Belief Revision and Progression of KBs in the Epistemic Situation Calculus

Size: px
Start display at page:

Download "Belief Revision and Progression of KBs in the Epistemic Situation Calculus"

Transcription

1 Belief Revision and Progression of KBs in the Epistemic Situation Calculus Christoph Schwering 1 Gerhard Lakemeyer 1 Maurice Pagnucco 2 1 RWTH Aachen University, Germany 2 University of New South Wales, Australia

2 2 / 10 Actions and Beliefs Robot is holding a box, does not know what is in it, but 1. believes it is not fragile and not metallic 2. considers fragility more plausible than it being metallic 3. knows it is not broken yet

3 2 / 10 Actions and Beliefs Robot is holding a box, does not know what is in it, but 1. believes it is not fragile and not metallic 2. considers fragility more plausible than it being metallic 3. knows it is not broken yet Drop!

4 2 / 10 Actions and Beliefs Robot is holding a box, does not know what is in it, but 1. believes it is not fragile and not metallic 2. considers fragility more plausible than it being metallic 3. knows it is not broken yet Clink!

5 2 / 10 Actions and Beliefs Robot is holding a box, does not know what is in it, but 1. believes it is not fragile and not metallic 2. considers fragility more plausible than it being metallic 3. knows it is not broken yet How to reason about this?

6 2 / 10 Actions and Beliefs Robot is holding a box, does not know what is in it, but 1. believes it is not fragile and not metallic 2. considers fragility more plausible than it being metallic 3. knows it is not broken yet If 1 3 is all it believed initially, what is all it believes now? Disclaimer: talk includes improvements over paper (journal version in preparation)

7 3 / 10 Logic for Actions and Beliefs First-order logic with modalities: α holds after action A [A]α α holds forever α if φ held, ψ would hold B(φ ψ) Bψ all we believe is φ i ψ i O{φ 1 ψ 1,, φ m ψ m } before forgetting P, O P { }

8 3 / 10 Logic for Actions and Beliefs First-order logic with modalities: α holds after action A [A]α α holds forever α if φ held, ψ would hold B(φ ψ) Bψ all we believe is φ i ψ i O{φ 1 ψ 1,, φ m ψ m } before forgetting P, O P { } Semantics: worlds specify initial and future truth of fluents w = B []B

9 3 / 10 Logic for Actions and Beliefs First-order logic with modalities: α holds after action A [A]α α holds forever α if φ held, ψ would hold B(φ ψ) Bψ all we believe is φ i ψ i O{φ 1 ψ 1,, φ m ψ m } before forgetting P, O P { } Semantics: possible worlds ranked by plausibilities e = B B []B B e = [][]BB (due to revision)

10 4 / 10 All We Believe Only-believing uniquely determines belief structure Related to Levesque s only-knowing, Pearl s Z-Ordering Subsumes only-knowing α by conditional α Theorem: Unique-Model Property O{φ 1 ψ 1,, φ m ψ m } has unique model if φ i, ψ i are obj. Theorem generalizes for O P {φ 1 ψ 1,, φ m ψ m }

11 All We Believe Only-believing uniquely determines belief structure Related to Levesque s only-knowing, Pearl s Z-Ordering Subsumes only-knowing α by conditional α Theorem: Unique-Model Property O{φ 1 ψ 1,, φ m ψ m } has unique model if φ i, ψ i are obj. Usually all we believe is a Basic Action Theory (BAT) with initial beliefs Σ bel knowledge about dynamics physical effect (successor-state axioms due to Reiter): a. [a]b a = F B epistemic effect (action A leads to revision by IF (A)): a. IF (a) (a = B M ) 4 / 10

12 All We Believe O{ F M, F M M, B, dynamic axioms} believes it is not fragile and not metallic considers fragility more plausible than metallic knows it is not broken yet B F M B M B 4 / 10

13 Progression of an Epistemic State 5 / 10 B F M B M B Initially e = B B

14 Progression of an Epistemic State 5 / 10 B F M (B F ) M (B F ) After progression still e = B B

15 Progression of an Epistemic State 5 / 10 B F M (B F ) M (B F ) Natural revision by B M promotes B-worlds to the top

16 Progression of an Epistemic State 5 / 10 B F M (B F ) M (B F ) After revision (e ) (B M ) = BB

17 Progression of an Epistemic State 5 / 10 B F M (B F ) M (B F ) After progression e = BB

18 Progression of a BAT by a Physical Action 6 / 10 Similar to Lin and Reiter s progression Let A have no epistemic effect Let F be fluents of BAT with axioms [a]f ( x) γ F Let P be new predicates Beliefs after doing A Σ bel A = Σ bel F P { ( x.f ( x) γ F a F A P) F F} Substitute P for F to capture pre-a beliefs Assert x.f ( x) γ F a F A P to set post-a beliefs

19 7 / 10 Progression of a BAT by an Epistemic Action Let A have no physical effect Progression Σ bel A = Σ bel IF (A) Let = {φ ψ Σ bel OΣ bel = B(α φ ψ)} Let P be a new predicate Beliefs after promoting the most-plausible α-worlds Σ bel α = { P } { (P α) } { (φ P ψ) φ ψ } {φ P ψ φ ψ Σ bel }

