Non parametric modeling of multivariate extremes with Dirichlet mixtures

Size: px
Start display at page:

Download "Non parametric modeling of multivariate extremes with Dirichlet mixtures"

Transcription

1 Non parametric modeling of multivariate extremes with Dirichlet mixtures Anne Sabourin Institut Mines-Télécom, Télécom ParisTech, CNRS-LTCI Joint work with Philippe Naveau (LSCE, Saclay), Anne-Laure Fougères (ICJ, Lyon 1), Benjamin Renard (IRSTEA, Lyon). March 26 th, 2013 Rare and Extreme workshop, Aber Wrach 1/29

2 Air quality Five air pollutants recorded in Leeds (UK), daily. Health issue : probability of a joint (simultaneous) excess of alert thresholds? Probability of regions far from the origin? 2/29

3 Censored Multivariate extremes : oods in the `Gardons' joint work with Benjamin Renard Daily streamow at 4 neighbouring sites ( St Jean du Gard, Mialet, Anduze, Alès). Joint distribution of extremes? Probability of simultaneous oods. Historical data censored data ; few clean data. Gard river Neppel et al. (2010) 3/29

4 Multivariate extremes Random vectors Y = (Y 1,..., Y d, ) ; Y j 0 Margins : Y j F j, 1 j d (any). Standardization (unit Fréchet margins) : X j = 1/ log F j (Y j ) Joint extremes : X's distribution above large thresholds? P(X A X A 0 )? (A A 0, 0 / A 0 ), A 0 `far from the origin'. X2 X A u 2 A 0 : Extremal region u 1 X1 4/29

5 Polar decomposition Polar coordinates : R = d j=1 X j (L 1 norm) ; W = X R. W simplex S d = {w : w j 0, j w j = 1}. Characterize P(X A A A 0 ) Characterize P(R > r, W B R > r 0 ) X 2nd component w B x S d W R B st component 5/29

6 Fundamental Result, Angular distribution Radial homogeneity (under hypothesis of regular variation) P(R > r t, W B R t) t 1 r H(B) Above large thresholds r 0, R W ; H (+ margins) rules the joint distribution X1 X2 x w x X1 X2 x w x One condition only for genuine H : moments constraint, w dh(w) = ( 1 d,..., 1 d ). Center of mass = center of simplex. Few constraints : non parametric family! 6/29

7 Estimating the angular measure : non parametric problem Non parametric estimation (empirical likelihood, Einmahl et al., 2001, Einmahl, Segers, 2009, Guillotte et al, 2011.) No explicit expression for asymptotic variance, Bayesian inference with d = 2 only, nothing for censored data. Compromise : Mixture of countably many parametric models Innite-dimensional model + easier Bayesian inference (handling parameters). Dirichlet mixture model ( Boldi, Davison, 2007 ; S., Naveau, 2013) How to deal with the moments constraint on H to generate parameters / dene a prior? Do MCMC methods work in moderate dimension (d = 5)? Does it still work with censored data? 7/29

8 Dirichlet distribution w S d, diri(w µ, ν) = Γ(ν) d i=1 Γ(νµ i) d i=1 w νµ i 1 i. µ S d : location parameter (point on the simplex) : `center' ; ν > 0 : concentration parameter. w w3 w1 8/29

9 Dirichlet distribution w S d, diri(w µ, ν) = Γ(ν) d i=1 Γ(νµ i) d i=1 w νµ i 1 i. µ S d : location parameter (point on the simplex) : `center' ; ν > 0 : concentration parameter. w w3 w1 8/29

10 Dirichlet mixture model Boldi, Davison, 2007 µ = µ,1:k, ν = ν 1:k, p = p 1:k, ψ = (µ, p, ν), h ψ (w) = k p m diri(w µ, m, ν m ) m=1 Moments constraint on (µ, p) : k p m µ.,m = ( 1 d,..., 1 d ). m=1 Weakly dense family (k N) in the space of admissible angular measures 9/29

11 Bayesian inference with non censored data Moments constraints barycenter constriant on (µ, p) Prior construction? Parameter generation for MCMC sampling? Dicult for dimension > 2. Re-parametrization S., Naveau (13) parameter : work with unconstrained Weak posterior consistency MCMC with reversible jumps manageable in moderate dimension ( 5). 10/29

12 Re-parametrization Sabourin, Naveau 2013 How to build a prior on (p, µ)? Constraint on center of mass : j p j µ,j Sequential construction : Use associativity properties of barycenter. Intermediate variables : partial centers of mass ; determined by eccentricity parameters (e 1,..., e k 1 ) (0, 1) k 1. Deduce last µ,k from rst ones : no more constraints! 11/29

