z : 45

46 The quntities contin the contibutions involving the nd -ode deivtives i k i to the totl stndd devition denoted s Std.Dev T z of T z. The mgnitudes of ech of these nd -ode contibutions e plotted s function of z in Figues 8 3. T z Q K Q T z q K q z z z Fig. 8: Contibutions fom nd -ode sensitivities of Q to Std. Dev. in Fig. 9: Contibutions fom nd -ode T z. T z. sensitivities of q to Std. Dev. in K T z T T T z k K k z z Fig. 3: Contibutions fom nd -ode sensitivities of T to Std. Dev. in Fig. 31: Contibutions fom nd -ode T z. T z. sensitivities of k to Std. Dev. in 46

47 K T z c c K Std.Dev.T z z z Fig. 3: Contibutions of nd -ode sensitivities of c to Std. Dev. in Fig. 33: Sptil vition of the stndd devition T z. T z. of the tempetue distibution The esults plotted in Figues -6 to the coesponding esults plotted in Figues 8-3 indicte tht lthough some of the nd -ode sensitivities hve mgnitudes compble to the 1 st -ode ones the contibutions stemming fom the 1 st -ode sensitivities e much smlle thn those stemming fom the nd -ode sensitivities. This is becuse the contibutions stemming fom the nd -ode sensitivities e multiplied by the fouth-powe of the espective stndd devitions the thn by the second-powe s e the 1 st -ode sensitivities. The contibutions to the totl stndd devition in T z stem pedominntly fom the het souce Q nd the boundy het flux q which cuse this stndd devition to incese monotoniclly s function of the loction z fom the inlet to the outlet eching its mximum vlue of 17K t the outlet. Equivlently the eltive stndd devition of T z inceses fom 1% the inlet to 4% t the outlet; ecll tht ll of the model pmetes wee ssumed to hve eltive stndd devition of 1%. Tble 1 pesents the ctul vlues t the inlet outlet nd t z zmx =8 1 cm which denotes the loction whee the tempetue distibution Tz eches its mximum vlue T mx (z mx ) = 874.7K. Notbly the tems involving the nd -ode sensitivities do not contibute t ll t thebottom of the test section but thei contibutions incese monotoniclly fom the bottom to the test section s top. 47

48 Tble 1: Individul nd totl contibutions of pmetes stndd devitions to the 1 st -ode nd totl stndd devition in Tz t selected loctions. Loction z l z zmx z l Std.Dev Q 1 T z [K] 88 1 Std.Dev Q Std.Dev q 1 Std.Dev q Std.Dev T 1 Std.Dev T Std.Dev k 1 Std.Dev k Std.Dev c 1 Std.Dev c T z [K] 5 1 T z [K] 5 96 T z [K] T z [K] T z [K].5.6 T z [K] 38 6 T z [K] 3 5 T z [K] 5 16 T z [K] 1.3 Std.Dev FO T z [K] Std.Dev T z [K] Computtion of Response Skewness The thid-ode esponse coeltion the following expession: 3 k l m mong thee esponses ( k nd m ) hs N UG k l m k l m k l m 4 3 k l m. i i1 i i i i i i i i (143) i In pticul the thid-ode centl moment setting k l m in Eq. (143) to obtin 3 k UG N k k k. i i1 i i of the esponse k is detemined by (144) 48

49 The skewness 1 k of esponse k cn be computed using the customy definition 3/ 1 k 3 k v k. (145) Recll tht the skewness of distibution quntifies the deptue of the subject distibution fom symmety. Symmetic univite distibutions (e.g. the Gussin) e chcteized by 1 k. A distibution with long ight til would hve positive skewness while distibution with long left til would hve negtive skewness. In othe wods if then the espective distibution is skewed towds the left of the men UG lowe vlues of k eltive to E UG k. On the othe hnd if k distibution is skewed towds the ight of the men UG eltive to UG E k. 1 1 k E k fvoing then the espective E k fvoing highe vlues of k As Eq. (143) indictes neglecting the second-ode sensitivities fo nomlly distibuted model pmetes would nullify the thid-ode esponse coeltions nd hence would nullify the skewness 1 k of esponse k cf. Eq. (144). Consequently ny events occuing in esponse s long nd/o shot tils which e chcteistic of e but impotnt events would likely be missed. It is of inteest to quntify the skewness induced in the tempetue distibution Tz by ech model pmete consideed septely. These individullyinduced skewnesses in T z will be denoted s T z T z T z nd T z espectively. In othe wods the quntity Q q T T z k c Q T z denotes the skewness tht would be induced in the tempetue distibution T z if only the het souce Q wee nomlly distibuted vite with eltive stndd devition of 1%. The 49

50 quntity q T z denotes the skewness tht would be induced in the tempetue distibution Tz if only the boundy het flux q wee nomlly distibuted vite with eltive stndd devition of 1% nd so on. The espective 3 d -ode moments of the tempetue distibution Tz e plotted long with the coesponding skewnesses in Figues s functions of the loction z fom the bottom to the top of the test section. z z Tz T z 4 3 Q Q Q 3 K Fig. 34: 3 d -ode moment of T z Fig. 35: Skewness of T z ising solely fom the vite Q. due soley to the vite Q. Q T z z z Tz T z 4 3 q q q 3 K q T z Fig. 36: 3 d -ode moment of T z Fig. 37: Contibutions to skewness in T z ising solely fom the vite q. due solely to the vite q. 5