20 P -worlds are the most plausible worlds P -worlds represent promoted α-worlds P -worlds represent original belief structure 7 / 10 Progression of a BAT by an Epistemic Action Let A have no physical effect Progression Σ bel A = Σ bel IF (A) Let = {φ ψ Σ bel OΣ bel = B(α φ ψ)} Let P be a new predicate Beliefs after promoting the most-plausible α-worlds Σ bel α = { P } { (P α) } { (φ P ψ) φ ψ } {φ P ψ φ ψ Σ bel }

21 8 / 10 Progression of a BAT Briefly: BAT progression matches semantic progression Theorem: Progression #1 = OΣ [A]O P {P } (Σ A) Roughly: If all we believe is Σ, then all we believe after A is Σ A. Theorem: Progression #2 = OΣ [A]α iff = O P {P } (Σ A) α Roughly: Σ A entails the same beliefs as Σ has after A.

22 9 / 10 Belief Revision Postulates Alchourron Gärdenfors Makinson (AGM) hold Darwiche Pearl (DP) hold with a little restriction on DP2 Original DP2 is violated because we cannot recover from an inconsistent state Nayak Pagnucco Peppas (NPP) violated because the order matters in natural revision

23 10 / 10 Conclusion and Ongoing/Future Work Situation calculus plus natural revision Belief progression using only-believing Other revision schemes, e.g., lexicographic Projection by regression Elimination of (nested) beliefs similar to our AAAI-15 paper When is progression first-order-definable? Feasible subclass Implementation based on Lakemeyer & Levesque, KR-14

24 Appendix

25 All We Believe Believe it is not fragile and not metallic F M Fragility is more plausible than metallic F M M Know that it is not broken B Know dynamic axioms (omitted) 1. ( F M ) (F M M ) (B ) B F M 2. (F M M ) (B ) B M 3. (B ) B 2 / 2

Iterated Belief Change in the Situation Calculus

Iterated Belief Change in the Situation Calculus Iterated Belief Change in the Situation Calculus Steven Shapiro a,, Maurice Pagnucco b, Yves Lespérance c, Hector J. Levesque a a Department of Computer Science, University of Toronto, Toronto, ON M5S

More information

Iterated Belief Change: A Transition System Approach

Iterated Belief Change: A Transition System Approach Iterated Belief Change: A Transition System Approach Aaron Hunter and James P. Delgrande School of Computing Science Simon Fraser University Burnaby, BC, Canada {amhunter, jim}@cs.sfu.ca Abstract We use

More information

MULTI-AGENT ONLY-KNOWING

MULTI-AGENT ONLY-KNOWING MULTI-AGENT ONLY-KNOWING Gerhard Lakemeyer Computer Science, RWTH Aachen University Germany AI, Logic, and Epistemic Planning, Copenhagen October 3, 2013 Joint work with Vaishak Belle Contents of this

More information

Action, Belief Change and the Frame Problem: A Fluent Calculus Approach

Action, Belief Change and the Frame Problem: A Fluent Calculus Approach Action, Belief Change and the Frame Problem: A Fluent Calculus Approach Richard B. Scherl Computer Science Department Monmouth University West Long Brach, NJ 07764 U.S.A. email: rscherl@monmouth.edu Abstract

More information

A Semantic Approach for Iterated Revision in Possibilistic Logic

A Semantic Approach for Iterated Revision in Possibilistic Logic Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008) A Semantic Approach for Iterated Revision in Possibilistic Logic Guilin Qi AIFB Universität Karlsruhe D-76128 Karlsruhe,

More information

Laboratoire d'informatique Fondamentale de Lille

Laboratoire d'informatique Fondamentale de Lille Laboratoire d'informatique Fondamentale de Lille Publication IT { 314 Operators with Memory for Iterated Revision Sebastien Konieczny mai 1998 c L.I.F.L. { U.S.T.L. LABORATOIRE D'INFORMATIQUE FONDAMENTALE

More information

Representing Beliefs in the Fluent Calculus

Representing Beliefs in the Fluent Calculus Representing Beliefs in the Fluent Calculus Yi Jin and Michael Thielscher 1 Abstract. Action formalisms like the uent calculus have been developed to endow logic-based agents with the abilities to reason

More information

An Action Description Language for Iterated Belief Change

An Action Description Language for Iterated Belief Change An Action Description Language for Iterated Belief Change Aaron Hunter and James P. Delgrande Simon Fraser University Burnaby, BC, Canada {amhunter, jim}@cs.sfu.ca Abstract We are interested in the belief

More information

Definability of Horn Revision from Horn Contraction

Definability of Horn Revision from Horn Contraction Definability of Horn Revision from Horn Contraction Zhiqiang Zhuang 1,2 Maurice Pagnucco 2,3,4 Yan Zhang 1 1 School of Computing, Engineering, and Mathematics, University of Western Sydney, Australia 2

More information

Rational Partial Choice Functions and Their Application to Belief Revision

Rational Partial Choice Functions and Their Application to Belief Revision Rational Partial Choice Functions and Their Application to Belief Revision Jianbing Ma 1, Weiru Liu 2 and Didier Dubois 2,3 1 School of Design, Engineering and Computing, Bournemouth University, Bournemouth,

More information

Inverse Resolution as Belief Change

Inverse Resolution as Belief Change Inverse Resolution as Belief Change Maurice Pagnucco ARC Centre of Excel. for Autonomous Sys. School of Comp. Science and Engineering The University of New South Wales Sydney, NSW, 2052, Australia. Email:

More information

Situations, si! Situation terms, no!

