Mechatronics Engineering. Li Wen


 Chester Long
 1 years ago
 Views:
Transcription
1 Mechatronics Engineering Li Wen
2 Bioinspired robotdc motor drive Unstable system Mirko Kovac,EPFL
3 Modeling and simulation of the control system
4 Problems 1. Why we establish mathematical model of the control system? 2. Modeling methods and procedures? 3. How to create a mathematical model of the DC servo motor? 4. The simulation tool of the control system?
5 Contents 1 Significance of control system simulation analysis 2 Modeling methods and procedures 3 DC motor modeling examples 5 4 Analysis and correction for linear motion unit closedloop simulation Introduction to MATLAB /SIMULINK
6 Contents 1 Significance of control system simulation analysis 2 Modeling methods and procedures 3 DC motor modeling examples 5 4 Analysis and correction for linear motion unit closedloop simulation Introduction to MATLAB /SIMULINK
7 Establish the significance of the mathematical model By the specific physical problems, from a qualitative understanding of engineering problems to rise to the precise quantitative understanding of the key. Research and to analyze a mechanical control system, not only to qualitatively understand the working principle and characteristics of the system, but also quantitatively describe the system dynamic performance.
8 Basic concepts of mathematical models Mathematical description of the dynamic characteristics of the system: Because during the transition process, the system variable you want to change over time, thus describing the system appears not only in mathematical model of dynamic characteristics of the variable itself, but also contain all order derivatives of these variables, so the system of dynamic equations are differential equations, it is the most basic form representing mathematical model of the system.
9 Bioinspired soft robot _ slow response
10 Control system modeling approach First, analysis, starting from the physical or chemical laws, establishing mathematical model and experimental verification Two is an experimental method, by adding a certain forms of input signals to the system or component, evaluating output response for system or component, building mathematical models. This lesson uses analysis
11 Principle of establishing mathematical models Inexact: Theoretically none can be absolutely accurate mathematical expressions to describe a system because, in theory, any system is nonlinear, time and distribution parameters change, the random factors are present, the more complex the system, the situation is more complicated. Simplification: Ignore secondary factors, seize the main problem for modeling, quantitative analysis.
12 Mathematical model is divided into: Time Domain Model Complex domain model Frequency domain model Time domain model: Mathematical Model Types Advantages: it is describes the control system in the time domain, and has the advantage of an intuitive, accurate, all of the responses and can provide the system time information. Disadvantages: complex; hard to find system of structure parameters on performance of control system of general rules, cannot find improvement program is not easy on the system analysis and design.
13 Mathematical Model Types Complex domain models: It includes the transfer function and structure of the system. It demonstrates its characteristic of the system and of the input signal;it not only characterize the dynamic performance of the system, but can also affect the structure or the study of changes in system parameters on system performance Frequency domain model: Describes the frequency characteristics of the system, with a clear physical meaning, experimental methods are available to determine.
14 Mathematical Model Types Relationship between the three commonly used mathematical models Linear Systems Transfer function Rumsfeld Transform Differential Equations Fourier Transform Frequency Characteristics
15 Modeling steps 1. A linear system of equations: 1 determine the input and output of the system 2 The system is divided into several areas, from the input start signal is transmitted in the order, according to the laws of physics followed each variable (Newton's law, Kirchhoff's current and voltage law), etc., lists various aspects of linearization original equation; 2. For the establishment of differential equations, Laplace transform one by one, eliminating the intermediate variables, get the system transfer function model
16 Biomimetic robotdc drive Selfstable system Mirko Kovac,EPFL
17 Biomimetic robotdc drive Selfstable system with steering Mirko Kovac,EPFL
18 Contents 1 Significance of control system simulation analysis 2 Modeling methods and procedures 3 DC motor modeling examples 5 4 Analysis and correction for linear motion unit closedloop simulation Introduction to MATLAB /SIMULINK
19 DC modeling analysis Solution: armature controlled DC motor is essentially the work of the input electrical energy into mechanical energy, which is the Input of the armature voltage U a (t) generated armature current I a (t) in the armature circuit, and then by the current I a (t) and the excitation flux generated by the interaction of electromagnetic torque M m (t), to drag the load movement. Therefore, the equation of motion of the DC motor by the following three components. Armature circuit voltage balance equation Electromagnetic torque equation Turn the motor shaft from the balance equation 19