51 3 K T T z Tz T z 4 3 T T T z Fig. 38: 3 d -ode moment of T z Fig. 39: Contibutions to skewness in T z ising solely fom the vite T. due solely to the vite T. 3 K Tz T z 4 3 k k k k T z z z Fig. 4: 3 d -ode moment of Tz Fig. 41: Contibutions to skewness in Tz ising solely fom the vite k. due solely to the vite k. 51

52 3 K c T z Tz T z 4 3 c c c z z Fig. 4: 3 d -ode moment of Tz Fig. 43: Contibutions to skewness in T z ising solely fom the vite c. due solely to the vite c. 1 T z z Fig. 44: Sptil vition of the skewness in T z Figues 35 nd 37 indicte tht T z nd T z Q q. Hence if only the het souce Q nd/o the boundy het flux q wee nomlly distibuted vites ech hving eltive stndd devition of 1% they would cuse the tempetue distibution Tz to be skewed significntly towds vlues lowe the the men tempetue (i.e. the distibution would be skewed to the left of the men vlue). On the othe hnd Figues 41 nd 43 5

53 indicte tht T z nd k c T z. Hence if only the model pmetes k nd/o c wee nomlly distibuted vites ech hving eltive stndd devition of 1% they would cuse the tempetue distibution T z to be skewed significntly towds vlues highe the the men tempetue (i.e. the distibution would be skewed to the ight of the men vlue). Finlly Figue 39 indictes tht T T z but hs the smll positive vlues. Hence if the tempetue T t the bottom of the test section wee the sole vite nomlly distibuted nd hving eltive stndd devition of 1% (nd ll othe pmetes wee pefectly known tking on exctly thei nominl vlues) then the tempetue distibution T z would disply slight symmety towds tempetues highe thn the men tempetue. The totl skewness of the tempetue distibution T z eflecting the cumultive effects of the model pmetes (ssumed to be nomlly distibuted nd hving ll eltive stndd devitions of 1%) is depicted in Figue 43. This figue indictes tht the negtive contibutions stemming fom the 3 d -moments of het souce Q nd the boundy flux q e initilly smll so the positive contibutions fom the 3 d -ode moments of the othe model pmetes dominte t the bottom of the test section. Theefoe the tempetue distibution Tz is skewed slightly towd highe tempetues in the egion extending bout cm fom the bottom of the test section. Fo the eminde of the test section howeve the negtive contibutions stemming fom the 3 d -moments of het souce Q nd the boundy flux q become dominnt so the tempetue distibution T z becomes incesingly skewed towds tempetues lowe thn (i.e. to the left of) the men tempetue towds the top of the test section. Notbly the influemce of the model pmete c which contols the stength of the nonlineity in this illusttive benchmk poblem would be stong if it wee the only uncetin model pmete. Howeve if ll of the othe pmetes e lso uncetin ll hving equl eltive stndd devitions the uncetinties in the het souce Q nd boundy het flux q estompte the impct uncetinties in c fo the nge of tempetues (4-9K) consideed fo this benchmk poblem. The numeicl vlues of the impct of the individul pmetes s well s thei cumultive impct on the tempetue distibution T z t the bottom nd top of the test section s well s t the loction z zmx =8 1 cm e pesented in Tble. 53

9.4 The response of equilibrium to temperature (continued)

9.4 The response of equilibrium to temperature (continued) 9.4 The esponse of equilibium to tempetue (continued) In the lst lectue, we studied how the chemicl equilibium esponds to the vition of pessue nd tempetue. At the end, we deived the vn t off eqution: d

More information

On the Eötvös effect

On the Eötvös effect On the Eötvös effect Mugu B. Răuţ The im of this ppe is to popose new theoy bout the Eötvös effect. We develop mthemticl model which loud us bette undestnding of this effect. Fom the eqution of motion

More information

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system 436-459 Advnced contol nd utomtion Extensions to bckstepping contolle designs Tcking Obseves (nonline dmping) Peviously Lst lectue we looked t designing nonline contolles using the bckstepping technique

More information

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1 RELAIVE KINEMAICS he equtions of motion fo point P will be nlyzed in two diffeent efeence systems. One efeence system is inetil, fixed to the gound, the second system is moving in the physicl spce nd the

More information

Friedmannien equations

Friedmannien equations ..6 Fiedmnnien equtions FLRW metic is : ds c The metic intevl is: dt ( t) d ( ) hee f ( ) is function which detemines globl geometic l popety of D spce. f d sin d One cn put it in the Einstein equtions

More information

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x SIO 22B, Rudnick dpted fom Dvis III. Single vile sttistics The next few lectues e intended s eview of fundmentl sttistics. The gol is to hve us ll speking the sme lnguge s we move to moe dvnced topics.