Situations, si! Situation terms, no! Situations, si! Situation terms, no! Gerhard Lakemeyer Dept. of Computer Science RWTH Aachen 52056 Aachen Germany gerhard@cs.rwth-aachen.de Hector J. Levesque Dept. of Computer Science University of Toronto

More information

Arbitrary Announcements in Propositional Belief Revision

Arbitrary Announcements in Propositional Belief Revision Arbitrary Announcements in Propositional Belief Revision Aaron Hunter British Columbia Institute of Technology Burnaby, Canada aaron hunter@bcitca Francois Schwarzentruber ENS Rennes Bruz, France francoisschwarzentruber@ens-rennesfr

More information

Belief Change in the Context of Fallible Actions and Observations

Belief Change in the Context of Fallible Actions and Observations Belief Change in the Context of Fallible Actions and Observations Aaron Hunter and James P. Delgrande School of Computing Science Faculty of Applied Sciences Simon Fraser University Burnaby, BC, Canada

More information

On First-Order Definability and Computability of Progression for Local-Effect Actions and Beyond

On First-Order Definability and Computability of Progression for Local-Effect Actions and Beyond On First-Order Definability and Computability of Progression for Local-Effect Actions and Beyond Yongmei Liu Dept. of Computer Science Sun Yat-sen University Guangzhou 510275, China ymliu@mail.sysu.edu.cn

More information

Partial Meet Revision and Contraction in Logic Programs

Partial Meet Revision and Contraction in Logic Programs Partial Meet Revision and Contraction in Logic Programs Sebastian Binnewies and Zhiqiang Zhuang and Kewen Wang School of Information and Communication Technology Griffith University, QLD, Australia {s.binnewies;

More information

On the Progression of Situation Calculus Basic Action Theories: Resolving a 10-year-old Conjecture

On the Progression of Situation Calculus Basic Action Theories: Resolving a 10-year-old Conjecture On the Progression of Situation Calculus Basic Action Theories: Resolving a 10-year-old Conjecture Stavros Vassos and Hector J Levesque Department of Computer Science University of Toronto Toronto, ON,

More information

DL-Lite Contraction and Revision

DL-Lite Contraction and Revision Journal of Artificial Intelligence Research 56 (2016) 329-378 Submitted 12/15; published 06/16 DL-Lite Contraction and Revision Zhiqiang Zhuang Institute for Integrated and Intelligent Systems Griffith

More information

The Situation Calculus and Golog

The Situation Calculus and Golog and A Tutorial Gerhard Lakemeyer Dept. of Computer Science RWTH Aachen University Germany 2nd Hybris Workshop, Freiburg, May 27 28, 2013 Outline 1 2 3 May 28, 2013 2 / 34 Knowledge-Based Agents Example:

More information

What is a Default Priority?

What is a Default Priority? What is a Default Priority? Craig Boutilier Department of Computer Science University of British Columbia Vancouver, British Columbia CANADA, V6T 1Z2 email: cebly@cs.ubc.ca Abstract The notion of default

More information

An Extension of BDI CTL with Functional Dependencies and Components

An Extension of BDI CTL with Functional Dependencies and Components An Extension of BDI CTL with Functional Dependencies and Components Mehdi Dastani 1 and Leendert van der Torre 2 1 Institute of Information and Computer Sciences, Utrecht University mehdi@cs.uu.nl 2 Department

More information

Dalal s Revision without Hamming Distance

Dalal s Revision without Hamming Distance Dalal s Revision without Hamming Distance Pilar Pozos-Parra 1, Weiru Liu 2, and Laurent Perrussel 3 1 University of Tabasco, Mexico pilar.pozos@ujat.mx 2 Queen s University Belfast, UK w.liu@qub.ac.uk

More information

arxiv: v2 [cs.lo] 27 Jan 2015

arxiv: v2 [cs.lo] 27 Jan 2015 Dynamics of Belief: Abduction, Horn Knowledge Base And Database Updates Radhakrishnan Delhibabu arxiv:1501.06206v2 [cs.lo] 27 Jan 2015 Informatik 5, Knowledge-Based Systems Group RWTH Aachen, Germany delhibabu@kbsg.rwth-aachen.de

More information

Bounded revision: Two-dimensional belief change between conservative and moderate revision. Hans Rott

Bounded revision: Two-dimensional belief change between conservative and moderate revision. Hans Rott Bounded revision: Two-dimensional belief change between conservative and moderate revision Hans Rott Department of Philosophy, University of Regensburg hans.rott@psk.uni-r.de Abstract In this paper I present