13 Re-parametrization : intermediate variables (γ 1,..., γ k 1), partial barycenters ex : k = 4 γ 0 γ m : Barycenter of kernels 'following µ.,m : µ.,m+1,..., µ.,k. γ m = ( ) 1 p j p j µ.,j j>m j>m 12/29

14 γ 1 on a line segment : eccentricity parameter e 1 (0, 1). ex : k = 4 I1 γ0 γ1 µ1 Draw (µ,1 S d, e 1 (0, 1)) γ 1 dened by γ 0 γ 1 γ 0 I 1 = e 1 ; p 1 = γ 0 γ 1 µ,1 γ 1. 13/29

15 γ 2 on a line segment : eccentricity parameter e 2 (0, 1). ex : k = 4 I1 µ 2 γ1 γ2 I2 γ0 µ 1 Draw (µ,2, e 2 ) γ 2 : γ 1 γ 2 γ 1 I 2 = e 2 p 2 14/29

16 Last density kernel = last center µ,k. ex : k = 4 I3 µ4 I1 µ 2 γ1 γ2 I2 γ0 µ 3 µ 1 Draw (µ,3, e 3 ) γ 3 p 3, µ.,4 = γ 3. p 4 15/29

17 Summary I3 µ4 I1 µ 2 γ1 γ2 I2 γ0 µ 3 µ 1 Given (µ.,1:k 1, e 1:k 1 ), One obtains (µ.,1:k, p 1:k ). The density h may thus be parametrized by θ = (µ.,1:k 1, e 1:k 1, ν 1:k ) `rectangle', unconstrained. 16/29

18 Bayesian model New parameter : θ k = (µ,1:k 1, e 1:k 1, ν 1:k ) Unconstrained parameter space : union of product spaces (`rectangles') } Θ = Θ k ; Θ k = {(S d ) k 1 [0, 1) k 1 (0, ] k 1 k=1 Inference : Gibbs + Reversible-jumps. Restriction (numerical convenience) : k 15, ν < ν max, etc... `Reasonable' prior `at' and rotation invariant. Balanced weight and uniformly scattered centers. 17/29

19 MCMC sampling : Metropolis-within-Gibbs, reversible jumps. Three transition types for the Markov chain : Classical (Gibbs) : one µ.,m, e m or a ν m is modied. Proposals of new Dirichlet centers depend on the data. Trans-dimensional (Green, 1995) : One component (µ.,k, e k, ν k+1 ) is added or deleted. Trans-dimensional moves are natural. Additional components again depend on the data `Shue' : Indices permutation of the original mixture : Re-allocating mass from old components to new ones. 18/29

20 Resuts in the re-parametrized version Theoretically (Asymptotics) : Posterior consistency : U weakly open in Θ, containing θ 0, π n (U) = π(u data 1:n ) 1. n Markov chain's ergodicity : T g(θ t=1 t) E π n (g) Empirically : convergence checks. Better mixing : T 19/29

21 Resuts in the re-parametrized version Theoretically (Asymptotics) : Posterior consistency : U weakly open in Θ, containing θ 0, π n (U) = π(u data 1:n ) 1. n Markov chain's ergodicity : T g(θ t=1 t) E π n (g) T Empirically : convergence checks. Better coverage of credible sets (d=5, bivariate margins, simulated data) X2/(X2+X5) 0 1 X2/(X2+X5) 19/29

22 Resuts in the re-parametrized version Theoretically (Asymptotics) : Posterior consistency : U weakly open in Θ, containing θ 0, π n (U) = π(u data 1:n ) 1. n Markov chain's ergodicity : T g(θ t=1 t) E π n (g) T Empirically : convergence checks. As good (in dimension 2) as the bivariate non-parametric model of Guillotte et. al. (2006) (simulated data in logistic/asymmetric logistic/dirichlet. Solid line : DM. dotted : alternative non parametric model) H H H /

23 Inference with censored data Streamflow at Anduze (m3/s) Streamflow at StJean (m3/s) Existing litterature : Ledford & Tawn, 1996 : censoring at threshold. GEV models Explicit expression for censored likelihood. 20/29

24 Issues Censored data points but segments or boxes in R d. Angles W i undened. Intervals overlapping threshold : extreme data or not? Censored likelihood : density dr r 2 dh(w) integrated over boxes. 21/29

25 Undetermined data (overlapping threshold) X2 Determined data Overlapping data Perception threshold Extreme threshold X1 Considering 'undetermined data' as missing biais! 22/29

26 Undetermined data (overlapping threshold) X2 Overlapping data Extreme threshold Perception threshold R Rc X1 Data in region R not in region R c... Well dened likelihood in a Poisson model 23/29