20 DC modeling analysis (1) According to Kirchhoff's voltage law, the armature winding voltage balance equation u i R L di E dt a a a a a a (1) Where, L a and R a were inductance (Henry) and the resistance of the armature windings (Ohm)
21 DC modeling analysis (2) When the rotation of the DC motor armature, the armature windings produce anti potential, it is generally proportional to the motor speed, i.e., d m Ea Ke dt (2) Where, E a is the back EMF (V), K e is a scaling factor (V.rad / s)
22 DC modeling analysis (3) the interaction between the armature current and the magnetic field to produce an electromagnetic torque. General electromagnetic torque is proportional to the armature current, namely: M m K i m a (3) Where M m is the electromagnetic torque (Nm), I a is the armature current (A), K m for the moment coefficient (Nm / A)
23 DC modeling analysis (4) for driving the electromagnetic torque to overcome the friction and load torque, assuming only consider the viscous friction is proportional to the speed, the DC motor torque balance equation 2 d m d m M m J m B () 2 m M c t dt dt The formula: J m The total moment of inertia of the motor shaft (Including the moment of inertia of the rotor and the load) 牛米.. 秒 2 m B m M () c t The angular displacement of the motor shaft (rad); As a viscous friction coefficient of the motor shaft The role of the applied load on the motor shaft torque 牛. 米 / 弧度 / 秒
24 DC modeling analysis m To find the angular velocity and load control model of the motor armature voltage U, namely the transfer function. We assume zero initial conditions in these kinds of Laplace Transform, respectively U s L I s s R I s E s a a a a a a E s K s a e m m m a M s K I s M s ( J S B ) s M s m m m m c
25 DC modeling analysis Erasing the armature current ia, and then take the armature voltage Ua is input, the angular velocity of the motor output shaft, i.e., m m s s. U s Whereby the DC motor can be controlled in the model, i.e., the transfer function is: a s 2 m Km (s) U s L J s ( L B J R ) s R B K K a a m a m m a a m e m
26 DC modeling analysis Created in MATLAB using the Simulink simulation model DC servo motor Structure
27 Li Wen et al, Beihang University
28 DC modeling analysis
29 Open Simulink
30 Modeling Overview of Linear Motion Units Linear motion units has flexibility and mechanical friction, etc., so it is virtually impossible to establish a precise mathematical model. We usually use approximate model, assuming driver and transmission is ideal rigid, and there is no elastic deformation
31 New Simulink model
32 The system block diagram of the various modules and drag it to the model file Pull in
33 Modeling of linear motion unit control system (2) Linear motion unit components Coupling Ball screw Reducer DC motor
34 The system block diagram of the various modules and drag it to the model file
35 The system block diagram of all the modules file and drag it to the model and adjust the layout and orientation
36 Connection
37 Variable and label
38 DC modeling analysis Substituting parameters L a,r a,j m,b m,k m,k e L a = 0.001Hery;R a = 1.2oum;J m = 1e5 kg.m 2 ;B m = 5e4;K m = 0.08N.m/A;K e = 0.08V.S/rad; Input signal: Amplitude of Input voltage U a is 1V, the frequency of square wave is 1Hz Amplitude of the interference torque Mf 0.01Nm, frequency of sinusoidal signal 1Hz Simulink block diagram to obtain arguments:
39 matlab m files for variable assignment
40 Generate input and load (or disturbance torque) signal generator Click on Run Amplitude of Input voltage is Ua 1V, the frequency of square wave is 1Hz Amplitude of the interference torque Mf 0.01Nm, frequency sinusoidal signal of 1Hz For example: motor Slip ring friction Produce
41 DC modeling analysis Judging from the simulation curve, the response curve is a cycle curve, is in response to a step input and Input of the linear superposition of the load cycle, from the curve to see the system is still stable, which can be from the poles and zeros of the transfer function are located to the left half plane verify get.
42 DC modeling analysis Necessary and sufficient conditions for stability of the system is necessary All the roots of the characteristic equation must be negative real part, that is all the roots in the complex plane of the left halfplane Root system characteristics 0.08 G(s) = e08 s^ e05 s Continuoustime transfer function i i 2 s 2 m Cm U s L J s ( L B J R ) s R B C C a a m a m m a a m e m
43 DC modeling analysis J m Impact on system performance Overshoot Jm=105 Jm=104 Jm=103 In three Jm, the system is stable, but smaller overshoot Jm more powerful; Jm greater the longer the rise time of the system.
44 DC modeling analysis B m impact on performance(b m bigger (output / input) becomes smaller, shorter adjustment time) Bm =1X104 Bm =5X104 Bm =2X103 The greater the damping coefficient, the smaller the value of the unit step response (speed / voltage value becomes smaller), the rise time becomes longer, but the time to reach steady state becomes shorter.