More information

Radial geodesics in Schwarzschild spacetime

Radial geodesics in Schwarzschild spacetime Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 3 Due on Sep. 14, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

Optimization. x = 22 corresponds to local maximum by second derivative test

Optimization. x = 22 corresponds to local maximum by second derivative test Optimiztion Lectue 17 discussed the exteme vlues of functions. This lectue will pply the lesson fom Lectue 17 to wod poblems. In this section, it is impotnt to emembe we e in Clculus I nd e deling one-vible

More information

Discrete Model Parametrization

Discrete Model Parametrization Poceedings of Intentionl cientific Confeence of FME ession 4: Automtion Contol nd Applied Infomtics Ppe 9 Discete Model Pmetition NOKIEVIČ, Pet Doc,Ing,Cc Deptment of Contol ystems nd Instumenttion, Fculty

More information

10 Statistical Distributions Solutions

10 Statistical Distributions Solutions Communictions Engineeing MSc - Peliminy Reding 1 Sttisticl Distiutions Solutions 1) Pove tht the vince of unifom distiution with minimum vlue nd mximum vlue ( is ) 1. The vince is the men of the sques

More information

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 1 Electomgnetism Alexnde A. Isknd, Ph.D. Physics of Mgnetism nd Photonics Resech Goup Electosttics ELECTRIC PTENTIALS 1 Recll tht we e inteested to clculte the electic field of some chge distiution.

More information

SPA7010U/SPA7010P: THE GALAXY. Solutions for Coursework 1. Questions distributed on: 25 January 2018.

SPA7010U/SPA7010P: THE GALAXY. Solutions for Coursework 1. Questions distributed on: 25 January 2018. SPA7U/SPA7P: THE GALAXY Solutions fo Cousewok Questions distibuted on: 25 Jnuy 28. Solution. Assessed question] We e told tht this is fint glxy, so essentilly we hve to ty to clssify it bsed on its spectl

More information

Fourier-Bessel Expansions with Arbitrary Radial Boundaries

Fourier-Bessel Expansions with Arbitrary Radial Boundaries Applied Mthemtics,,, - doi:./m.. Pulished Online My (http://www.scirp.og/jounl/m) Astct Fouie-Bessel Expnsions with Aity Rdil Boundies Muhmmd A. Mushef P. O. Box, Jeddh, Sudi Ai E-mil: mmushef@yhoo.co.uk

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

Lecture 10. Solution of Nonlinear Equations - II

Lecture 10. Solution of Nonlinear Equations - II Fied point Poblems Lectue Solution o Nonline Equtions - II Given unction g : R R, vlue such tht gis clled ied point o the unction g, since is unchnged when g is pplied to it. Whees with nonline eqution

More information

Michael Rotkowitz 1,2

Michael Rotkowitz 1,2 Novembe 23, 2006 edited Line Contolles e Unifomly Optiml fo the Witsenhusen Counteexmple Michel Rotkowitz 1,2 IEEE Confeence on Decision nd Contol, 2006 Abstct In 1968, Witsenhusen intoduced his celebted

More information

Chapter 6 Thermoelasticity

Chapter 6 Thermoelasticity Chpte 6 Themoelsticity Intoduction When theml enegy is dded to n elstic mteil it expnds. Fo the simple unidimensionl cse of b of length L, initilly t unifom tempetue T 0 which is then heted to nonunifom

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electicl nd Compute Engineeing, Conell Univesity ECE 303: Electomgnetic Fields nd Wves Fll 007 Homewok 4 Due on Sep. 1, 007 by 5:00 PM Reding Assignments: i) Review the lectue notes. ii) Relevnt

More information

Important design issues and engineering applications of SDOF system Frequency response Functions

Important design issues and engineering applications of SDOF system Frequency response Functions Impotnt design issues nd engineeing pplictions of SDOF system Fequency esponse Functions The following desciptions show typicl questions elted to the design nd dynmic pefomnce of second-ode mechnicl system

More information

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016 Newton's Lw of Univesl Gvittion Gvittionl Foce lick on the topic to go to tht section Gvittionl Field lgeb sed Physics Newton's Lw of Univesl Gvittion Sufce Gvity Gvittionl Field in Spce Keple's Thid Lw

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic Descibing fields Gm Gm Gm Gm he net field t is: g ( d / ) ( 4d / ) d d Gm Gm Gm Gm Gm Gm b he net potentil t is: V d / 4d / d 4d d d V e 4 7 9 49 J kg 7 7 Gm d b E

More information

Tests for Correlation on Bivariate Non-Normal Data

Tests for Correlation on Bivariate Non-Normal Data Jounl of Moden Applied Sttisticl Methods Volume 0 Issue Aticle 9 --0 Tests fo Coeltion on Bivite Non-Noml Dt L. Bevesdof Noth Colin Stte Univesity, lounneb@gmil.com Ping S Univesity of Noth Floid, ps@unf.edu

More information

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = = Chpte 1 nivesl Gvittion 11 *P1. () The un-th distnce is 1.4 nd the th-moon 8 distnce is.84, so the distnce fom the un to the Moon duing sol eclipse is 11 8 11 1.4.84 = 1.4 The mss of the un, th, nd Moon

More information

3.1 Magnetic Fields. Oersted and Ampere

3.1 Magnetic Fields. Oersted and Ampere 3.1 Mgnetic Fields Oested nd Ampee The definition of mgnetic induction, B Fields of smll loop (dipole) Mgnetic fields in mtte: ) feomgnetism ) mgnetiztion, (M ) c) mgnetic susceptiility, m d) mgnetic field,