27 Poisson model {( t n, X ) } t, 1 t n PRM(Leb µ ) on [0, 1] A u,n n X2 / n A u,n : Fixed failure region Complementaries A i,n of overlapping regions u 2 /n Overlapping regions A i,n c u 1 /n X1 / n µ : ` exponent measure', with Dirichlet Mixture angular component dµ dr dw (r, w) = d r 2 h(w). Likelihood of overlapping data : [ { P N ( t 2 n t 1 n ) 1 } ] n A i = 0 = exp [ (t 2 t 1 )µ (A i )] 24/29

28 `Censored' likelihood : and data augmentation Data augmentation : Generate missing components under univariate conditional distributions. One more Gibbs step, no more numerical integration. Z j 1:r [X missing X obs, θ] x2 Augmentation data Z j = [X censored X observed, θ] Censored interval u 2 /n Extremal region u 1 /n x1 Dirichlet Explicit univariate conditionals Exact sampling of censored data on censored interval 25/29

29 Simulated data (Dirichlet, d = 4, k = 3 components), same censoring as real data Pairwise plot and angular measure density (true/ posterior predictive) S h S X3/( X3 + X4 ) 26/29

30 Angular predictive density for Gardons data h h h St Jean/(St Jean+Mialet ) St Jean/(St Jean+Anduze ) St Jean/(St Jean+Ales ) h h h Mialet/(Mialet+Anduze ) Mialet/(Mialet+Ales ) Anduze/(Anduze+Ales ) 27/29

31 Conclusion Bayesian Dirichlet model for multivariate large excesses : `non' parametric, suitable for moderate dimension, adaptable to censored data. Two packages R : DiriXtremes, MCMC algorithm for Dirichlet mixtures, DiriCens, implementation with censored data. Towards high dimension (GCM grid, spatial elds) Impose reasonable structure (sparse) on Dirichlet parameters? Possible application : Posterior sample Simulation of regional extremes? 28/29

32 References M.-O. Boldi and A. C. Davison. A mixture model for multivariate extremes. JRSS : Series B (Statistical Methodology), 69(2) :217229, Gómez, G., Calle, M. L., and Oller, R. Frequentist and bayesian approaches for interval-censored data. Statistical Papers, 45(2) :139173, Ledford, A. and Tawn, J. (1996). Statistics for near independence in multivariate extreme values. Biometrika, 83(1) : Neppel, L., Renard, B., Lang, M., Ayral, P., Coeur, D., Gaume, E., Jacob, N., Payrastre, O., Pobanz, K., and Vinet, F. (2010). Flood frequency analysis using historical data : accounting for random and systematic errors. Hydrological Sciences JournalJournal des Sciences Hydrologiques, 55(2) : Sabourin, A., Naveau, P. (2013) Bayesian Dirichlet mixture model for multivariate extremes : a re-parametrization. Computation. Stat and Data Analysis Schnedler, W. (2005). Likelihood estimation for censored random vectors. Econometric Reviews, 24(2) : Van Dyk, D. and Meng, X. (2001). The art of data augmentation. Journal of Computational and Graphical Statistics, 10(1) : /29

Bayesian nonparametrics for multivariate extremes including censored data. EVT 2013, Vimeiro. Anne Sabourin. September 10, 2013

Bayesian nonparametrics for multivariate extremes including censored data. EVT 2013, Vimeiro. Anne Sabourin. September 10, 2013 Bayesian nonparametrics for multivariate extremes including censored data Anne Sabourin PhD advisors: Anne-Laure Fougères (Lyon 1), Philippe Naveau (LSCE, Saclay). Joint work with Benjamin Renard, IRSTEA,

More information

Bayesian model mergings for multivariate extremes Application to regional predetermination of oods with incomplete data

Bayesian model mergings for multivariate extremes Application to regional predetermination of oods with incomplete data Bayesian model mergings for multivariate extremes Application to regional predetermination of oods with incomplete data Anne Sabourin PhD defense University of Lyon 1 Committee: Anthony Davison, Johan

More information

arxiv: v1 [stat.ap] 28 Nov 2014

arxiv: v1 [stat.ap] 28 Nov 2014 COMBINING REGIONAL ESTIMATION AND HISTORICAL FLOODS: A MULTIVARIATE SEMI-PARAMETRIC PEAKS-OVER-THRESHOLD MODEL WITH CENSORED DATA Anne Sabourin 1, Benjamin Renard 2 arxiv:1411.7782v1 [stat.ap] 28 Nov 2014

More information

COMBINING REGIONAL ESTIMATION AND HISTORICAL FLOODS: A MULTIVARIATE SEMI-PARAMETRIC PEAKS-OVER-THRESHOLD MODEL WITH CENSORED DATA