45 DC modeling analysis Load impact on performance Mc = 1Nm Mc = 2Nm Mc = 3Nm Load increase reduce the system response (moving speed), larger changes in the steadystate error of the system (openloop steadystate error is large), the adjustment time becomes longer, the rise time becomes long.
46 Contents 1 Significance of control system simulation analysis 2 Modeling methods and procedures 3 DC motor modeling examples 5 4 Analysis and correction for linear motion unit closedloop simulation Introduction to MATLAB /SIMULINK
47 Modeling Overview of linear motion units Model building Specify the slider velocity (unit: mm/s) as the input, and the slider actual speed (mm/s) as the output, establish a mathematic model for the linear motion unit speed control system.
48 Modeling of linear motion unit control system (1) Linear motion unit system components and parameters Rated voltage 24V BackEMF constant (Ke) v*s/rad Reduction ratio (i) 29:1 Amplifier (Ka) 2.4 Motor resistor (Ra) 21.6 欧 Torque constant (Km) N*m/A Motor inductance (La) Screw lead (p) 1.97mH 2mm Rotor moment of inertia (Jx) Equivalent damping (Bm) kg. m Screw diameter (d) 11.5mm Speed gain (Ka) v*s/rad Screw Length (L) Workbench mass (m) 540mm 0.315kg Equivalent moment of inertia of the motor shaft d ( ) 2 p d l m ( ) J e 7 kg m 2 m J x i 2
49 Modeling of linear motion unit control system 1. The relationship between the motor and the screw speed The actual relationship between the rotational speed of the motor shaft and the screw speed: ( i is reduction ratio and the value is 29) m o t t m Motor shaft speed t i t Actural speed of screw o
50 Modeling of linear motion unit control system 2. Modeling of DC servo motor
51 Modeling of linear motion unit control system 2. Modeling of DC servo motor Potential balance equation of armature windings: Relations between the counterelectromotive force and speed The relationship between the armature current and the armature torque is: Torque balance equation is:
52 Modeling of linear motion unit control system 3. Angular velocity feedback To constitute the load shaft speed control system, there must be speed feedback of load shaft, the error voltage can be obtained by velocity error: n t t n u t k t t a a n m is the input shaft speed of motor; k a u a k a is the speed feedback gain t t m
53 Modeling of linear motion unit control system Laplace transform of the above formula : m t i t o s i s M K i ( N m) m m a a u k () t L di R i dt a e m a a a d m(t) M m(t) J m Bm m (t) Mc(t) dt m o m m a M s K I s U s L I s s R I s k s a a a a a e (s) M s J s s B s M m m m m m c u t k t t a a n m u s k s s a a n m This equation describes the relationship between the input control voltage U and the rotational angular velocity of the drive shaft.
54 Modeling of linear motion unit control system Specify the slider velocity (unit: mm/s) as the input, and the slider actual speed (mm/s) as the output, establish a mathematic model for the linear motion unit speed control system. The above notation is expressed as the angular velocity, as the screw lead P is 2mm, we can Build relationships between line speed and angular velocity. o s V o P 2 Vo 2 o s P o t is input speed Vo is slider speed
55 Modeling of linear motion unit control system Build the system model in Simulink:
56 After determining the mathematical model of the system, you can use several different methods to analyze the dynamic performance and steadystate performance of the control system. Method: Simulation analysis of control systems Time domain analysis Frequency domain analysis.
57 Simulation analysis of control systems Dynamic performance and steadystate performance
58 Simulation analysis of control systems Input step signal (amplitude is 1) to analyze the timedomain response From the results, we can get that rise time, peak time and settling time are relatively small, although there is a certain system overshoot, but eventually stabilized, but there is an error between the input and output. Therefore, system stability and accuracy are not very well.
59 Simulation analysis of control systems Analyze the system frequency response, draw bode plot
60 Simulation analysis of control systems Analyze the system frequency response, draw Nyquist plot Conclusion: The system gain margin is infinite, phase margin is 71.8, system stability is very good.
61 Impacts on system when change parameters Impact on the performance of the screw lead 2mm 6mm 8mm In the openloop control, when lead increases, changes in steadystate error is large and the system response increases, rise time get lower.
62 Impacts on system when change parameters Impact on the performance of the screw lead 2mm 6mm 8mm In the openloop control, changes in lead will not change the dynamic characteristic.
63 Impacts on system when change parameters Impact on the performance of the reduction ratio In the openloop control, when the reduction ratio increases, system response time decreases
64 Impacts on system when change parameters Impact on the performance of the reduction ratio In the openloop control, changes in reduction ratio will not change the dynamic characteristic.