More information

U>, and is negative. Electric Potential Energy

U>, and is negative. Electric Potential Energy Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When

More information

Qualitative Analysis for Solutions of a Class of. Nonlinear Ordinary Differential Equations

Qualitative Analysis for Solutions of a Class of. Nonlinear Ordinary Differential Equations Adv. Theo. Appl. Mech., Vol. 7, 2014, no. 1, 1-7 HIKARI Ltd, www.m-hiki.com http://dx.doi.og/10.12988/tm.2014.458 Qulittive Anlysis fo Solutions of Clss of Nonline Odiny Diffeentil Equtions Juxin Li *,

More information

Topics for Review for Final Exam in Calculus 16A

Topics for Review for Final Exam in Calculus 16A Topics fo Review fo Finl Em in Clculus 16A Instucto: Zvezdelin Stnkov Contents 1. Definitions 1. Theoems nd Poblem Solving Techniques 1 3. Eecises to Review 5 4. Chet Sheet 5 1. Definitions Undestnd the

More information

The Formulas of Vector Calculus John Cullinan

The Formulas of Vector Calculus John Cullinan The Fomuls of Vecto lculus John ullinn Anlytic Geomety A vecto v is n n-tuple of el numbes: v = (v 1,..., v n ). Given two vectos v, w n, ddition nd multipliction with scl t e defined by Hee is bief list

More information

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is:

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is: . Homewok 3 MAE 8C Poblems, 5, 7, 0, 4, 5, 8, 3, 30, 3 fom Chpte 5, msh & Btt Point souces emit nuetons/sec t points,,, n 3 fin the flux cuent hlf wy between one sie of the tingle (blck ot). The flux fo

More information

Electricity & Magnetism Lecture 6: Electric Potential

Electricity & Magnetism Lecture 6: Electric Potential Electicity & Mgnetism Lectue 6: Electic Potentil Tody s Concept: Electic Potenl (Defined in tems of Pth Integl of Electic Field) Electicity & Mgnesm Lectue 6, Slide Stuff you sked bout:! Explin moe why

More information

Physics 604 Problem Set 1 Due Sept 16, 2010

Physics 604 Problem Set 1 Due Sept 16, 2010 Physics 64 Polem et 1 Due ept 16 1 1) ) Inside good conducto the electic field is eo (electons in the conducto ecuse they e fee to move move in wy to cncel ny electic field impessed on the conducto inside

More information

Available online at ScienceDirect. Procedia Engineering 91 (2014 ) 32 36

Available online at   ScienceDirect. Procedia Engineering 91 (2014 ) 32 36 Aville online t wwwsciencediectcom ScienceDiect Pocedi Engineeing 91 (014 ) 3 36 XXIII R-S-P semin Theoeticl Foundtion of Civil Engineeing (3RSP) (TFoCE 014) Stess Stte of Rdil Inhomogeneous Semi Sphee

More information

A COMPARISON OF MEMBRANE SHELL THEORIES OF HYBRID ANISOTROPIC MATERIALS ABSTRACT

A COMPARISON OF MEMBRANE SHELL THEORIES OF HYBRID ANISOTROPIC MATERIALS ABSTRACT A COMPARISON OF MEMBRANE SHELL THEORIES OF HYBRID ANISOTROPIC MATERIALS S. W. Chung* School of Achitectue Univesity of Uth Slt Lke City, Uth, USA S.G. Hong Deptment of Achitectue Seoul Ntionl Univesity

More information

CHAPTER 2 ELECTROSTATIC POTENTIAL

CHAPTER 2 ELECTROSTATIC POTENTIAL 1 CHAPTER ELECTROSTATIC POTENTIAL 1 Intoduction Imgine tht some egion of spce, such s the oom you e sitting in, is pemeted by n electic field (Pehps thee e ll sots of electiclly chged bodies outside the

More information

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD ollege Physics Student s Mnul hpte 8 HAPTR 8: LTRI HARG AD LTRI ILD 8. STATI LTRIITY AD HARG: OSRVATIO O HARG. ommon sttic electicity involves chges nging fom nnocoulombs to micocoulombs. () How mny electons

More information

Probabilistic Retrieval

Probabilistic Retrieval CS 630 Lectue 4: 02/07/2006 Lectue: Lillin Lee Scibes: Pete Bbinski, Dvid Lin Pobbilistic Retievl I. Nïve Beginnings. Motivtions b. Flse Stt : A Pobbilistic Model without Vition? II. Fomultion. Tems nd

More information

Fluids & Bernoulli s Equation. Group Problems 9

Fluids & Bernoulli s Equation. Group Problems 9 Goup Poblems 9 Fluids & Benoulli s Eqution Nme This is moe tutoil-like thn poblem nd leds you though conceptul development of Benoulli s eqution using the ides of Newton s 2 nd lw nd enegy. You e going

More information

7.5-Determinants in Two Variables

7.5-Determinants in Two Variables 7.-eteminnts in Two Vibles efinition of eteminnt The deteminnt of sque mti is el numbe ssocited with the mti. Eve sque mti hs deteminnt. The deteminnt of mti is the single ent of the mti. The deteminnt