COMBINING REGIONAL ESTIMATION AND HISTORICAL FLOODS: A MULTIVARIATE SEMI-PARAMETRIC PEAKS-OVER-THRESHOLD MODEL WITH CENSORED DATA COMBINING REGIONAL ESTIMATION AND HISTORICAL FLOODS: A MULTIVARIATE SEMI-PARAMETRIC PEAKS-OVER-THRESHOLD MODEL WITH CENSORED DATA A. SABOURIN AND B. RENARD Multivariate extremes; censored data; semi-parametric

More information

Combining regional estimation and historical floods: a multivariate semi-parametric peaks-over-threshold model with censored data

Combining regional estimation and historical floods: a multivariate semi-parametric peaks-over-threshold model with censored data Combining regional estimation and historical floods: a multivariate semi-parametric peaks-over-threshold model with censored data Anne Sabourin, Benjamin Renard To cite this version: Anne Sabourin, Benjamin

More information

Bayesian Model Averaging for Multivariate Extreme Values

Bayesian Model Averaging for Multivariate Extreme Values Bayesian Model Averaging for Multivariate Extreme Values Philippe Naveau naveau@lsce.ipsl.fr Laboratoire des Sciences du Climat et l Environnement (LSCE) Gif-sur-Yvette, France joint work with A. Sabourin

More information

Workshop Copulas and Extremes

Workshop Copulas and Extremes Workshop Copulas and Extremes Organization : Marianne Clausel & Stéphane Girard November, 19-20th, 2013 Tuesday, 9:00 9:30, Welcome coffee. Tuesday, 9:30 12:00, Session I, chair Anne-Catherine Favre. Some

More information

Bayesian inference for multivariate extreme value distributions

Bayesian inference for multivariate extreme value distributions Bayesian inference for multivariate extreme value distributions Sebastian Engelke Clément Dombry, Marco Oesting Toronto, Fields Institute, May 4th, 2016 Main motivation For a parametric model Z F θ of

More information

New Classes of Multivariate Survival Functions

New Classes of Multivariate Survival Functions Xiao Qin 2 Richard L. Smith 2 Ruoen Ren School of Economics and Management Beihang University Beijing, China 2 Department of Statistics and Operations Research University of North Carolina Chapel Hill,

More information

A Conditional Approach to Modeling Multivariate Extremes

A Conditional Approach to Modeling Multivariate Extremes A Approach to ing Multivariate Extremes By Heffernan & Tawn Department of Statistics Purdue University s April 30, 2014 Outline s s Multivariate Extremes s A central aim of multivariate extremes is trying

More information

Bayesian Modelling of Extreme Rainfall Data

Bayesian Modelling of Extreme Rainfall Data Bayesian Modelling of Extreme Rainfall Data Elizabeth Smith A thesis submitted for the degree of Doctor of Philosophy at the University of Newcastle upon Tyne September 2005 UNIVERSITY OF NEWCASTLE Bayesian

More information

Overview of Extreme Value Theory. Dr. Sawsan Hilal space

Overview of Extreme Value Theory. Dr. Sawsan Hilal space Overview of Extreme Value Theory Dr. Sawsan Hilal space Maths Department - University of Bahrain space November 2010 Outline Part-1: Univariate Extremes Motivation Threshold Exceedances Part-2: Bivariate

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

Bernstein polynomial angular densities of multivariate extreme value distributions

Bernstein polynomial angular densities of multivariate extreme value distributions Bernstein polynomial angular densities of multivariate extreme value distributions Timothy E. Hanson Department of Statistics, University of South Carolina, Columbia, SC 29208, USA email: hansont@stat.sc.edu

More information

Spatial extreme value theory and properties of max-stable processes Poitiers, November 8-10, 2012

Spatial extreme value theory and properties of max-stable processes Poitiers, November 8-10, 2012 Spatial extreme value theory and properties of max-stable processes Poitiers, November 8-10, 2012 November 8, 2012 15:00 Clement Dombry Habilitation thesis defense (in french) 17:00 Snack buet November

More information

Extreme Value Analysis and Spatial Extremes

Extreme Value Analysis and Spatial Extremes Extreme Value Analysis and Department of Statistics Purdue University 11/07/2013 Outline Motivation 1 Motivation 2 Extreme Value Theorem and 3 Bayesian Hierarchical Models Copula Models Max-stable Models

More information

Bayesian Inference for Clustered Extremes

Bayesian Inference for Clustered Extremes Newcastle University, Newcastle-upon-Tyne, U.K. lee.fawcett@ncl.ac.uk 20th TIES Conference: Bologna, Italy, July 2009 Structure of this talk 1. Motivation and background 2. Review of existing methods Limitations/difficulties

