Protocol for drain current measurements

Size: px
Start display at page:

Download "Protocol for drain current measurements"

Transcription

1 Protocol for drain current measurements 1 Basics: the naive model of drain current A beam of intensity I (number of photons per unit area) and cross section impinges with a grazing angle Φ on a sample. Neglecting all the effects of reflection/refraction/multiple interference, and being Λ the electron free collision path, the excited volume contributing to the drain current can be written as V sin, (.1) which gives, within a linear approximation (i.e. di Idz ), for the drain current Y I IV, (.) sin where is the optical absorption coefficient and is the function converting the absorbed photon into the electrons contributing to drain current. In the case that the reflectivity R of the sample is not negligible, the drain current is given by Y I 1 R V. (.3) The reflectivity of the sample depends on the degree of linear polarization 1 P of the incoming light, and is given by 1P P1P R R R, (.4) where the reflectivities and P are related to the real and imaginary part of the refraction index n n ik by and R sin n cos sin n cos P n cos n sin R n cos n sin (.5). (.6) Being that the extinction coefficient k is related to the absorption coefficient by 4 k, (.7) and the refraction index (real part) n is related to the extinction coefficient k by the KK relations, the determination of the absorption coefficient by a drain current measurement becomes more complicated. As can be seen from Figure 1.1, at the carbon K edge, at around 84 ev, the reflectivity of an ideal Ag mirror

2 (with negligible roughness) is below 1% and can be neglected for angles greater 1 degrees. For angles below 1 degrees, the measurement of reflectivity of the sample should be done. Figure 1.1: alculated reflectivity of an ideal Ag mirror at photon energy = 84 ev as a function of the grazing angle. Let us suppose the case of an experiment whose goal is the measure of the optical absorption coefficient α a of an overlayer, with electron free collision path Λ, deposited onto a semi-infinite substrate of optical absorption coefficient α s, with electron free collision path Λ s. Note: the substrate absorption coefficient is supposed to be flat, i. e. ( ) cost. Otherwise or a numerical correction (f.i. by Henke table, tabulated cross section) or a third calibration measurement is needed to correct for the shape of the substrate absorption coefficient. The measurement proceeds in two steps. First step: measurement of substrate drain current, Y O, before depositing the overlayer (the incoming flux is simultaneously monitored for normalization/comparison purposes by measuring the drain current, W O, of a tungsten mesh. ee also below). In summary the result of the measurement can be written

3 Y, ti, t 1 R ; I, t I ( ) f O t (.8) sin with a mesh drain current W (, t ), where t is the instant at which the O measurement is taken. Y, t Let us introduce also the quantity Y, t O of use in the data O W, t O reduction (note that Y (, t) being the ratio of two currents, is an a-dimensional O quantity). Moreover by knowing at one energy point (e.g. from Henke tables) and measuring independently (e.g. by a calibrated photodiode I(, t) ) the values of the quantity in the Y (, t) I (, t) ( ) O sin sin can be determined. econd step: it consists in the measurement of the drain current Y A, in presence of the overlayer of thickness d (the incoming flux is simultaneously monitored for normalization/comparison purposes by measuring the drain current, W A, of a tungsten mesh). Two cases must be considered a) overlayer thickness d The drain current is given, neglecting reflectance, by Y, t I, t d I, t ( d), (.9) sin a a sin s s s with a mesh drain current W,t, where the optical absorption in the overlayer can be neglected disregarding the absorption of I in the adsorbate layer. ividing by the drain current measured in the step 1 (absence of overlayer) and utilizing the mesh currents, W O, t and W, t, for relative normalization one obtains I (, t ) I (, t ) d ( d) a a s s s Y (, t ) W (, t ) sin W (, t ) sin Y (, t ) I (, t) O ( ) W (, t) sin O (.1) I (, t ) I (, t ) d a a ( d s ) s s W (, t ) W (, t ) I (, t) ( ) W (, t) O