More information

STUDY OF THE UNIFORM MAGNETIC FIELD DOMAINS (3D) IN THE CASE OF THE HELMHOLTZ COILS

STUDY OF THE UNIFORM MAGNETIC FIELD DOMAINS (3D) IN THE CASE OF THE HELMHOLTZ COILS STUDY OF THE UNIFORM MAGNETIC FIED DOMAINS (3D) IN THE CASE OF THE HEMHOTZ COIS FORIN ENACHE, GHEORGHE GAVRIĂ, EMI CAZACU, Key wods: Unifom mgnetic field, Helmholt coils. Helmholt coils e used to estblish

More information

r a + r b a + ( r b + r c)

r a + r b a + ( r b + r c) AP Phsics C Unit 2 2.1 Nme Vectos Vectos e used to epesent quntities tht e chcteized b mgnitude ( numeicl vlue with ppopite units) nd diection. The usul emple is the displcement vecto. A quntit with onl

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

6. Gravitation. 6.1 Newton's law of Gravitation

6. Gravitation. 6.1 Newton's law of Gravitation Gvittion / 1 6.1 Newton's lw of Gvittion 6. Gvittion Newton's lw of gvittion sttes tht evey body in this univese ttcts evey othe body with foce, which is diectly popotionl to the poduct of thei msses nd

More information

Physics 505 Fall 2005 Midterm Solutions. This midterm is a two hour open book, open notes exam. Do all three problems.

Physics 505 Fall 2005 Midterm Solutions. This midterm is a two hour open book, open notes exam. Do all three problems. Physics 55 Fll 5 Midtem Solutions This midtem is two hou open ook, open notes exm. Do ll thee polems. [35 pts] 1. A ectngul ox hs sides of lengths, nd c z x c [1] ) Fo the Diichlet polem in the inteio

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

Electronic Supplementary Material

Electronic Supplementary Material Electonic Supplementy Mteil On the coevolution of socil esponsiveness nd behvioul consistency Mx Wolf, G Snde vn Doon & Fnz J Weissing Poc R Soc B 78, 440-448; 0 Bsic set-up of the model Conside the model

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chpte 8 Souces of Mgnetic Field - Mgnetic Field of Moving Chge - Mgnetic Field of Cuent Element - Mgnetic Field of Stight Cuent-Cying Conducto - Foce Between Pllel Conductos - Mgnetic Field of Cicul Cuent

More information

Physics 1502: Lecture 2 Today s Agenda

Physics 1502: Lecture 2 Today s Agenda 1 Lectue 1 Phsics 1502: Lectue 2 Tod s Agend Announcements: Lectues posted on: www.phs.uconn.edu/~cote/ HW ssignments, solutions etc. Homewok #1: On Mstephsics this Fid Homewoks posted on Msteingphsics

More information

Two dimensional polar coordinate system in airy stress functions

Two dimensional polar coordinate system in airy stress functions I J C T A, 9(9), 6, pp. 433-44 Intentionl Science Pess Two dimensionl pol coodinte system in iy stess functions S. Senthil nd P. Sek ABSTRACT Stisfy the given equtions, boundy conditions nd bihmonic eqution.in

More information

Ch 26 - Capacitance! What s Next! Review! Lab this week!

Ch 26 - Capacitance! What s Next! Review! Lab this week! Ch 26 - Cpcitnce! Wht s Next! Cpcitnce" One week unit tht hs oth theoeticl n pcticl pplictions! Cuent & Resistnce" Moving chges, finlly!! Diect Cuent Cicuits! Pcticl pplictions of ll the stuff tht we ve

More information

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin

Electric Field F E. q Q R Q. ˆ 4 r r - - Electric field intensity depends on the medium! origin 1 1 Electic Field + + q F Q R oigin E 0 0 F E ˆ E 4 4 R q Q R Q - - Electic field intensity depends on the medium! Electic Flux Density We intoduce new vecto field D independent of medium. D E So, electic

More information

Solutions to Midterm Physics 201

Solutions to Midterm Physics 201 Solutions to Midtem Physics. We cn conside this sitution s supeposition of unifomly chged sphee of chge density ρ nd dius R, nd second unifomly chged sphee of chge density ρ nd dius R t the position of

More information

D-STABLE ROBUST RELIABLE CONTROL FOR UNCERTAIN DELTA OPERATOR SYSTEMS

D-STABLE ROBUST RELIABLE CONTROL FOR UNCERTAIN DELTA OPERATOR SYSTEMS Jounl of Theoeticl nd Applied nfomtion Technology 8 th Febuy 3. Vol. 48 No.3 5-3 JATT & LLS. All ights eseved. SSN: 99-8645 www.jtit.og E-SSN: 87-395 D-STABLE ROBUST RELABLE CONTROL FOR UNCERTAN DELTA

More information

PX3008 Problem Sheet 1

PX3008 Problem Sheet 1 PX38 Poblem Sheet 1 1) A sphee of dius (m) contins chge of unifom density ρ (Cm -3 ). Using Guss' theoem, obtin expessions fo the mgnitude of the electic field (t distnce fom the cente of the sphee) in

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3 DEPATMENT OF CIVIL AND ENVIONMENTAL ENGINEEING FLID MECHANICS III Solutions to Poblem Sheet 3 1. An tmospheic vote is moelle s combintion of viscous coe otting s soli boy with ngul velocity Ω n n iottionl