More information

Steps Towards Commonsense-Driven Belief Revision in the Event Calculus

Steps Towards Commonsense-Driven Belief Revision in the Event Calculus Steps Towards Commonsense-Driven Belief Revision in the Event Calculus Nikoleta Tsampanaki, Giorgos Flouris, Theodore Patkos Institute of Computer Science, FORTH, Greece {tsaban, fgeo, patkos}@ics.forth.gr

More information

Tractable Reasoning with Incomplete First-Order Knowledge in Dynamic Systems with Context-Dependent Actions

Tractable Reasoning with Incomplete First-Order Knowledge in Dynamic Systems with Context-Dependent Actions Tractable Reasoning with Incomplete First-Order Knowledge in Dynamic Systems with Context-Dependent Actions Yongmei Liu and Hector J. Levesque Department of Computer Science University of Toronto Toronto,

More information

BOUNDED REVISION: TWO-DIMENSIONAL BELIEF CHANGE BETWEEN CONSERVATISM AND MODERATION. Hans Rott

BOUNDED REVISION: TWO-DIMENSIONAL BELIEF CHANGE BETWEEN CONSERVATISM AND MODERATION. Hans Rott BOUNDED REVISION: TWO-DIMENSIONAL BELIEF CHANGE BETWEEN CONSERVATISM AND MODERATION Hans Rott Department of Philosophy, University of Regensburg hans.rott@psk.uni-regensburg.de ABSTRACT: In this paper

More information

Doxastic Logic. Michael Caie

Doxastic Logic. Michael Caie Doxastic Logic Michael Caie There are at least three natural ways of interpreting the object of study of doxastic logic. On one construal, doxastic logic studies certain general features of the doxastic

More information

Strong Syntax Splitting for Iterated Belief Revision

Strong Syntax Splitting for Iterated Belief Revision Strong Syntax Splitting for Iterated Belief Revision Gabriele Kern-Isberner 1 and Gerhard Brewka 2 1 Fakultät für Informatik, Technische Universität Dortmund, Germany 2 Institut für Informatik, Universität

More information

A First-Order Logic of Probability and Only Knowing in Unbounded Domains

A First-Order Logic of Probability and Only Knowing in Unbounded Domains A First-Order Logic of Probability and Only Knowing in Unbounded Domains Vaishak Belle Dept. of Computer Science KU Leuven Belgium vaishak@cs.kuleuven.be Gerhard Lakemeyer Dept. of Computer Science RWTH

More information

Reconstructing an Agent s Epistemic State from Observations

Reconstructing an Agent s Epistemic State from Observations Reconstructing an Agent s Epistemic State from Observations Richard Booth Macquarie University Dept. of Computing Sydney NSW 2109 Australia rbooth@ics.mq.edu.au Alexander Nittka University of Leipzig Dept.

More information

A Bad Day Surfing is Better than a Good Day Working: How to Revise a Total Preorder

A Bad Day Surfing is Better than a Good Day Working: How to Revise a Total Preorder A Bad Day Surfing is Better than a Good Day Working: How to Revise a Total Preorder Richard Booth Faculty of Informatics Mahasarakham University Mahasarakham 44150, Thailand richard.b@msu.ac.th Thomas

More information

INTRODUCTION TO NONMONOTONIC REASONING

INTRODUCTION TO NONMONOTONIC REASONING Faculty of Computer Science Chair of Automata Theory INTRODUCTION TO NONMONOTONIC REASONING Anni-Yasmin Turhan Dresden, WS 2017/18 About the Course Course Material Book "Nonmonotonic Reasoning" by Grigoris

More information

Horn Clause Contraction Functions

Horn Clause Contraction Functions Journal of Artificial Intelligence Research 48 (2013) xxx-xxx Submitted 04/13; published 09/13 Horn Clause Contraction Functions James P. Delgrande School of Computing Science, Simon Fraser University,

More information

Conflict-Based Belief Revision Operators in Possibilistic Logic

Conflict-Based Belief Revision Operators in Possibilistic Logic Conflict-Based Belief Revision Operators in Possibilistic Logic Author Qi, Guilin, Wang, Kewen Published 2012 Conference Title Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

More information

On iterated revision in the AGM framework

On iterated revision in the AGM framework On iterated revision in the AGM framework Andreas Herzig, Sébastien Konieczny, Laurent Perrussel Institut de Recherche en Informatique de Toulouse 118 route de Narbonne - 31062 Toulouse - France {herzig,konieczny,perrussel}@irit.fr

More information

Belief Contraction for the Description Logic EL

Belief Contraction for the Description Logic EL Belief Contraction for the Description Logic EL Zhi Qiang Zhuang and Maurice Pagnucco ARC Centre of Excellence for Autonomous Systems and National ICT Australia, School of Computer Science and Engineering,

More information

On the Progression of Knowledge in the Situation Calculus

On the Progression of Knowledge in the Situation Calculus On the Progression of Knowledge in the Situation Calculus Yongmei Liu Department of Computer Science Sun Yat-sen University Guangzhou, China Joint work with Ximing Wen KRW-2012, Guiyang June 17, 2012 Y.