4 I (, t) I ( ) f ( t) Introducing the relations, where I ( ) is the photon I (, t ) I ( ) f ( t) distribution due to source plus transport optics and f(t) is the function taking into account the time dependence of such distribution (e.g. due to time decay, fluctuations etc.), the above expression becomes I ( ) f( t ) I ( ) f( t ) d ( d) a a s s s Y (, t ) I ( ) f( t ) I ( ) f( t) W W Y (, t ) I ( ) f( t) O ( ) I ( ) f( t) W 1 1 d ( d ) a a s s s d ( ) ( d) ( ) W W a a s s s 1 ( ) ( ) W d d a d d a a ( ) ( ) (.11) d This expression shows that, through the known coefficient ( ), the ratio of the two measured drain currents is proportional to the absorption coefficient of the overlayer plus a constant term, also in principle known. In the case that reflectivity of the substrate is not negligible, the reflectivity of the sample changes with the addition of adsorbate. Then, the ratio between the drain current in step and 1 has to take into account the reflectivity measured only on the substrate R and on substrate + molecule R (is shown in Fig. 3 the difference between them). Y (, t ) d 1R d 1R a (.1) a Y (, t ) ( ) 1R 1R O The reflectivity of the substrate + adsorbate depends on the substrate and overlayer optical constants. The reflectivity of the system can be calculated by 1P P 1P the equation R R R, where the reflectivity and P are given by the transmittance and reflectance Fresnel coefficients related to the interface vacuum-adsorbate and adsorbate-substrate. sp, sp, sp, r a tva rva expid na sin sp, P, R r Va. (.13) sp, sp, 1rVa ra expid na sin

5 The variation of calculated reflectivity of the sample as the thickness is shown in Figure 1. and Figure 1.3 in the case of an Ag sample + a H 14 layer with increasing thickness. Figure 1.: alculated reflectivity of on an ideal Ag mirror + a H 14 layer with different thickness as a function of the grazing angle at photon energy = 84 ev. The calculation was done at the carbon K edge at 84 ev and taking as parameter P=. The figures show that at grazing angles, where the substrate reflectivity is not negligible, the variation of reflectivity changes significantly (also with interference effects).

6 Figure 1.3: The same as Fig. but for low grazing incidence angles. b) overlayer thickness d At these coverages, the contribution of the substrate can be considered d negligible, the constant term vanishes and the drain current ratio is proportional to the overlayer absorption coefficient I ( ) f( t ) 1 a a a a Y (, t ) I ( ) f( t ) W W a a. (.14) Y (, t ) I ( ) f( t) 1 ( ) ( ) O ( ) I ( ) f( t) W W Taking into account reflectivity, this ratio becomes Y (, t ) 1R a a. (.15) Y (, t ) ( ) 1 R Experimental: error evaluation O Let s evaluate the error present in the determination of the ratio between the drain current from the sample I and the current from the monitor (mesh) W.

7 The error of this measure is given by the usual error propagation, where W are shown in Figure 1.4 and Figure 1.5: I and f f f I W I W. (.16) Figure 1.4: Noise in drain current measurements.

8 Figure 1.5: Noise in mesh current measurements. Usually the signal of the monitor is lower then that of the sample and we can assume I W (.17) and the ratio is given by I W f W W. (.18) Then, the error in the ratio between drain and monitor is given by 1 1W f I W W 4 W. (.19) I W W 4 W If the same instrument (or two equal instruments) is used for the measure of I and of W, then we can assume that the errors in the two measures are the same: inst 1 f 1 1, (.) W 4 W

9 being σ inst the error of the instrument. Equations (.16) and (.) show that the error is minimum when the difference in magnitude of the two signals is, and it is f inst 5 W 4 (.1)

10 ata analysis: smoothing with splines and energy shift The data reduction shows little energy shifts due or to the grating position or to source movements. Then, the spectra analysis requires before a smoothing and then, often, a manual shift that permits to overlap them correctly. Energy shifts generally can be related to the uncertainty in the reading of the position of the grating axis. In the case of the carbon K edge, at 84 ev, for example, the encoder resolution corresponds to about 6 mev. Another possible cause of energy shift between spectra could be the movement of the light source The formula that relates the variation Δ to the energy shift ΔE is E cos E. (.) cnqp1 EXP The algorithm for the smoothing with splines makes the minimization of the quantity among all the functions x n g x dx, (.3) x g x for which n g xi yi i, (.4) i where gx i is the value of the smoothing spline curve at x i, y i is the is the standard deviation, and is the smoothing measured value at x i, i factor. The number of point n for the smoothed signal can be chosen arbitrary. The σ s are essentially the instrumental errors of the ammeters. The best estimates we have for them are: 13 1 A for Keithley 1 for drain current 14 1 A for Keithley for mesh current The smoothing factor is 1.. One starts interpolating the data using these values producing a curve with about points. Then the smoothing can be refined changing and/or the number of points for the output array. The results of this smoothing procedure on the signal from the mesh is shown in Figure.1 and in Figure...