More information

NS-IBTS indices calculation procedure

NS-IBTS indices calculation procedure ICES Dt Cente DATRAS 1.1 NS-IBTS indices 2013 DATRAS Pocedue Document NS-IBTS indices clcultion pocedue Contents Genel... 2 I Rw ge dt CA -> Age-length key by RFA fo defined ge nge ALK... 4 II Rw length

More information

4.2 Boussinesq s Theory. Contents

4.2 Boussinesq s Theory. Contents 00477 Pvement Stuctue 4. Stesses in Flexible vement Contents 4. Intoductions to concet of stess nd stin in continuum mechnics 4. Boussinesq s Theoy 4. Bumiste s Theoy 4.4 Thee Lye System Weekset Sung Chte

More information

Chapter Direct Method of Interpolation More Examples Mechanical Engineering

Chapter Direct Method of Interpolation More Examples Mechanical Engineering Chpte 5 iect Method o Intepoltion Moe Exmples Mechnicl Engineeing Exmple Fo the pupose o shinking tunnion into hub, the eduction o dimete o tunnion sht by cooling it though tempetue chnge o is given by

More information

Production Mechanism of Quark Gluon Plasma in Heavy Ion Collision. Ambar Jain And V.Ravishankar

Production Mechanism of Quark Gluon Plasma in Heavy Ion Collision. Ambar Jain And V.Ravishankar Poduction Mechnism of Quk Gluon Plsm in Hevy Ion Collision Amb Jin And V.Rvishnk Pimy im of theoeticlly studying URHIC is to undestnd Poduction of quks nd gluons tht fom the bulk of the plsm ( ) t 0 Thei

More information

Review of Mathematical Concepts

Review of Mathematical Concepts ENEE 322: Signls nd Systems view of Mthemticl Concepts This hndout contins ief eview of mthemticl concepts which e vitlly impotnt to ENEE 322: Signls nd Systems. Since this mteil is coveed in vious couses

More information

Continuous Charge Distributions

Continuous Charge Distributions Continuous Chge Distibutions Review Wht if we hve distibution of chge? ˆ Q chge of distibution. Q dq element of chge. d contibution to due to dq. Cn wite dq = ρ dv; ρ is the chge density. = 1 4πε 0 qi

More information

Chapter 2: Electric Field

Chapter 2: Electric Field P 6 Genel Phsics II Lectue Outline. The Definition of lectic ield. lectic ield Lines 3. The lectic ield Due to Point Chges 4. The lectic ield Due to Continuous Chge Distibutions 5. The oce on Chges in

More information

Integrals and Polygamma Representations for Binomial Sums

Integrals and Polygamma Representations for Binomial Sums 3 47 6 3 Jounl of Intege Sequences, Vol. 3 (, Aticle..8 Integls nd Polygmm Repesenttions fo Binomil Sums Anthony Sofo School of Engineeing nd Science Victoi Univesity PO Box 448 Melboune City, VIC 8 Austli

More information

Elastic scattering of 4 He atoms at the surface of liquid helium

Elastic scattering of 4 He atoms at the surface of liquid helium Indin Jounl of Pue & Applied Physics Vol. 48, Octobe, pp. 743-748 Elstic sctteing of 4 He toms t the sufce of liquid helium P K Toongey, K M Khnn, Y K Ayodo, W T Skw, F G Knyeki, R T Eki, R N Kimengichi

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

Chapter 6 Frequency Response & System Concepts

Chapter 6 Frequency Response & System Concepts hpte 6 Fequency esponse & ystem oncepts Jesung Jng stedy stte (fequency) esponse Phso nottion Filte v v Foced esponse by inusoidl Excittion ( t) dv v v dv v cos t dt dt ince the focing fuction is sinusoid,

More information

u(r, θ) = 1 + 3a r n=1

u(r, θ) = 1 + 3a r n=1 Mth 45 / AMCS 55. etuck Assignment 8 ue Tuesdy, Apil, 6 Topics fo this week Convegence of Fouie seies; Lplce s eqution nd hmonic functions: bsic popeties, computions on ectngles nd cubes Fouie!, Poisson

More information

ITI Introduction to Computing II

ITI Introduction to Computing II ITI 1121. Intoduction to Computing II Mcel Tucotte School of Electicl Engineeing nd Compute Science Abstct dt type: Stck Stck-bsed lgoithms Vesion of Febuy 2, 2013 Abstct These lectue notes e ment to be

More information

THEORY OF EQUATIONS OBJECTIVE PROBLEMS. If the eqution x 6x 0 0 ) - ) 4) -. If the sum of two oots of the eqution k is -48 ) 6 ) 48 4) 4. If the poduct of two oots of 4 ) -4 ) 4) - 4. If one oot of is

More information

STD: XI MATHEMATICS Total Marks: 90. I Choose the correct answer: ( 20 x 1 = 20 ) a) x = 1 b) x =2 c) x = 3 d) x = 0

STD: XI MATHEMATICS Total Marks: 90. I Choose the correct answer: ( 20 x 1 = 20 ) a) x = 1 b) x =2 c) x = 3 d) x = 0 STD: XI MATHEMATICS Totl Mks: 90 Time: ½ Hs I Choose the coect nswe: ( 0 = 0 ). The solution of is ) = b) = c) = d) = 0. Given tht the vlue of thid ode deteminnt is then the vlue of the deteminnt fomed