More information

Belief revision: A vade-mecum

Belief revision: A vade-mecum Belief revision: A vade-mecum Peter Gärdenfors Lund University Cognitive Science, Kungshuset, Lundagård, S 223 50 LUND, Sweden Abstract. This paper contains a brief survey of the area of belief revision

More information

Base Revision in Description Logics - Preliminary Results

Base Revision in Description Logics - Preliminary Results Base Revision in Description Logics - Preliminary Results Márcio Moretto Ribeiro and Renata Wassermann Institute of Mathematics and Statistics University of São Paulo Brazil, {marciomr,renata}@ime.usp.br

More information

A framework for managing uncertain inputs: an axiomization of rewarding

A framework for managing uncertain inputs: an axiomization of rewarding A framework for managing uncertain inputs: an axiomization of rewarding Jianbing Ma, Weiru Liu School of Electronics, Electrical Engineering and Computer Science, Queen s University Belfast, Belfast BT7

More information

Agent Communication and Belief Change

Agent Communication and Belief Change Agent Communication and Belief Change Satoshi Tojo JAIST November 30, 2014 Satoshi Tojo (JAIST) Agent Communication and Belief Change November 30, 2014 1 / 34 .1 Introduction.2 Introspective Agent.3 I

More information

A Unifying Semantics for Belief Change

A Unifying Semantics for Belief Change A Unifying Semantics for Belief Change C0300 Abstract. Many belief change formalisms employ plausibility orderings over the set of possible worlds to determine how the beliefs of an agent ought to be modified

More information

A New Approach to Knowledge Base Revision in DL-Lite

A New Approach to Knowledge Base Revision in DL-Lite A New Approach to Knowledge Base Revision in DL-Lite Zhe Wang and Kewen Wang and Rodney Topor School of ICT, Griffith University Nathan, QLD 4111, Australia Abstract Revising knowledge bases (KBs) in description

More information

On the Decidability of Verifying LTL Properties of GOLOG Programs

On the Decidability of Verifying LTL Properties of GOLOG Programs On the Decidability of Verifying LTL Properties of GOLOG Programs Benjamin Zarrieß Theoretical Computer Science TU Dresden, Germany zarriess@tcs.inf.tu-dresden.de Jens Claßen Knowledge-Based Systems Group

More information

Axiomatic characterization of the AGM theory of belief revision in a temporal logic

Axiomatic characterization of the AGM theory of belief revision in a temporal logic Artificial Intelligence 171 (2007) 144 160 www.elsevier.com/locate/artint Axiomatic characterization of the AGM theory of belief revision in a temporal logic Giacomo Bonanno 1 Department of Economics,

More information

Knowledge Forgetting in Circumscription: A Preliminary Report

Knowledge Forgetting in Circumscription: A Preliminary Report Knowledge Forgetting in Circumscription: A Preliminary Report Yisong Wang Department of Computer Science, Guizhou University, 550025, China Kewen Wang and Zhe Wang and Zhiqiang Zhuang School of Information

More information

Properties of Knowledge Forgetting

Properties of Knowledge Forgetting Properties of Knowledge Forgetting Yan Zhang and Yi Zhou Intelligent Systems Laboratory University of Western Sydney, Australia E-mail: {yan,yzhou}@scm.uws.edu.au Abstract In this paper we propose a formal

More information

Belief Update for Proper Epistemic Knowledge Bases

Belief Update for Proper Epistemic Knowledge Bases Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) Belief Update for Proper Epistemic Knowledge Bases Tim Miller and Christian Muise University of Melbourne,

More information

Causality and Minimal Change Demystified

Causality and Minimal Change Demystified Causality and Minimal Change Demystified Maurice Pagnucco Computational Reasoning Group Department of Computing Division of ICS Macquarie University NSW, 210, Australia morri@ics.mq.edu.au Abstract The

More information

Conditional Logic and Belief Revision

Conditional Logic and Belief Revision Conditional Logic and Belief Revision Ginger Schultheis (vks@mit.edu) and David Boylan (dboylan@mit.edu) January 2017 History The formal study of belief revision grew out out of two research traditions:

More information

Towards an Integration of Golog and Planning

Towards an Integration of Golog and Planning Towards an Integration of Golog and Planning Jens Claßen + and Patrick Eyerich and Gerhard Lakemeyer + and Bernhard Nebel + Department of Computer Science, RWTH Aachen, 52056 Aachen, Germany classen gerhard

More information

Logics for Belief as Maximally Plausible Possibility

Logics for Belief as Maximally Plausible Possibility Logics for Belief as Maximally Plausible Possibility Giacomo Bonanno Department of Economics, University of California, Davis, USA gfbonanno@ucdavis.edu Abstract We consider a basic logic with two primitive

More information

brels: A System for the Integration of Knowledge Bases

brels: A System for the Integration of Knowledge Bases brels: A System for the Integration of Knowledge Bases Paolo Liberatore and Marco Schaerf Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza Via Salaria 113, I-00198, Roma, Italy

More information

Reasoning with Inconsistent and Uncertain Ontologies

Reasoning with Inconsistent and Uncertain Ontologies Reasoning with Inconsistent and Uncertain Ontologies Guilin Qi Southeast University China gqi@seu.edu.cn Reasoning Web 2012 September 05, 2012 Outline Probabilistic logic vs possibilistic logic Probabilistic