11 Figure.1: smoothing of the mesh current data for scan #41. Figure.: zoom of the Figure.1. In order to take into account the possible photon energy shift between the two scans, the signals from the meshes, smoothed with the described procedure, have been compared.

12 Figure.3: comparison of the mesh signals. The minima of the curves, at energies around 85.3 ev, have been fitted with two Gaussians (Figure.4): the difference of their positions give the energy shift of the photon, since we can consider that the mesh is passivated and is stable in time. Figure.4: gaussian fit of the minima of the mesh signals.

13 The values for the centers of the two Gaussians are: Emin ev. Emin ev The difference is ΔE =.6 ev. An estimation of the same order of magnitude is obtained starting the analysis from the signal of the BPM. Figure.5: variation of the value, as consequence of a movement of the beam at the entrance of the beamline, between the two scans. In the interval about 85 ev (from 84 and 86 ev), the mean values of are.713 and.7. Therefore Δ =.443. and then results ΔE = -.357, close to the value obtained after the spline procedure.

14 3 Angular dependence of the intensity of an emitting dipole In the reference frame of the laboratory the electric field of the radiation has the following form: itkr EL EH e 1. (.5) i e In the reference system of the sample, the components of the electric field can be obtained using rotations around X axis (+ψ ) and around the Y axis (-θ M ) (in this order): cosm sinm 1 itkr E EHe 1 cos sin 1 i sinm cos M sin cos e i sinm e cos sin, (.6) itkr i Ee H cos e sin i cosm e cos sin where M and are both positive quantities. Note that the term k r is invariant under rotations since both vectors rotate in the same way. Let us suppose we want to measure a physical quantity of the sample represented by a vector p, which can be, for example, the direction of a bonding. What we really measure is some signal proportional to f E p i I. (.7) E Therefore we must evaluate E p EpEp *. p can be expressed, in the reference system of the sample, in polar coordinates as: sin cos p p sin sin cos itkr Ep pehe asinm sincos cosm cosb sin sin, (.8) where i a e cos sin. (.9) i b cos e sin It results * itkr * * Ep pehe a sinm sincos cosm cosb sin sin (.3) The product of (.8) and (.3) gives

15 * * E p p EH aa sinm sincos cosm cos bb sin sin (.31) Let s calculate separately the terms * * sinm sincos cosmcossin sinab ba * * aa, bb, and * * ab (note that ba * ab * * i i aa cos sin cos sin e e cos sin cos sin cos i i bb cos sin cos sin e e * cos sin cos sin cos * i i ). (.3) (.33) ab cos sin 1 e cos e sin (.34) ba cos sin 1 e cos e sin (.35) * i i ombining (.34) and (.35) we obtain * * ab ba cos sin 1 cos cos sin Finally we have: Ep p E H. (.36) cos sin cos sincossinm sincos cosm cos cos sin cos sincossin sin cos sin 1cos cos sin sinm sincos cosm cossin sin Let us examine some limit cases: Pure circular polarization In this case 1 and. The expression (.37) reduces to: Ep p E sin sincos cos cos sin sin, (.38) H M M i.e. the signal is independent from the position of the chamber. Pure linear polarization For linear polarization is. The (.37) becomes Ep p E sin sin sincos cos cos cos sin sin H M M cos sin sinm sincos cosm cos sin sin Ep p E sin sin sin cos cos cos cos sin sin H M M (.39) (.37)

16 Horizontal chamber It is. Then Ep p E H sin M sin cos cos M cos sin sin sin sincos sin sincos cos cos M M (.4) Vertical chamber It is. Then Ep p E H sin M sin cos cos M cos sin sin sin sincos sin sincos cos cos M M (.41) In the following figure is shown the aspect of four different values of ε. E p as function of for Figure 3.1: calculated dipole intensity as a function of for 9. c If during the measurements I use only the central part of the beam, on the sample arrives an equal amount of light where and light with

17 , indicating with the changing in the phase induced by the optics of the beamline. Therefore the signal is composed by I I I ince it turns out that cos sin, cos sin I I I I (.4) Figure 3.: calculated intensity as a function of for 11. c Figure 3.3: calculated intensity as a function of for 7 c