65 Impacts on system when change parameters Changing the system structure parameters, and analyze its impact on system performance
66 Impacts on system when change parameters Bode plot
67 Open Simulink
68 Contents 1 Significance of control system simulation analysis 2 Modeling methods and procedures 3 DC motor modeling examples 5 4 Analysis and correction for linear motion unit closedloop simulation Introduction to MATLAB /SIMULINK
69 biorobotics_fast response X0.1 Active control Rob Wood lab, Harvard University
70 New Simulink model
71 According to the system block diagram, and drag various modules to the model file Drag
72 According to the system block diagram, and drag various modules to the model file
73
74 Connection
75 Brought variables and mark
76 DC modeling analysis Brought parameters: L a,r a,j m,b m,k m,k e L a = 0.001H; R a = 1.2Ω; J m = 1e5 kg.m 2 ;B m = 5e4;K m = 0.08N.m/A; K e = 0.08V.S/rad; Input signal is: Square wave: Input voltage U a is 1V,frequency is 1Hz; Sin signal: Disturbance torque M f is 0.01N.m, frequency is 1Hz; Simulink block diagram:
77 Variable assignment in matlab m file
78 Generate input and load (or disturbance torque) signal using generator Run Input voltage U a : 1V, frequency 1Hz, of square wave. Disturbance torque M f is 0.01N.m, frequency 1Hz, of sin signal.
79 DC modeling analysis Judging from the simulation curve, the response curve is a cycle curve, which is a linear superposition response to a step input and periodic load input. From the curve to see the system is still stable, which can be verified from the transfer function poles and zeros are in the left half plane.
80
DC Motor Position: System Modeling
1 of 7 01/03/2014 22:07 Tips Effects TIPS ABOUT BASICS INDEX NEXT INTRODUCTION CRUISE CONTROL MOTOR SPEED MOTOR POSITION SUSPENSION INVERTED PENDULUM SYSTEM MODELING ANALYSIS DC Motor Position: System
More informationLesson 17: Synchronous Machines
Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines
More informationExample: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and OpenLoop Response
Page 1 of 5 Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and OpenLoop Response Physical Setup A common actuator in control systems is the
More informationQuanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual
Quanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant
More informationThe basic principle to be used in mechanical systems to derive a mathematical model is Newton s law,
Chapter. DYNAMIC MODELING Understanding the nature of the process to be controlled is a central issue for a control engineer. Thus the engineer must construct a model of the process with whatever information
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationMechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation
Mechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation Dr. Kevin Craig Greenheck Chair in Engineering Design & Professor of Mechanical Engineering Marquette University K.
More informationEDEXCEL NATIONALS UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3  ELECTRO MAGNETIC INDUCTION
EDEXCEL NATIONALS UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No. 3  ELECTRO MAGNETIC INDUCTION NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted
More informationJRE SCHOOL OF Engineering
JRE SCHOOL OF Engineering Class Test1 Examinations September 2014 Subject Name Electromechanical Energy ConversionII Subject Code EEE 501 Roll No. of Student Max Marks 30 Marks Max Duration 1 hour Date
More informationINC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II
INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II Asst. Prof. Dr.Ing. Sudchai Boonto Department of Control Systems and Instrumentation Engineering King Mongkut s University
More informationRotary Motion Servo Plant: SRV02. Rotary Experiment #01: Modeling. SRV02 Modeling using QuaRC. Student Manual
Rotary Motion Servo Plant: SRV02 Rotary Experiment #01: Modeling SRV02 Modeling using QuaRC Student Manual SRV02 Modeling Laboratory Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1
More informationOverview of motors and motion control
Overview of motors and motion control. Elements of a motioncontrol system Power upply Highlevel controller owlevel controller Driver Motor. Types of motors discussed here; Brushed, PM DC Motors Cheap,
More informationEE 410/510: Electromechanical Systems Chapter 4
EE 410/510: Electromechanical Systems Chapter 4 Chapter 4. Direct Current Electric Machines and Motion Devices Permanent Magnet DC Electric Machines Radial Topology Simulation and Experimental Studies
More informationRevision Guide for Chapter 15
Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on
More informationInternational Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR
Scientific Journal of Impact Factor(SJIF): 3.134 eissn(o): 23484470 pissn(p): 23486406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April 2015 SIMULATION
More informationModelling and simulation of a measurement robot
Modellbygge och Simulering, TSRT62 Modelling and simulation of a measurement robot Denna version: 4 oktober 2017 Servo motor Strömregulator + u + i(t) [A] r (t) [V] u(t) [V] Arm Skruvtransmission Remtransmission
More informationLaboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint
Laboratory 11 State Feedback Controller for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full state feedback controller for endpoint position control
More informationSCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS. Transient Stability LECTURE NOTES SPRING SEMESTER, 2008
SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS LECTURE NOTES Transient Stability SPRING SEMESTER, 008 October 7, 008 Transient Stability Transient stability refers to the ability of a synchronous
More informationDynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application
797 Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application Ritu Tak 1, Sudhir Y Kumar 2, B.S.Rajpurohit 3 1,2 Electrical Engineering, Mody University of Science & Technology,
More informationAn Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy
An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 00 Contents Transformer. An overview of the device. Principle of operation of a singlephase transformer 3.