More information

Comment on Leitgeb s Stability Theory of Belief

Comment on Leitgeb s Stability Theory of Belief Comment on Leitgeb s Stability Theory of Belief Hanti Lin Kevin T. Kelly Carnegie Mellon University {hantil, kk3n}@andrew.cmu.edu Hannes Leitgeb s stability theory of belief provides three synchronic constraints

More information

Progression and Verification of Situation Calculus Agents with Bounded Beliefs

Progression and Verification of Situation Calculus Agents with Bounded Beliefs Progression and Verification of Situation Calculus Agents with Bounded Beliefs Giuseppe De Giacomo DIAG, Sapienza Università di Roma Roma, Italy degiacomo@dis.uniroma1.it Yves Lespérance EECS York University

More information

A sequential reversible belief revision method based on polynomials

A sequential reversible belief revision method based on polynomials From: AAAI-99 Proceedings. Copyright 1999, AAAI (www.aaai.org). All rights reserved. A sequential reversible belief revision method based on polynomials Salem Benferhat and Didier Dubois IRIT, universitd

More information

Integrating State Constraints and Obligations in Situation Calculus

Integrating State Constraints and Obligations in Situation Calculus Integrating State Constraints and Obligations in Situation Calculus Robert Demolombe ONERA-Toulouse 2, Avenue Edouard Belin BP 4025, 31055 Toulouse Cedex 4, France. Robert.Demolombe@cert.fr Pilar Pozos

More information

Revising General Knowledge Bases in Description Logics

Revising General Knowledge Bases in Description Logics Revising General Knowledge Bases in Description Logics Zhe Wang and Kewen Wang and Rodney Topor Griffith University, Australia Abstract Revising knowledge bases (KBs) in description logics (DLs) in a syntax-independent

More information

Base Belief Change and Optimized Recovery 1

Base Belief Change and Optimized Recovery 1 Base Belief Change and Optimized Recovery 1 Frances Johnson 2 and Stuart C. Shapiro University at Buffalo, CSE Dept., Buffalo, NY, USA flj shapiro@cse.buffalo.edu Abstract. Optimized Recovery (OR) adds

More information

Knowledge, Belief, and Noisy Sensing in the Situation Calculus. Patricio D. Simari

Knowledge, Belief, and Noisy Sensing in the Situation Calculus. Patricio D. Simari Knowledge, Belief, and Noisy Sensing in the Situation Calculus by Patricio D. Simari A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer

More information

Fallbacks and push-ons

Fallbacks and push-ons Fallbacks and push-ons Krister Segerberg September 22, 2006 1 Background Grove showed in effect that, in the theory of belief change initiated by Alchourrón, Gärdenfors and Makinson, belief states may

More information

LTCS Report. On the Decidability of Verifying LTL Properties of Golog Programs (Extended Version) LTCS-Report 13-10

LTCS Report. On the Decidability of Verifying LTL Properties of Golog Programs (Extended Version) LTCS-Report 13-10 Technische Universität Dresden Institute for Theoretical Computer Science Chair for Automata Theory LTCS Report On the Decidability of Verifying LTL Properties of Golog Programs (Extended Version) Benjamin

More information

Revision of DL-Lite Knowledge Bases

Revision of DL-Lite Knowledge Bases Revision of DL-Lite Knowledge Bases Zhe Wang, Kewen Wang, and Rodney Topor Griffith University, Australia Abstract. We address the revision problem for knowledge bases (KBs) in Description Logics (DLs).

More information

Belief Contraction and Revision over DL-Lite TBoxes

Belief Contraction and Revision over DL-Lite TBoxes Belief Contraction and Revision over DL-Lite TBoxes Zhiqiang Zhuang 1 Zhe Wang 1 Kewen Wang 1 Guilin Qi 2 1 School of Information and Communication Technology, Griffith University, Australia 2 School of

More information

A Semantics for ADL as Progression in the Situation Calculus

A Semantics for ADL as Progression in the Situation Calculus A Semantics for ADL as Progression in the Situation Calculus Jens Claßen and Gerhard Lakemeyer Department of Computer Science RWTH Aachen 52056 Aachen Germany classen gerhard @cs.rwth-aachen.de Abstract

More information

Next Steps in Propositional Horn Contraction

Next Steps in Propositional Horn Contraction Next Steps in Propositional Horn Contraction Richard Booth Mahasarakham University Thailand richard.b@msu.ac.th Thomas Meyer Meraka Institute, CSIR and School of Computer Science University of Kwazulu-Natal

More information

Reinforcement Belief Revision

Reinforcement Belief Revision Reinforcement Belief Revision Yi Jin School of Computing Science Simon Fraser University yij@cs.sfu.ca Michael Thielscher Department of Computer Science Dresden University of Technology mit@inf.tu-dresden.de

More information

Projection using Regression and Sensors

Projection using Regression and Sensors Projection using Regression and Sensors Giuseppe De Giacomo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza Via Salaria 11, 00198 Roma, Italy degiacomo@dis.uniroma1.it Hector