More information

Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking

Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking Nicolas Goix Anne Sabourin Stéphan Clémençon Abstract Capturing the dependence structure of multivariate extreme events

More information

Control Variates for Markov Chain Monte Carlo

Control Variates for Markov Chain Monte Carlo Control Variates for Markov Chain Monte Carlo Dellaportas, P., Kontoyiannis, I., and Tsourti, Z. Dept of Statistics, AUEB Dept of Informatics, AUEB 1st Greek Stochastics Meeting Monte Carlo: Probability

More information

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment Ben Shaby SAMSI August 3, 2010 Ben Shaby (SAMSI) OFS adjustment August 3, 2010 1 / 29 Outline 1 Introduction 2 Spatial

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Bayesian model selection in graphs by using BDgraph package

Bayesian model selection in graphs by using BDgraph package Bayesian model selection in graphs by using BDgraph package A. Mohammadi and E. Wit March 26, 2013 MOTIVATION Flow cytometry data with 11 proteins from Sachs et al. (2005) RESULT FOR CELL SIGNALING DATA

More information

Fitting Narrow Emission Lines in X-ray Spectra

Fitting Narrow Emission Lines in X-ray Spectra Outline Fitting Narrow Emission Lines in X-ray Spectra Taeyoung Park Department of Statistics, University of Pittsburgh October 11, 2007 Outline of Presentation Outline This talk has three components:

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods By Oleg Makhnin 1 Introduction a b c M = d e f g h i 0 f(x)dx 1.1 Motivation 1.1.1 Just here Supresses numbering 1.1.2 After this 1.2 Literature 2 Method 2.1 New math As

More information

Machine learning: Hypothesis testing. Anders Hildeman

Machine learning: Hypothesis testing. Anders Hildeman Location of trees 0 Observed trees 50 100 150 200 250 300 350 400 450 500 0 100 200 300 400 500 600 700 800 900 1000 Figur: Observed points pattern of the tree specie Beilschmiedia pendula. Location of

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

The Mixture Approach for Simulating New Families of Bivariate Distributions with Specified Correlations

The Mixture Approach for Simulating New Families of Bivariate Distributions with Specified Correlations The Mixture Approach for Simulating New Families of Bivariate Distributions with Specified Correlations John R. Michael, Significance, Inc. and William R. Schucany, Southern Methodist University The mixture

More information

CV-NP BAYESIANISM BY MCMC. Cross Validated Non Parametric Bayesianism by Markov Chain Monte Carlo CARLOS C. RODRIGUEZ

CV-NP BAYESIANISM BY MCMC. Cross Validated Non Parametric Bayesianism by Markov Chain Monte Carlo CARLOS C. RODRIGUEZ CV-NP BAYESIANISM BY MCMC Cross Validated Non Parametric Bayesianism by Markov Chain Monte Carlo CARLOS C. RODRIGUE Department of Mathematics and Statistics University at Albany, SUNY Albany NY 1, USA

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

On Reparametrization and the Gibbs Sampler

On Reparametrization and the Gibbs Sampler On Reparametrization and the Gibbs Sampler Jorge Carlos Román Department of Mathematics Vanderbilt University James P. Hobert Department of Statistics University of Florida March 2014 Brett Presnell Department

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California Texts in Statistical Science Bayesian Ideas and Data Analysis An Introduction for Scientists and Statisticians Ronald Christensen University of New Mexico Albuquerque, New Mexico Wesley Johnson University

More information

ABC methods for phase-type distributions with applications in insurance risk problems

ABC methods for phase-type distributions with applications in insurance risk problems ABC methods for phase-type with applications problems Concepcion Ausin, Department of Statistics, Universidad Carlos III de Madrid Joint work with: Pedro Galeano, Universidad Carlos III de Madrid Simon

More information

University of Toronto Department of Statistics

University of Toronto Department of Statistics Norm Comparisons for Data Augmentation by James P. Hobert Department of Statistics University of Florida and Jeffrey S. Rosenthal Department of Statistics University of Toronto Technical Report No. 0704

More information

CTDL-Positive Stable Frailty Model

CTDL-Positive Stable Frailty Model CTDL-Positive Stable Frailty Model M. Blagojevic 1, G. MacKenzie 2 1 Department of Mathematics, Keele University, Staffordshire ST5 5BG,UK and 2 Centre of Biostatistics, University of Limerick, Ireland

More information

Statistics for extreme & sparse data

Statistics for extreme & sparse data Statistics for extreme & sparse data University of Bath December 6, 2018 Plan 1 2 3 4 5 6 The Problem Climate Change = Bad! 4 key problems Volcanic eruptions/catastrophic event prediction. Windstorms