More informationME 375 Final Examination Thursday, May 7, 2015 SOLUTION
ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled
More informationElctromagnetic hammer with impact
Elctromagnetic hammer with impact There are many technical systems that are based on the principles of construction of an Electromagnetic hammer with impact. The Figure shown 4.42 shows the sketch of such
More informationChapter 4. Synchronous Generators. Basic Topology
Basic Topology Chapter 4 ynchronous Generators In stator, a threephase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.
More informationMECH 3140 Final Project
MECH 3140 Final Project Final presentation will be held December 78. The presentation will be the only deliverable for the final project and should be approximately 2025 minutes with an additional 10
More informationSynchronous Machines
Synchronous Machines Synchronous generators or alternators are used to convert mechanical power derived from steam, gas, or hydraulicturbine to ac electric power Synchronous generators are the primary
More informationPerformance of Feedback Control Systems
Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steadystate Error and Type 0, Type
More informationLESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES
ET 332b Ac Motors, Generators and Power Systems LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES 1 LEARNING OBJECTIVES After this presentation you will be able to: Interpret alternator phasor diagrams
More informationAC Induction Motor Stator Resistance Estimation Algorithm
7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November 2123, 27 86 AC Induction Motor Stator Resistance Estimation Algorithm PETR BLAHA
More informationCHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System
CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages
More informationMECHATRONICS ENGINEERING TECHNOLOGY. Modeling a Servo Motor System
Modeling a Servo Motor System Definitions Motor: A device that receives a continuous (Analog) signal and operates continuously in time. Digital Controller: Discretizes the amplitude of the signal and also
More informationDefinition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic
Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Force Motor action Generator action Types and parts
More informationFrom now, we ignore the superbar  with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ
From now, we ignore the superbar  with variables in per unit. ψ 0 L0 i0 ψ L + L L L i d l ad ad ad d ψ F Lad LF MR if = ψ D Lad MR LD id ψ q Ll + Laq L aq i q ψ Q Laq LQ iq 41 Equivalent Circuits for
More informationRLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is
RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge
More informationDC Shunt Excited Motor
A DC motor has DC hunt Excited Motor A constant (DC) magnetic field for the stator, and A constant (DC) magnetic field in the rotor, That switches as the motor rotates. This switching results in a constant
More informationSynchronous Machines
Synchronous Machines Synchronous Machines n 1 Φ f n 1 Φ f I f I f I f damper (runup) winding Stator: similar to induction (asynchronous) machine ( 3 phase windings that forms a rotational circular magnetic
More informationModelling and Control of BallPlate System
Modelling and Control of BallPlate System Final Project Report Mohammad Nokhbeh and Daniel Khashabi Under the supervision of Dr.H.A.Talebi Amirkabir University of Technology, 2011 Abstract Abstract In
More informationControl of an Induction Motor Drive
Control of an Induction Motor Drive 1 Introduction This assignment deals with control of an induction motor drive. First, scalar control (or VoltsperHertz control) is studied in Section 2, where also
More informationScanned by CamScanner
Scanned by CamScanner Scanned by CamScanner t W I w v 6.00fall 017 Midterm 1 Name Problem 3 (15 pts). F the circuit below, assume that all equivalent parameters are to be found to the left of port
More informationSAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015
FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequencydomain analysis and control design (15 pt) Given is a
More informationECE 325 Electric Energy System Components 7 Synchronous Machines. Instructor: Kai Sun Fall 2015
ECE 325 Electric Energy System Components 7 Synchronous Machines Instructor: Kai Sun Fall 2015 1 Content (Materials are from Chapters 1617) Synchronous Generators Synchronous Motors 2 Synchronous Generators
More informationChapter 23 Magnetic Flux and Faraday s Law of Induction
Chapter 23 Magnetic Flux and Faraday s Law of Induction 1 Overview of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators
More informationSensorless Field Oriented Control of Permanent Magnet Synchronous Motor
International Journal of Current Engineering and Technology EISSN 2277 4106, PISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Sensorless
More informationTransient Analysis of Separately Excited DC Motor and Braking of DC Motor Using Numerical Technique
Journal homepage: www.mjret.in ISSN:23486953 Transient Analysis of Separately Excited DC Motor and Braking of DC Motor Using Numerical Technique Pavan R Patil, Javeed Kittur, Pavankumar M Pattar, Prajwal
More informationSurvey of Methods of Combining Velocity Profiles with Position control