More information

Modal Logic & Kripke Semantics

Modal Logic & Kripke Semantics Modal Logic & Kripke Semantics Modal logic allows one to model possible truths reasoning what is possible and what is simply not possible when we don t have complete knowledge. For example: it is possible

More information

Özgür L. Özçep Ontology Change 2

Özgür L. Özçep Ontology Change 2 Özgür L. Özçep Ontology Change 2 Lecture 10: Revision for Ontology Change 24 January, 2017 Foundations of Ontologies and Databases for Information Systems CS5130 (Winter 16/17) Recap of Lecture 9 Considered

More information

A Logic for evision a &iv eri

A Logic for evision a &iv eri From: AAAI-92 Proceedings. Copyright 1992, AAAI (www.aaai.org). All rights reserved. A Logic for evision a &iv eri Craig Boutilier Department of Computer Science University of British Columbia Vancouver,

More information

Adding Modal Operators to the Action Language A

Adding Modal Operators to the Action Language A Adding Modal Operators to the Action Language A Aaron Hunter Simon Fraser University Burnaby, B.C. Canada V5A 1S6 amhunter@cs.sfu.ca Abstract The action language A is a simple high-level language for describing

More information

An Egalitarist Fusion of Incommensurable Ranked Belief Bases under Constraints

An Egalitarist Fusion of Incommensurable Ranked Belief Bases under Constraints An Egalitarist Fusion of Incommensurable Ranked Belief Bases under Constraints Salem Benferhat and Sylvain Lagrue and Julien Rossit CRIL - Université d Artois Faculté des Sciences Jean Perrin Rue Jean

More information

On the Conservativity and Stability of Ontology-Revision Operators Based on Reinterpretation

On the Conservativity and Stability of Ontology-Revision Operators Based on Reinterpretation On the Conservativity and Stability of Ontology-Revision Operators Based on Reinterpretation Özgür L. Özçep and Carola Eschenbach Department for Informatics (AB WSV), MIN Faculty, University of Hamburg

More information

On Ability to Autonomously Execute Agent Programs with Sensing

On Ability to Autonomously Execute Agent Programs with Sensing On Ability to Autonomously Execute Agent Programs with Sensing Sebastian Sardiña Dept. of Computer Science University of Toronto ssardina@cs.toronto.edu Yves Lespérance Dept. of Computer Science York University

More information

14. Actions. KR & R Brachman & Levesque Situation calculus

14. Actions. KR & R Brachman & Levesque Situation calculus 14. Actions KR & R Brachman & Levesque 2005 236 Situation calculus The situation calculus is a dialect of FOL for representing dynamically changing worlds in which all changes are the result of named actions.

More information

Prime Forms and Minimal Change in Propositional Belief Bases

Prime Forms and Minimal Change in Propositional Belief Bases Annals of Mathematics and Artificial Intelligence manuscript No. (will be inserted by the editor) Prime Forms and Minimal Change in Propositional Belief Bases J. Marchi G. Bittencourt L. Perrussel Received:

More information

Contraction and Revision over DL-Lite TBoxes

Contraction and Revision over DL-Lite TBoxes Contraction and Revision over DL-Lite TBoxes Zhiqiang Zhuang 1 Zhe Wang 1 Kewen Wang 1 Guilin Qi 2,3 1 School of Information and Communication Technology, Griffith University, Australia 2 School of Computer

More information

arxiv: v1 [cs.lo] 27 Mar 2015

arxiv: v1 [cs.lo] 27 Mar 2015 Revisable Justified Belief: Preliminary Report Alexandru Baltag Bryan Renne Sonja Smets arxiv:1503.08141v1 [cs.lo] 27 Mar 2015 Abstract The theory CDL of Conditional Doxastic Logic is the single-agent

More information

Inconsistencies, Negations and Changes in Ontologies

Inconsistencies, Negations and Changes in Ontologies Inconsistencies, Negations and Changes in Ontologies Giorgos Flouris 1 Zhisheng Huang 2,3 Jeff Z. Pan 4 Dimitris Plexousakis 1 Holger Wache 2 1 Institute of Computer Science, FORTH, Heraklion, Greece emails:

More information

Knowing Whether in Proper Epistemic Knowledge Bases

Knowing Whether in Proper Epistemic Knowledge Bases Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Knowing Whether in Proper Epistemic Knowledge Bases Tim Miller, Paolo Felli, Christian Muise, Adrian R. Pearce, Liz Sonenberg

More information

Provability as a Modal Operator with the models of PA as the Worlds

Provability as a Modal Operator with the models of PA as the Worlds Provability as a Modal Operator with the models of PA as the Worlds by Marcello Herreshoff marce110@stanford.edu May 20, 2011 Abstract This paper introduces a propositional modal model of Gödel-Löb Logic

More information

Ranking Theory. Franz Huber Department of Philosophy University of Toronto, Canada

Ranking Theory. Franz Huber Department of Philosophy University of Toronto, Canada Ranking Theory Franz Huber Department of Philosophy University of Toronto, Canada franz.huber@utoronto.ca http://huber.blogs.chass.utoronto.ca The Open Handbook of Formal Epistemology edited by Richard