18 Figure 3.4: um of the intensities calculated for the two cases 7 and 11.

EELS, Surface Plasmon and Adsorbate Vibrations

EELS, Surface Plasmon and Adsorbate Vibrations EELS, Surface Plasmon and Adsorbate Vibrations Ao Teng 2010.10.11 Outline I. Electron Energy Loss Spectroscopy(EELS) and High Resolution EELS (HREELS) II. Surface Plasmon III. Adsorbate Vibrations Surface

More information

Introduction to Near Edge X- ray Absorption Fine Structure of Molecules Maddalena Pedio TASC-INFM Trieste

Introduction to Near Edge X- ray Absorption Fine Structure of Molecules Maddalena Pedio TASC-INFM Trieste Introduction to Near Edge X- ray Absorption Fine Structure of Molecules Maddalena Pedio TASC-INFM Trieste NEXAFS Basic Principles Low Z element XAS Examples: Anisotropy in Solids 6H SiC Di-atomic Molecules

More information

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 Diffraction Gratings, Atomic Spectra Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 1 Increase number of slits: 2 Visual Comparisons 3 4 8 2 Diffraction Grating Note: despite the name, this

More information

OPTICAL Optical properties of multilayer systems by computer modeling

OPTICAL Optical properties of multilayer systems by computer modeling Workshop on "Physics for Renewable Energy" October 17-29, 2005 301/1679-15 "Optical Properties of Multilayer Systems by Computer Modeling" E. Centurioni CNR/IMM AREA Science Park - Bologna Italy OPTICAL

More information

EUV Reflectivity measurements on Acktar Sample Magic Black

EUV Reflectivity measurements on Acktar Sample Magic Black Report EUV Reflectivity measurements on Acktar Sample Magic Black S. Döring, Dr. K. Mann Laser-Laboratorium Göttingen e.v. October 28, 2011 Contents 1 Introduction 3 2 Setup 3 3 Measurements 4 4 Conclusion

More information

NEXAFS data normalization procedure: A case study at the C K edge *

NEXAFS data normalization procedure: A case study at the C K edge * NEXAFS data normalization procedure: A case study at the C K edge * n this example we shall demonstrate the procedure to normalize the C K edge NEXAFS spectrum obtained from drain current measurements

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

The Interaction of Light and Matter: α and n

The Interaction of Light and Matter: α and n The Interaction of Light and Matter: α and n The interaction of light and matter is what makes life interesting. Everything we see is the result of this interaction. Why is light absorbed or transmitted

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Supplemental Material L. Shi, T. K. Hakala, H. T. Rekola, J. -P.

More information

Interaction X-rays - Matter

Interaction X-rays - Matter Interaction X-rays - Matter Pair production hν > M ev Photoelectric absorption hν MATTER hν Transmission X-rays hν' < hν Scattering hν Decay processes hν f Compton Thomson Fluorescence Auger electrons

More information

n ( λ ) is observed. Further, the bandgap of the ZnTe semiconductor is

n ( λ ) is observed. Further, the bandgap of the ZnTe semiconductor is Optical Spectroscopy Lennon O Naraigh, 0000 Date of Submission: 0 th May 004 Abstract: This experiment is an exercise in the principles and practice of optical spectroscopy. The continuous emission spectrum

More information

Lecture 4* Inherent optical properties, IOP Theory. Loss due to absorption. IOP Theory 12/2/2008

Lecture 4* Inherent optical properties, IOP Theory. Loss due to absorption. IOP Theory 12/2/2008 Lecture 4* Inherent optical properties, part I IOP Theory What properties of a medium affect the radiance field as it propagate through it? 1. Sinks of photons (absorbers) 2. Sources of photons (internal

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

A very brief history of the study of light

A very brief history of the study of light 1. Sir Isaac Newton 1672: A very brief history of the study of light Showed that the component colors of the visible portion of white light can be separated through a prism, which acts to bend the light

More information

Physics 214 Midterm Exam Spring Last Name: First Name NetID Discussion Section: Discussion TA Name:

Physics 214 Midterm Exam Spring Last Name: First Name NetID Discussion Section: Discussion TA Name: Physics 214 Midterm Exam Spring 215 Last Name: First Name NetID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Keep your calculator on your own desk. Calculators