More information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information m m m00 kg dult, m0 kg bby. he seesw stts fom est. Which diection will it ottes? ( Counte-Clockwise (b Clockwise ( (c o ottion ti (d ot enough infomtion Effect of Constnt et oque.3 A constnt non-zeo toque

More information

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4 MATHEMATICS IV MARKS. If + + 6 + c epesents cicle with dius 6, find the vlue of c. R 9 f c ; g, f 6 9 c 6 c c. Find the eccenticit of the hpeol Eqution of the hpeol Hee, nd + e + e 5 e 5 e. Find the distnce

More information

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013 Mth 4318 : Rel Anlysis II Mid-Tem Exm 1 14 Febuy 2013 Nme: Definitions: Tue/Flse: Poofs: 1. 2. 3. 4. 5. 6. Totl: Definitions nd Sttements of Theoems 1. (2 points) Fo function f(x) defined on (, b) nd fo

More information

6. Numbers. The line of numbers: Important subsets of IR:

6. Numbers. The line of numbers: Important subsets of IR: 6. Nubes We do not give n xiotic definition of the el nubes hee. Intuitive ening: Ech point on the (infinite) line of nubes coesponds to el nube, i.e., n eleent of IR. The line of nubes: Ipotnt subsets

More information

dx was area under f ( x ) if ( ) 0

dx was area under f ( x ) if ( ) 0 13. Line Integls Line integls e simil to single integl, f ( x) dx ws e unde f ( x ) if ( ) 0 Insted of integting ove n intevl [, ] (, ) f xy ds f x., we integte ove cuve, (in the xy-plne). **Figue - get

More information

Section 35 SHM and Circular Motion

Section 35 SHM and Circular Motion Section 35 SHM nd Cicul Motion Phsics 204A Clss Notes Wht do objects do? nd Wh do the do it? Objects sometimes oscillte in simple hmonic motion. In the lst section we looed t mss ibting t the end of sping.

More information

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z)

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z) 08 Tylo eie nd Mcluin eie A holomophic function f( z) defined on domin cn be expnded into the Tylo eie ound point except ingul point. Alo, f( z) cn be expnded into the Mcluin eie in the open dik with diu

More information

Lecture 11: Potential Gradient and Capacitor Review:

Lecture 11: Potential Gradient and Capacitor Review: Lectue 11: Potentil Gdient nd Cpcito Review: Two wys to find t ny point in spce: Sum o Integte ove chges: q 1 1 q 2 2 3 P i 1 q i i dq q 3 P 1 dq xmple of integting ove distiution: line of chge ing of

More information

Multiple-input multiple-output (MIMO) communication systems. Advanced Modulation and Coding : MIMO Communication Systems 1

Multiple-input multiple-output (MIMO) communication systems. Advanced Modulation and Coding : MIMO Communication Systems 1 Multiple-input multiple-output (MIMO) communiction systems Advnced Modultion nd Coding : MIMO Communiction Systems System model # # #n #m eceive tnsmitte infobits infobits #N #N N tnsmit ntenns N (k) M

More information

PART 1 GENERAL INFORMATION. ELECTROMAGNETIC FIELDS AND WAVES. LAWS OF ELECTROMAGNETICS

PART 1 GENERAL INFORMATION. ELECTROMAGNETIC FIELDS AND WAVES. LAWS OF ELECTROMAGNETICS PART 1 GENERAL INFORMATION. ELECTROMAGNETIC FIELDS AND WAES. LAWS OF ELECTROMAGNETICS The skill to evlute books without eding cn be ttibuted, to my mind, without doubts to the numbe of getest discoveies,

More information

ELECTRO - MAGNETIC INDUCTION

ELECTRO - MAGNETIC INDUCTION NTRODUCTON LCTRO - MAGNTC NDUCTON Whenee mgnetic flu linked with cicuit chnges, n e.m.f. is induced in the cicuit. f the cicuit is closed, cuent is lso induced in it. The e.m.f. nd cuent poduced lsts s

More information

B.A. (PROGRAMME) 1 YEAR MATHEMATICS

B.A. (PROGRAMME) 1 YEAR MATHEMATICS Gdute Couse B.A. (PROGRAMME) YEAR MATHEMATICS ALGEBRA & CALCULUS PART B : CALCULUS SM 4 CONTENTS Lesson Lesson Lesson Lesson Lesson Lesson Lesson : Tngents nd Nomls : Tngents nd Nomls (Pol Co-odintes)

More information

On Natural Partial Orders of IC-Abundant Semigroups

On Natural Partial Orders of IC-Abundant Semigroups Intentionl Jounl of Mthemtics nd Computtionl Science Vol. No. 05 pp. 5-9 http://www.publicsciencefmewok.og/jounl/ijmcs On Ntul Ptil Odes of IC-Abundnt Semigoups Chunhu Li Bogen Xu School of Science Est

More information

1 Using Integration to Find Arc Lengths and Surface Areas

1 Using Integration to Find Arc Lengths and Surface Areas Novembe 9, 8 MAT86 Week Justin Ko Using Integtion to Find Ac Lengths nd Sufce Aes. Ac Length Fomul: If f () is continuous on [, b], then the c length of the cuve = f() on the intevl [, b] is given b s