More information

Awareness, Negation and Logical Omniscience

Awareness, Negation and Logical Omniscience Awareness, Negation and Logical Omniscience Zhisheng Huang and Karen Kwast Department of Mathematics and Computer Science University of Amsterdam Plantage Muidergracht 24 1018TV Amsterdam, The Netherlands

More information

Reasoning about Conditional Beliefs for the Winograd Schema Challenge

Reasoning about Conditional Beliefs for the Winograd Schema Challenge Reasoning about Conditional Beliefs for the Winograd Schema Challenge Denis Golovin and Jens Claßen Knowledge-Based Systems Group RWTH Aachen University Aachen, Germany Christoph Schwering School of Computer

More information

Progression of Situation Calculus Action Theories with Incomplete Information

Progression of Situation Calculus Action Theories with Incomplete Information Progression of Situation Calculus Action Theories with Incomplete Information Stavros Vassos and Hector Levesque Department of Computer Science University of Toronto Toronto, ON, CANADA {stavros,hector}@cs.toronto.edu

More information

Meaning and Reference INTENSIONAL AND MODAL LOGIC. Intensional Logic. Frege: Predicators (general terms) have

Meaning and Reference INTENSIONAL AND MODAL LOGIC. Intensional Logic. Frege: Predicators (general terms) have INTENSIONAL AND MODAL LOGIC Meaning and Reference Why do we consider extensions to the standard logical language(s)? Requirements of knowledge representation / domain modelling Intensional expressions:

More information

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom.

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom. Knowledge representation Introduction Knowledge is the progression that starts with data which s limited utility. Data when processed become information, information when interpreted or evaluated becomes

More information

Action representation and partially observable planning using epistemic logic

Action representation and partially observable planning using epistemic logic Action representation and partially observable planning using epistemic logic Andreas Herzig IRIT/UPS F-31062 Toulouse Cedex France herzig@irit.fr Jerome Lang IRIT/UPS F-31062 Toulouse Cedex France lang@irit.fr

More information

First Order Logic: Syntax and Semantics

First Order Logic: Syntax and Semantics CS1081 First Order Logic: Syntax and Semantics COMP30412 Sean Bechhofer sean.bechhofer@manchester.ac.uk Problems Propositional logic isn t very expressive As an example, consider p = Scotland won on Saturday

More information

arxiv: v1 [cs.ai] 26 Jul 2018

arxiv: v1 [cs.ai] 26 Jul 2018 On Strengthening the Logic of Iterated Belief Revision: Proper Ordinal Interval Operators arxiv:1807.09942v1 [cs.ai] 26 Jul 2018 Richard Booth Cardiff University Cardiff, UK boothr2@cardiff.ac.uk Jake

More information

Description Logics. Foundations of Propositional Logic. franconi. Enrico Franconi

Description Logics. Foundations of Propositional Logic.   franconi. Enrico Franconi (1/27) Description Logics Foundations of Propositional Logic Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/27) Knowledge

More information

Situation Calculus. Gerald Steinbauer. Institute for Software Technology. Gerald Steinbauer. Situation Calculus - Introduction

Situation Calculus. Gerald Steinbauer. Institute for Software Technology. Gerald Steinbauer. Situation Calculus - Introduction Situation Calculus Institute for Software Technology 1 Dates Organizational Issues 10.11.2016 8:45-11:00 (HS i12) lecture and first assignment 17.11.2016 8:45-11:00 (HS i12) lecture and programming assignment

More information

LogicalFoundations ofnegotiation: Outcome, Concession and Adaptation

LogicalFoundations ofnegotiation: Outcome, Concession and Adaptation LogicalFoundations ofnegotiation: Outcome, Concession and Adaptation Thomas Meyer and Norman Foo National ICT Australia School of CSE, UNSW Sydney, Australia tmeyer@cse.unsw.edu.au Rex Kwok Knowledge Systems

More information

A Unifying Framework for Probabilistic Belief Revision

A Unifying Framework for Probabilistic Belief Revision A Unifying Framework for Probabilistic Belief Revision Zhiqiang Zhuang Griffith University z.zhuang@griffith.edu.au James Delgrande Simon Fraser University jim@cs.sfu.ca Abhaya Nayak Macquarie University

More information

Towards Tractable Inference for Resource-Bounded Agents

Towards Tractable Inference for Resource-Bounded Agents Towards Tractable Inference for Resource-Bounded Agents Toryn Q. Klassen Sheila A. McIlraith Hector J. Levesque Department of Computer Science University of Toronto Toronto, Ontario, Canada {toryn,sheila,hector}@cs.toronto.edu

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Bart Selman selman@cs.cornell.edu Module: Knowledge, Reasoning, and Planning Part 2 Logical Agents R&N: Chapter 7 1 Illustrative example: Wumpus World (Somewhat

More information

Distributing Knowledge into Simple Bases

Distributing Knowledge into Simple Bases Distributing Knowledge into Simple Bases Adrian Haret and Jean-Guy Mailly and Stefan Woltran Institute of Information Systems TU Wien, Austria {haret,jmailly,woltran}@dbai.tuwien.ac.at Abstract Understanding

More information