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2 Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, 2010 Jeffreys priors Lecturer: Michael I. Jordan Scribe: Timothy Hunter 1 Priors for the multivariate Gaussian Consider a multivariate

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring Lecture 8 A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2015 http://www.astro.cornell.edu/~cordes/a6523 Applications: Bayesian inference: overview and examples Introduction

More information

A Bayesian perspective on GMM and IV

A Bayesian perspective on GMM and IV A Bayesian perspective on GMM and IV Christopher A. Sims Princeton University sims@princeton.edu November 26, 2013 What is a Bayesian perspective? A Bayesian perspective on scientific reporting views all

More information

On the occurrence times of componentwise maxima and bias in likelihood inference for multivariate max-stable distributions

On the occurrence times of componentwise maxima and bias in likelihood inference for multivariate max-stable distributions On the occurrence times of componentwise maxima and bias in likelihood inference for multivariate max-stable distributions J. L. Wadsworth Department of Mathematics and Statistics, Fylde College, Lancaster

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 18-16th March Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 18-16th March Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 18-16th March 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Trans-dimensional Markov chain Monte Carlo. Bayesian model for autoregressions.

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

Statistics of Extremes

Statistics of Extremes Statistics of Extremes Anthony Davison c 211 http://stat.epfl.ch Multivariate Extremes 19 Componentwise maxima.................................................. 194 Standardization........................................................

More information

Remarks on Improper Ignorance Priors

Remarks on Improper Ignorance Priors As a limit of proper priors Remarks on Improper Ignorance Priors Two caveats relating to computations with improper priors, based on their relationship with finitely-additive, but not countably-additive

More information

Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units

Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units Sahar Z Zangeneh Robert W. Keener Roderick J.A. Little Abstract In Probability proportional

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

16 : Approximate Inference: Markov Chain Monte Carlo

16 : Approximate Inference: Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models 10-708, Spring 2017 16 : Approximate Inference: Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Yuan Yang, Chao-Ming Yen 1 Introduction As the target distribution

More information

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts ICML 2015 Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes Machine Learning Research Group and Oxford-Man Institute University of Oxford July 8, 2015 Point Processes

More information

Bayesian inference with M-splines on spectral measure of bivariate extremes

Bayesian inference with M-splines on spectral measure of bivariate extremes Methodology and Computing in Applied Probability manuscript No. (will be inserted by the editor) Bayesian inference with M-splines on spectral measure of bivariate extremes Khader Khadraoui Pierre Ribereau

More information

The Metropolis-Hastings Algorithm. June 8, 2012

The Metropolis-Hastings Algorithm. June 8, 2012 The Metropolis-Hastings Algorithm June 8, 22 The Plan. Understand what a simulated distribution is 2. Understand why the Metropolis-Hastings algorithm works 3. Learn how to apply the Metropolis-Hastings

More information

Pseudo-marginal MCMC methods for inference in latent variable models

Pseudo-marginal MCMC methods for inference in latent variable models Pseudo-marginal MCMC methods for inference in latent variable models Arnaud Doucet Department of Statistics, Oxford University Joint work with George Deligiannidis (Oxford) & Mike Pitt (Kings) MCQMC, 19/08/2016

More information

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours MATH2750 This question paper consists of 8 printed pages, each of which is identified by the reference MATH275. All calculators must carry an approval sticker issued by the School of Mathematics. c UNIVERSITY

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3 University of California, Irvine 2017-2018 1 Statistics (STATS) Courses STATS 5. Seminar in Data Science. 1 Unit. An introduction to the field of Data Science; intended for entering freshman and transfers.

More information

Monte Carlo methods for sampling-based Stochastic Optimization

Monte Carlo methods for sampling-based Stochastic Optimization Monte Carlo methods for sampling-based Stochastic Optimization Gersende FORT LTCI CNRS & Telecom ParisTech Paris, France Joint works with B. Jourdain, T. Lelièvre, G. Stoltz from ENPC and E. Kuhn from

More information

6 Markov Chain Monte Carlo (MCMC)

6 Markov Chain Monte Carlo (MCMC) 6 Markov Chain Monte Carlo (MCMC) The underlying idea in MCMC is to replace the iid samples of basic MC methods, with dependent samples from an ergodic Markov chain, whose limiting (stationary) distribution

More information

Harvard University. Harvard University Biostatistics Working Paper Series

Harvard University. Harvard University Biostatistics Working Paper Series Harvard University Harvard University Biostatistics Working Paper Series Year 2008 Paper 94 The Highest Confidence Density Region and Its Usage for Inferences about the Survival Function with Censored

More information

A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling. Christopher Jennison. Adriana Ibrahim. Seminar at University of Kuwait