More information

INTRODUCTION TO QUANTUM MECHANICS

INTRODUCTION TO QUANTUM MECHANICS 4 CHAPTER INTRODUCTION TO QUANTUM MECHANICS 4.1 Preliminaries: Wave Motion and Light 4.2 Evidence for Energy Quantization in Atoms 4.3 The Bohr Model: Predicting Discrete Energy Levels in Atoms 4.4 Evidence

More information

The Photoelectric Effect

The Photoelectric Effect Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Interaction of particles with matter - 2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with

More information

Solutions for Exercise session I

Solutions for Exercise session I Solutions for Exercise session I 1. The maximally polarisation-entangled photon state can be written as Ψ = 1 ( H 1 V V 1 H ). Show that the state is invariant (i.e. still maximally entangled) after a

More information

POLARIZATION OF LIGHT

POLARIZATION OF LIGHT POLARIZATION OF LIGHT OVERALL GOALS The Polarization of Light lab strongly emphasizes connecting mathematical formalism with measurable results. It is not your job to understand every aspect of the theory,

More information

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Chemistry Instrumental Analysis Lecture 2. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 2 Electromagnetic Radiation Can be described by means of a classical sinusoidal wave model. Oscillating electric and magnetic field. (Wave model) wavelength,

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition Metal Deposition Filament Evaporation E-beam Evaporation Sputter Deposition 1 Filament evaporation metals are raised to their melting point by resistive heating under vacuum metal pellets are placed on

More information

Electromagnetic Radiation. Physical Principles of Remote Sensing

Electromagnetic Radiation. Physical Principles of Remote Sensing Electromagnetic Radiation Physical Principles of Remote Sensing Outline for 4/3/2003 Properties of electromagnetic radiation The electromagnetic spectrum Spectral emissivity Radiant temperature vs. kinematic

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

4. Other diffraction techniques

4. Other diffraction techniques 4. Other diffraction techniques 4.1 Reflection High Energy Electron Diffraction (RHEED) Setup: - Grazing-incidence high energy electron beam (3-5 kev: MEED,

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion.

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. POLARISATION Light is a transverse electromagnetic wave. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. If the E field

More information

1. A moving kaon decays into two pions, one of which is left at rest. (m K

1. A moving kaon decays into two pions, one of which is left at rest. (m K Physics Qualifying Examination Part I September 12, 2015 7-Minute Questions 1. A moving kaon decays into two pions, one of which is left at rest. (m K 500 MeV, m π = 140 MeV). a. What is the total energy

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Optical Properties of Copper Phthalocyanine(CuPc)Thin Films

Optical Properties of Copper Phthalocyanine(CuPc)Thin Films Egypt. J. Sol., Vol. (24), No. (1), (2001) 11 Optical Properties of Copper Phthalocyanine(CuPc)Thin Films M. M. El-Nahass, F.S. Bahabri* ands.r.al-harbi* Faculty of Education, Ain Shams University, Cairo,

More information

Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis)

Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis) Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis) 2 2. Circular dichroism (optical activity) CD / ORD 3 3. Fluorescence spectroscopy and energy transfer Electromagnetic Spectrum Electronic Molecular

More information

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Plasmonics Plasmon: Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam

More information

High Yield Structured X-ray Photo-Cathode Development and Fabrication

High Yield Structured X-ray Photo-Cathode Development and Fabrication High Yield Structured X-ray Photo-Cathode Development and Fabrication K. Opachich, P. Ross, J. Koch (NSTec, LLC) A. MacPhee, O. Landen, D. Bradley, P. Bell, S. Nagel (LLNL) T. Hilsabeck (GA) N. Chen, S.

More information

Analytical Chemistry II

Analytical Chemistry II Analytical Chemistry II L4: Signal processing (selected slides) Computers in analytical chemistry Data acquisition Printing final results Data processing Data storage Graphical display https://www.creativecontrast.com/formal-revolution-of-computer.html

More information

Surface Sensitive X-ray Scattering

Surface Sensitive X-ray Scattering Surface Sensitive X-ray Scattering Introduction Concepts of surfaces Scattering (Born approximation) Crystal Truncation Rods The basic idea How to calculate Examples Reflectivity In Born approximation

More information

Measurement of the Complex Index of Refraction for UO x in the Extreme Ultraviolet