Survey of Methods of Combining Profiles with control Petter Karlsson Mälardalen University P.O. Box 883 713 Västerås, Sweden pkn91@student.mdh.se ABSTRACT In many applications where some kind of motion
More informationIntroduction. Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy
Introduction Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy What does AC and DC stand for? Electrical machines Motors
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2003 Experiment 17: RLC Circuit (modified 4/15/2003) OBJECTIVES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Spring 3 Experiment 7: R Circuit (modified 4/5/3) OBJECTIVES. To observe electrical oscillations, measure their frequencies, and verify energy
More informationEE 742 Chapter 3: Power System in the Steady State. Y. Baghzouz
EE 742 Chapter 3: Power System in the Steady State Y. Baghzouz Transmission Line Model Distributed Parameter Model: Terminal Voltage/Current Relations: Characteristic impedance: Propagation constant: π
More information06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance.
Chapter 06 Feedback 06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance. Lesson of the Course Fondamenti di Controlli Automatici of
More informationLab 11  Free, Damped, and Forced Oscillations
Lab 11 Free, Damped, and Forced Oscillations L111 Name Date Partners Lab 11  Free, Damped, and Forced Oscillations OBJECTIVES To understand the free oscillations of a mass and spring. To understand how
More informationDynamic Modeling of Rotary Double Inverted Pendulum Using Classical Mechanics
ISBN 9789384468 Proceedings of 5 International Conference on Future Computational echnologies (ICFC'5) Singapore, March 93, 5, pp. 963 Dynamic Modeling of Rotary Double Inverted Pendulum Using Classical
More information13. Faraday s Law. S. G. Rajeev. March 3, 2009
13. Faraday s Law S. G. Rajeev March 3, 009 1 Electromotive Force If a coil moves (or rotates) near a magnet, a current in induced on it, even if it is not connected to a battery. That means an electric
More informationFast Seek Control for Flexible Disk Drive Systems
Fast Seek Control for Flexible Disk Drive Systems with Back EMF and Inductance Chanat Laorpacharapan and Lucy Y. Pao Department of Electrical and Computer Engineering niversity of Colorado, Boulder, CO
More informationSome tools and methods for determination of dynamics of hydraulic systems
Some tools and methods for determination of dynamics of hydraulic systems A warm welcome to the course in Hydraulic servotechniques! The purpose of the exercises given in this material is to make you
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationFORMULAS FOR MOTORIZED LINEAR MOTION SYSTEMS
FOR MOTORIZED LINEAR MOTION SYSTEMS Haydon Kerk Motion Solutions Pittman Motors : 203 756 7441 : 267 933 2105 SYMBOLS AND UNITS Symbol Description Units Symbol Description Units a linear acceleration m/s
More informationLOCOG DC Gearmotors. Series GM8000. Series GM9000. Series GM BULLETIN LCG Series GM8000, GM9000, GM Power Your Ideas
BULLETIN LCG Series GM8, GM9, GM149 LOCOG DC Gearmotors Pittman brand LOCOG brushcommutated DC gearmotors offer smooth, quiet operation and long life. LOCOG gearmotors feature sintered steel spur gears
More informationThe simplest type of alternating current is one which varies with time simple harmonically. It is represented by
ALTERNATING CURRENTS. Alternating Current and Alternating EMF An alternating current is one whose magnitude changes continuously with time between zero and a maximum value and whose direction reverses
More informationBasics of rotordynamics 2
Basics of rotordynamics Jeffcott rotor 3 M A O a rigid rotor disk rotates at angular frequency W massless shaft acts as a spring restoring displacements disk can move only in the plane defined by axes
More informationAnalysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System
Journal of Magnetics 18(3), 250254 (2013) ISSN (Print) 12261750 ISSN (Online) 22336656 http://dx.doi.org/10.4283/jmag.2013.18.3.250 Analysis and Experiments of the Linear Electrical Generator in Wave
More informationChapter 3 AUTOMATIC VOLTAGE CONTROL
Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide direct current to the field winding of the synchronous generator. The excitation
More informationFUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT
http:// FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT 1 Ms.Mukesh Beniwal, 2 Mr. Davender Kumar 1 M.Tech Student, 2 Asst.Prof, Department of Electronics and Communication
More informationPower System Operations and Control Prof. S.N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur. Module 3 Lecture 8
Power System Operations and Control Prof. S.N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur Module 3 Lecture 8 Welcome to lecture number 8 of module 3. In the previous
More informationApplication of Neuro Fuzzy Reduced Order Observer in Magnetic Bearing Systems
Application of Neuro Fuzzy Reduced Order Observer in Magnetic Bearing Systems M. A., Eltantawie, Member, IAENG Abstract Adaptive NeuroFuzzy Inference System (ANFIS) is used to design fuzzy reduced order
More informationθ α W Description of aero.m
Description of aero.m Determination of the aerodynamic forces, moments and power by means of the blade element method; for known mean wind speed, induction factor etc. Simplifications: uniform flow (i.e.