A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling. Christopher Jennison. Adriana Ibrahim. Seminar at University of Kuwait A Search and Jump Algorithm for Markov Chain Monte Carlo Sampling Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Adriana Ibrahim Institute

More information

A spatio-temporal model for extreme precipitation simulated by a climate model

A spatio-temporal model for extreme precipitation simulated by a climate model A spatio-temporal model for extreme precipitation simulated by a climate model Jonathan Jalbert Postdoctoral fellow at McGill University, Montréal Anne-Catherine Favre, Claude Bélisle and Jean-François

More information

Bayesian Point Process Modeling for Extreme Value Analysis, with an Application to Systemic Risk Assessment in Correlated Financial Markets

Bayesian Point Process Modeling for Extreme Value Analysis, with an Application to Systemic Risk Assessment in Correlated Financial Markets Bayesian Point Process Modeling for Extreme Value Analysis, with an Application to Systemic Risk Assessment in Correlated Financial Markets Athanasios Kottas Department of Applied Mathematics and Statistics,

More information

New Bayesian methods for model comparison

New Bayesian methods for model comparison Back to the future New Bayesian methods for model comparison Murray Aitkin murray.aitkin@unimelb.edu.au Department of Mathematics and Statistics The University of Melbourne Australia Bayesian Model Comparison

More information

Estimating Bivariate Tail: a copula based approach

Estimating Bivariate Tail: a copula based approach Estimating Bivariate Tail: a copula based approach Elena Di Bernardino, Université Lyon 1 - ISFA, Institut de Science Financiere et d'assurances - AST&Risk (ANR Project) Joint work with Véronique Maume-Deschamps

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

Lecture 2 APPLICATION OF EXREME VALUE THEORY TO CLIMATE CHANGE. Rick Katz

Lecture 2 APPLICATION OF EXREME VALUE THEORY TO CLIMATE CHANGE. Rick Katz 1 Lecture 2 APPLICATION OF EXREME VALUE THEORY TO CLIMATE CHANGE Rick Katz Institute for Study of Society and Environment National Center for Atmospheric Research Boulder, CO USA email: rwk@ucar.edu Home

More information

Marginal Specifications and a Gaussian Copula Estimation

Marginal Specifications and a Gaussian Copula Estimation Marginal Specifications and a Gaussian Copula Estimation Kazim Azam Abstract Multivariate analysis involving random variables of different type like count, continuous or mixture of both is frequently required

More information

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling Professor Erik Sudderth Brown University Computer Science October 27, 2016 Some figures and materials courtesy

More information

Comparison of multiple imputation methods for systematically and sporadically missing multilevel data

Comparison of multiple imputation methods for systematically and sporadically missing multilevel data Comparison of multiple imputation methods for systematically and sporadically missing multilevel data V. Audigier, I. White, S. Jolani, T. Debray, M. Quartagno, J. Carpenter, S. van Buuren, M. Resche-Rigon

More information

Bayesian Methods for Estimating the Reliability of Complex Systems Using Heterogeneous Multilevel Information

Bayesian Methods for Estimating the Reliability of Complex Systems Using Heterogeneous Multilevel Information Statistics Preprints Statistics 8-2010 Bayesian Methods for Estimating the Reliability of Complex Systems Using Heterogeneous Multilevel Information Jiqiang Guo Iowa State University, jqguo@iastate.edu

More information

Multilevel Statistical Models: 3 rd edition, 2003 Contents

Multilevel Statistical Models: 3 rd edition, 2003 Contents Multilevel Statistical Models: 3 rd edition, 2003 Contents Preface Acknowledgements Notation Two and three level models. A general classification notation and diagram Glossary Chapter 1 An introduction

More information

Overall Objective Priors

Overall Objective Priors Overall Objective Priors Jim Berger, Jose Bernardo and Dongchu Sun Duke University, University of Valencia and University of Missouri Recent advances in statistical inference: theory and case studies University

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

Confidence Distribution

Confidence Distribution Confidence Distribution Xie and Singh (2013): Confidence distribution, the frequentist distribution estimator of a parameter: A Review Céline Cunen, 15/09/2014 Outline of Article Introduction The concept

More information

Data. Climate model data from CMIP3

Data. Climate model data from CMIP3 Data Observational data from CRU (Climate Research Unit, University of East Anglia, UK) monthly averages on 5 o x5 o grid boxes, aggregated to JJA average anomalies over Europe: spatial averages over 10

More information

Lecture 8: The Metropolis-Hastings Algorithm

Lecture 8: The Metropolis-Hastings Algorithm 30.10.2008 What we have seen last time: Gibbs sampler Key idea: Generate a Markov chain by updating the component of (X 1,..., X p ) in turn by drawing from the full conditionals: X (t) j Two drawbacks:

More information

The Bias-Variance dilemma of the Monte Carlo. method. Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel

The Bias-Variance dilemma of the Monte Carlo. method. Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel The Bias-Variance dilemma of the Monte Carlo method Zlochin Mark 1 and Yoram Baram 1 Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel fzmark,baramg@cs.technion.ac.il Abstract.