More information

Energy Dissipation Gravitational Potential Energy Power

Energy Dissipation Gravitational Potential Energy Power Lectue 4 Chpte 8 Physics I 0.8.03 negy Dissiption Gvittionl Potentil negy Powe Couse wesite: http://fculty.uml.edu/andiy_dnylov/teching/physicsi Lectue Cptue: http://echo360.uml.edu/dnylov03/physicsfll.html

More information

Work, Potential Energy, Conservation of Energy. the electric forces are conservative: ur r

Work, Potential Energy, Conservation of Energy. the electric forces are conservative: ur r Wok, Potentil Enegy, Consevtion of Enegy the electic foces e consevtive: u Fd = Wok, Potentil Enegy, Consevtion of Enegy b b W = u b b Fdl = F()[ d + $ $ dl ] = F() d u Fdl = the electic foces e consevtive

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

Lecture 4. Beyond the Hückel π-electron theory. Charge density is an important parameter that is used widely to explain properties of molecules.

Lecture 4. Beyond the Hückel π-electron theory. Charge density is an important parameter that is used widely to explain properties of molecules. Lectue 4. Beyond the Hückel π-electon theoy 4. Chge densities nd bond odes Chge density is n impotnt pmete tht is used widely to explin popeties of molecules. An electon in n obitl ψ = c φ hs density distibution

More information

Week 8. Topic 2 Properties of Logarithms

Week 8. Topic 2 Properties of Logarithms Week 8 Topic 2 Popeties of Logithms 1 Week 8 Topic 2 Popeties of Logithms Intoduction Since the esult of ithm is n eponent, we hve mny popeties of ithms tht e elted to the popeties of eponents. They e

More information

Radiowave Propagation Modelling using the Uniform Theory of Diffraction

Radiowave Propagation Modelling using the Uniform Theory of Diffraction Deptment of lecticl nd lectonic ngineeing Pt IV Poject Repot Ye 2003 inl Repot Rdiowve Popgtion Modelling using the Unifom Theoy of Diffction chool of ngineeing The Univesity of Aucklnd Cho-Wei Chng 2365708

More information

Mathematical formulation of the F 0 motor model

Mathematical formulation of the F 0 motor model negy Tnsduction in TP Synthse: Supplement Mthemticl fomultion of the F 0 moto model. Mkov chin model fo the evolution of the oto stte The fou possible potontion sttes of the two oto sp61 sites t the otostto

More information

HYDROSTATIC WEIGHING SYSTEM AT THE INRiM FOR CALIBRATING HYDROMETERS

HYDROSTATIC WEIGHING SYSTEM AT THE INRiM FOR CALIBRATING HYDROMETERS XVIII IMEKO WORD CONGRESS Metology fo Sustinble Development Septembe, 17 22, 2006, Rio de Jneio, Bzil HYDROSTATIC WEIGHING SYSTEM AT THE INRiM FOR CAIBRATING HYDROMETERS oefice S. 1, Mlengo A. 1 1 Istituto

More information

Physics 11b Lecture #11

Physics 11b Lecture #11 Physics 11b Lectue #11 Mgnetic Fields Souces of the Mgnetic Field S&J Chpte 9, 3 Wht We Did Lst Time Mgnetic fields e simil to electic fields Only diffeence: no single mgnetic pole Loentz foce Moving chge

More information

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2.

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2. Element Uniqueness Poblem Dt Stuctues Let x,..., xn < m Detemine whethe thee exist i j such tht x i =x j Sot Algoithm Bucket Sot Dn Shpi Hsh Tbles fo (i=;i

More information

Heat flux and total heat

Heat flux and total heat Het flux nd totl het John McCun Mrch 14, 2017 1 Introduction Yesterdy (if I remember correctly) Ms. Prsd sked me question bout the condition of insulted boundry for the 1D het eqution, nd (bsed on glnce

More information

Quality control. Final exam: 2012/1/12 (Thur), 9:00-12:00 Q1 Q2 Q3 Q4 Q5 YOUR NAME

Quality control. Final exam: 2012/1/12 (Thur), 9:00-12:00 Q1 Q2 Q3 Q4 Q5 YOUR NAME Qulity contol Finl exm: // (Thu), 9:-: Q Q Q3 Q4 Q5 YOUR NAME NOTE: Plese wite down the deivtion of you nswe vey clely fo ll questions. The scoe will be educed when you only wite nswe. Also, the scoe will

More information

Solution of fuzzy multi-objective nonlinear programming problem using interval arithmetic based alpha-cut

Solution of fuzzy multi-objective nonlinear programming problem using interval arithmetic based alpha-cut Intentionl Jounl of Sttistics nd Applied Mthemtics 016; 1(3): 1-5 ISSN: 456-145 Mths 016; 1(3): 1-5 016 Stts & Mths www.mthsounl.com Received: 05-07-016 Accepted: 06-08-016 C Lognthn Dept of Mthemtics

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN Intentionl Jounl of Scientific & Engineeing Resech, Volume 4, Issue, Octobe-3 4 ISSN 9-558 MORRIS-THORNE TRAVERSABLE WORMHOLE WITH A GENERIC COSMOLOGICAL CONSTANT N M Emn*, M S Alm, S M Khushed Alm, Q

More information