More informationReview of Basic Electrical and Magnetic Circuit Concepts EE
Review of Basic Electrical and Magnetic Circuit Concepts EE 442642 Sinusoidal Linear Circuits: Instantaneous voltage, current and power, rms values Average (real) power, reactive power, apparent power,
More informationCHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS
47 CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 5.1 INTRODUCTION This chapter describes the simulation model and experimental set up used for the fault analysis. For the simulation set up, the
More informationMo de ling, Ide nti cat ion, and Control of a DCServomotor
Mo de ling, Ide nti cat ion, and Control of a DCServomotor Concepts emphasized: Dynamic modeling, timedomain analysis, system identi cation, and positionplusvelocity feedback control. 1. Introduction
More informationRotary Inverted Pendulum
Rotary Inverted Pendulum Eric Liu 1 Aug 2013 1 1 State Space Derivations 1.1 Electromechanical Derivation Consider the given diagram. We note that the voltage across the motor can be described by: e b
More informationChapter 5 HW Solution
Chapter 5 HW Solution Review Questions. 1, 6. As usual, I think these are just a matter of text lookup. 1. Name the four components of a block diagram for a linear, timeinvariant system. Let s see, I
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More informationIntroduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationPID Control. Objectives
PID Control Objectives The objective of this lab is to study basic design issues for proportionalintegralderivative control laws. Emphasis is placed on transient responses and steadystate errors. The
More informationON THE PARAMETERS COMPUTATION OF A SINGLE SIDED TRANSVERSE FLUX MOTOR
ON THE PARAMETERS COMPUTATION OF A SINGLE SIDED TRANSVERSE FLUX MOTOR Henneberger, G. 1 Viorel, I. A. Blissenbach, R. 1 Popan, A.D. 1 Department of Electrical Machines, RWTH Aachen, Schinkelstrasse 4,
More informationContents. Dynamics and control of mechanical systems. Focus on
Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies
More information10 Measurement of Acceleration, Vibration and Shock Transducers
Chapter 10: Acceleration, Vibration and Shock Measurement Dr. Lufti AlSharif (Revision 1.0, 25/5/2008) 1. Introduction This chapter examines the measurement of acceleration, vibration and shock. It starts
More informationLab Experiment 2: Performance of First order and second order systems
Lab Experiment 2: Performance of First order and second order systems Objective: The objective of this exercise will be to study the performance characteristics of first and second order systems using
More informationFuzzy modeling and control of rotary inverted pendulum system using LQR technique
IOP Conference Series: Materials Science and Engineering OPEN ACCESS Fuzzy modeling and control of rotary inverted pendulum system using LQR technique To cite this article: M A Fairus et al 13 IOP Conf.