More information

Doing Bayesian Integrals

Doing Bayesian Integrals ASTR509-13 Doing Bayesian Integrals The Reverend Thomas Bayes (c.1702 1761) Philosopher, theologian, mathematician Presbyterian (non-conformist) minister Tunbridge Wells, UK Elected FRS, perhaps due to

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 4 Problem: Density Estimation We have observed data, y 1,..., y n, drawn independently from some unknown

More information

Down by the Bayes, where the Watermelons Grow

Down by the Bayes, where the Watermelons Grow Down by the Bayes, where the Watermelons Grow A Bayesian example using SAS SUAVe: Victoria SAS User Group Meeting November 21, 2017 Peter K. Ott, M.Sc., P.Stat. Strategic Analysis 1 Outline 1. Motivating

More information

Variational inference

Variational inference Simon Leglaive Télécom ParisTech, CNRS LTCI, Université Paris Saclay November 18, 2016, Télécom ParisTech, Paris, France. Outline Introduction Probabilistic model Problem Log-likelihood decomposition EM

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

Index. Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables.

Index. Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables. Index Pagenumbersfollowedbyf indicate figures; pagenumbersfollowedbyt indicate tables. Adaptive rejection metropolis sampling (ARMS), 98 Adaptive shrinkage, 132 Advanced Photo System (APS), 255 Aggregation

More information

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 EPSY 905: Intro to Bayesian and MCMC Today s Class An

More information

ntopic Organic Traffic Study

ntopic Organic Traffic Study ntopic Organic Traffic Study 1 Abstract The objective of this study is to determine whether content optimization solely driven by ntopic recommendations impacts organic search traffic from Google. The

More information

STAT 425: Introduction to Bayesian Analysis

STAT 425: Introduction to Bayesian Analysis STAT 425: Introduction to Bayesian Analysis Marina Vannucci Rice University, USA Fall 2017 Marina Vannucci (Rice University, USA) Bayesian Analysis (Part 2) Fall 2017 1 / 19 Part 2: Markov chain Monte

More information

A hidden semi-markov model for the occurrences of water pipe bursts

A hidden semi-markov model for the occurrences of water pipe bursts A hidden semi-markov model for the occurrences of water pipe bursts T. Economou 1, T.C. Bailey 1 and Z. Kapelan 1 1 School of Engineering, Computer Science and Mathematics, University of Exeter, Harrison

More information

eqr094: Hierarchical MCMC for Bayesian System Reliability

eqr094: Hierarchical MCMC for Bayesian System Reliability eqr094: Hierarchical MCMC for Bayesian System Reliability Alyson G. Wilson Statistical Sciences Group, Los Alamos National Laboratory P.O. Box 1663, MS F600 Los Alamos, NM 87545 USA Phone: 505-667-9167

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

EM Algorithm II. September 11, 2018

EM Algorithm II. September 11, 2018 EM Algorithm II September 11, 2018 Review EM 1/27 (Y obs, Y mis ) f (y obs, y mis θ), we observe Y obs but not Y mis Complete-data log likelihood: l C (θ Y obs, Y mis ) = log { f (Y obs, Y mis θ) Observed-data

More information

Nonparametric Drift Estimation for Stochastic Differential Equations

Nonparametric Drift Estimation for Stochastic Differential Equations Nonparametric Drift Estimation for Stochastic Differential Equations Gareth Roberts 1 Department of Statistics University of Warwick Brazilian Bayesian meeting, March 2010 Joint work with O. Papaspiliopoulos,

More information

MULTIVARIATE EXTREMES AND RISK

MULTIVARIATE EXTREMES AND RISK MULTIVARIATE EXTREMES AND RISK Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 27599-3260 rls@email.unc.edu Interface 2008 RISK: Reality Durham,

More information

ESTIMATING BIVARIATE TAIL

ESTIMATING BIVARIATE TAIL Elena DI BERNARDINO b joint work with Clémentine PRIEUR a and Véronique MAUME-DESCHAMPS b a LJK, Université Joseph Fourier, Grenoble 1 b Laboratoire SAF, ISFA, Université Lyon 1 Framework Goal: estimating

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

Session 5B: A worked example EGARCH model

Session 5B: A worked example EGARCH model Session 5B: A worked example EGARCH model John Geweke Bayesian Econometrics and its Applications August 7, worked example EGARCH model August 7, / 6 EGARCH Exponential generalized autoregressive conditional

More information