Measurement of the Complex Index of Refraction for UO x in the Extreme Ultraviolet Measurement of the Complex Index of Refraction for UO x in the Extreme Ultraviolet Heidi Dumais Department of Physics and Astronomy, Brigham Young University Abstract - The reflectance and transmittance

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller

Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller Quantum yield, polarized light, dipole moment, photoselection, dipole radiation, polarization and anisotropy

More information

Saturation Absorption Spectroscopy of Rubidium Atom

Saturation Absorption Spectroscopy of Rubidium Atom Saturation Absorption Spectroscopy of Rubidium Atom Jayash Panigrahi August 17, 2013 Abstract Saturated absorption spectroscopy has various application in laser cooling which have many relevant uses in

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo

PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo Light and Photons PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo January 16, 2014 Light What is light? Electromagnetic wave direction of the

More information

Optical Spectroscopies of Thin Films and Interfaces. Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany

Optical Spectroscopies of Thin Films and Interfaces. Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany Optical Spectroscopies of Thin Films and Interfaces Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany 1. Introduction 2. Vibrational Spectroscopies (Raman) 3. Spectroscopic

More information

Reflection = EM strikes a boundary between two media differing in η and bounces back

Reflection = EM strikes a boundary between two media differing in η and bounces back Reflection = EM strikes a boundary between two media differing in η and bounces back Incident ray θ 1 θ 2 Reflected ray Medium 1 (air) η = 1.00 Medium 2 (glass) η = 1.50 Specular reflection = situation

More information

Full-color Subwavelength Printing with Gapplasmonic

Full-color Subwavelength Printing with Gapplasmonic Supporting information for Full-color Subwavelength Printing with Gapplasmonic Optical Antennas Masashi Miyata, Hideaki Hatada, and Junichi Takahara *,, Graduate School of Engineering, Osaka University,

More information

High Yield Structured X-ray Photo-Cathode Development and Fabrication

High Yield Structured X-ray Photo-Cathode Development and Fabrication High Yield Structured X-ray Photo-Cathode Development and Fabrication K. Opachich 1, P. Ross 1, J. Koch 1, A. MacPhee 2, O. Landen 2, D. Bradley 2, P. Bell 2, S. Nagel 2, T. Hilsabeck 4, N. Chen 5, S.

More information

B.Tech. First Semester Examination Physics-1 (PHY-101F)

B.Tech. First Semester Examination Physics-1 (PHY-101F) B.Tech. First Semester Examination Physics-1 (PHY-101F) Note : Attempt FIVE questions in all taking least two questions from each Part. All questions carry equal marks Part-A Q. 1. (a) What are Newton's

More information

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES Igor Zozouleno Solid State Electronics Department of Science and Technology Linöping University Sweden igozo@itn.liu.se http://www.itn.liu.se/meso-phot

More information

Energy Spectroscopy. Excitation by means of a probe

Energy Spectroscopy. Excitation by means of a probe Energy Spectroscopy Excitation by means of a probe Energy spectral analysis of the in coming particles -> XAS or Energy spectral analysis of the out coming particles Different probes are possible: Auger

More information

OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones

OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones OPTI 5, Spring 206 Problem Set 9 Prof. R. J. Jones Due Friday, April 29. Absorption and thermal distributions in a 2-level system Consider a collection of identical two-level atoms in thermal equilibrium.

More information

Revision Guide. Chapter 7 Quantum Behaviour

Revision Guide. Chapter 7 Quantum Behaviour Revision Guide Chapter 7 Quantum Behaviour Contents CONTENTS... 2 REVISION CHECKLIST... 3 REVISION NOTES... 4 QUANTUM BEHAVIOUR... 4 Random arrival of photons... 4 Photoelectric effect... 5 PHASE AN PHASORS...

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

Supplementary Figure 1. Schematics of light transmission and reflection from a slab confined between

Supplementary Figure 1. Schematics of light transmission and reflection from a slab confined between Supplementary Figures: Supplementary Figure. Schematics of light transmission and reflection from a slab confined between two infinite media. Supplementary Figure. Reflectivity of a magneto-electric slab

More information

Surface Plasmon Polaritons on Metallic Surfaces

Surface Plasmon Polaritons on Metallic Surfaces Surface Plasmon Polaritons on Metallic Surfaces Masud Mansuripur, Armis R. Zakharian and Jerome V. Moloney Recent advances in nano-fabrication have enabled a host of nano-photonic experiments involving

More information

Some Topics in Optics

Some Topics in Optics Some Topics in Optics The HeNe LASER The index of refraction and dispersion Interference The Michelson Interferometer Diffraction Wavemeter Fabry-Pérot Etalon and Interferometer The Helium Neon LASER A

More information

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L.