More informationAP Physics C. Magnetism  Term 4
AP Physics C Magnetism  Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world
More informationCHAPTER 7 STEADYSTATE RESPONSE ANALYSES
CHAPTER 7 STEADYSTATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of
More informationControl of a Ball and Beam System
Control of a Ball and Beam System Wei Wang School of Mechanical Engineering The University of Adelaide South Australia 55 AUSTRALIA rd Submitted for the degree of Advanced Master on the 5 June, 27 Abstract
More informationGet Discount Coupons for your Coaching institute and FREE Study Material at ELECTROMAGNETIC INDUCTION
ELECTROMAGNETIC INDUCTION 1. Magnetic Flux 2. Faraday s Experiments 3. Faraday s Laws of Electromagnetic Induction 4. Lenz s Law and Law of Conservation of Energy 5. Expression for Induced emf based on
More informationPhysics 2B Winter 2012 Final Exam Practice
Physics 2B Winter 2012 Final Exam Practice 1) When the distance between two charges is increased, the force between the charges A) increases directly with the square of the distance. B) increases directly
More informationDr. Fritz Wilhelm page 1 of 13 C:\physics\230 lecture\ch31 Faradays law.docx; 5/3/2009
Dr. Fritz Wilhelm page 1 of 13 C:\physics\3 lecture\ch31 Faradays law.docx; 5/3/9 Homework: See website. Table of Contents: 31.1 Faraday s Law of Induction, 31. Motional emf and Power, 4 31.a Transformation
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3  MAGNETISM and INDUCTION
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 3  MAGNETISM and INDUCTION 3 Understand the principles and properties of magnetism Magnetic field:
More informationINSTRUMENTAL ENGINEERING
INSTRUMENTAL ENGINEERING Subject Code: IN Course Structure Sections/Units Section A Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Section B Section C Section D Section E Section F Section G Section H Section
More informationGLOSSARY OF PHYSICS TERMS. vu t. a =
GLOSSARY OF PHYSICS TERMS Scalar: A quantity that has magnitude only. Vector: A quantity that has magnitude and direction. Speed is the distance travelled per unit time. OR the rate of change of distance.
More informationFundamentals of Electric Circuits, Second Edition  Alexander/Sadiku
Chapter 3, Problem 9(8). Find V x in the network shown in Fig. 3.78. Figure 3.78 Chapter 3, Solution 9(8). Consider the circuit below. 2 Ω 2 Ω j 8 30 o I j 4 j 4 I 2 j2v For loop, 8 30 = (2 j4)i ji 2
More informationEngineering Science. 1 Be able to determine the behavioural characteristics of elements of static engineering systems
Unit 2: Engineering Science Unit code: L/601/1404 QCF level: 4 Credit value: 15 Aim This unit aims to provide learners with an understanding of the mechanical and electrical principles that underpin mechanical
More informationOptimization of PI Parameters for Speed Controller of a Permanent Magnet Synchronous Motor by using Particle Swarm Optimization Technique
Optimization of PI Parameters for Speed Controller of a Permanent Magnet Synchronous Motor by using Particle Swarm Optimization Technique Aiffah Mohammed 1, Wan Salha Saidon 1, Muhd Azri Abdul Razak 2,
More informationRobust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control
Available online at www.sciencedirect.com ScienceDirect Energy Procedia 88 (2016 ) 867 873 CUE2015Applied Energy Symposium and Summit 2015: ow carbon cities and urban energy systems Robust Speed Controller
More informationUnit 8: Electromagnetism
Multiple Choice Portion Unit 8: Electromagnetism 1. Four compasses are placed around a conductor carrying a current into the page, as shown below. Which compass correctly shows the direction of the magnetic
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationFlux: Examples of Devices
Flux: Examples of Devices xxx Philippe Wendling philippe.wendling@magsoftflux.com Create, Design, Engineer! www.magsoftflux.com www.cedrat.com Solenoid 2 1 The Domain Axisymmetry Open Boundary 3 Mesh
More informationDynamic Tests on Ring Shear Apparatus
, July 13, 2015, London, U.K. Dynamic Tests on Ring Shear Apparatus G. Di Massa Member IAENG, S. Pagano, M. Ramondini Abstract Ring shear apparatus are used to determine the ultimate shear strength of
More informationLecture 1: Induction Motor
1 / 22 Lecture 1: Induction Motor ELECE8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Aalto University School of Electrical Engineering Spring 2016 2 / 22 Learning Outcomes
More informationSRV02Series Rotary Experiment # 7. Rotary Inverted Pendulum. Student Handout
SRV02Series Rotary Experiment # 7 Rotary Inverted Pendulum Student Handout SRV02Series Rotary Experiment # 7 Rotary Inverted Pendulum Student Handout 1. Objectives The objective in this experiment is
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 4.8kg block attached to a spring executes simple harmonic motion on a frictionless
More informationLecture Sound Waves Review. Physics Help Q&A: tutor.leiacademy.org. Force on a Charge Moving in a Magnetic Field
Lecture 1101 Sound Waves Review Physics Help Q&A: tutor.leiacademy.org Force on a Charge Moving in a Magnetic Field A charge moving in a magnetic field can have a magnetic force exerted by the Bfield.
More informationFlux Leakage Tests for the Marinov Motor
Flux Leakage Tests for the Marinov Motor David Dameron * Introduction Several tests are presented for evaluating the effects of flux leakage in the Marinov Motor. The conclusion is that the leakage may
More information