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L. Optical Science and Engineering 2013 Advanced Optics Exam Answer all questions. Begin each question on a new blank page. Put your banner ID at the top of each page. Please staple all pages for each individual

More information

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS) Lecture 5 X-ray Photoemission Spectroscopy (XPS) 5. Photoemission Spectroscopy (XPS) 5. Principles 5.2 Interpretation 5.3 Instrumentation 5.4 XPS vs UV Photoelectron Spectroscopy (UPS) 5.5 Auger Electron

More information

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova MIDTERM 3 REVIEW SESSION Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the

More information

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19 OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19 1. (a) Suppose you want to use a lens focus a Gaussian laser beam of wavelength λ in order to obtain a beam waist radius w

More information

Supplementary Figure S1 Definition of the wave vector components: Parallel and perpendicular wave vector of the exciton and of the emitted photons.

Supplementary Figure S1 Definition of the wave vector components: Parallel and perpendicular wave vector of the exciton and of the emitted photons. Supplementary Figure S1 Definition of the wave vector components: Parallel and perpendicular wave vector of the exciton and of the emitted photons. Supplementary Figure S2 The calculated temperature dependence

More information

To determine the wavelengths of light emitted by a mercury vapour lamp by using a diffraction grating.

To determine the wavelengths of light emitted by a mercury vapour lamp by using a diffraction grating. 12. Diffraction grating OBJECT To determine the wavelengths of light emitted by a mercury vapour lamp by using a diffraction grating. INTRODUCTION: Consider a light beam transmitted through an aperture

More information

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]

More information

Chapter 5. Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice

Chapter 5. Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice Chapter 5 Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice In chapter 3 and 4, we have demonstrated that the deformed rods, rotational rods and perturbation

More information

1. Strahlungsgesetze, Ableitung der Planck-schen Strahlungsformel, Einstein-Koeffizienten, Extinktinskoeffizient, Oszillatorenstärke

1. Strahlungsgesetze, Ableitung der Planck-schen Strahlungsformel, Einstein-Koeffizienten, Extinktinskoeffizient, Oszillatorenstärke 1. Strahlungsgesetze, Ableitung der Planck-schen Strahlungsformel, Einstein-Koeffizienten, Extinktinskoeffizient, Oszillatorenstärke Einheiten in diesem Kapitel: diesmal cgs. Energy volume density of blackbody

More information

10. Wavelength measurement using prism spectroscopy

10. Wavelength measurement using prism spectroscopy Spk 0. Wavelength measurement using prism spectroscopy 0. Introduction The study of emitted spectra of electromagnetic waves by excited atoms makes for one of the most important methods to investigate

More information

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber CH217 Fundamentals of Analytical Chemistry Module Leader: Dr. Alison Willows Electromagnetic spectrum Properties of electromagnetic radiation Many properties of electromagnetic radiation can be described

More information

Lecture 10: Surface Plasmon Excitation. 5 nm

Lecture 10: Surface Plasmon Excitation. 5 nm Excitation Lecture 10: Surface Plasmon Excitation 5 nm Summary The dispersion relation for surface plasmons Useful for describing plasmon excitation & propagation This lecture: p sp Coupling light to surface

More information

Introduction to Spectroscopic methods

Introduction to Spectroscopic methods Introduction to Spectroscopic methods Spectroscopy: Study of interaction between light* and matter. Spectrometry: Implies a quantitative measurement of intensity. * More generally speaking electromagnetic

More information

Coherence and width of spectral lines with Michelson interferometer

Coherence and width of spectral lines with Michelson interferometer Coherence and width of spectral lines TEP Principle Fraunhofer and Fresnel diffraction, interference, spatial and time coherence, coherence conditions, coherence length for non punctual light sources,

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

Measurement of the n_tof beam profile in the second experimental area (EAR2) using a silicon detector

Measurement of the n_tof beam profile in the second experimental area (EAR2) using a silicon detector Measurement of the n_tof beam profile in the second experimental area (EAR) using a silicon detector Fidan Suljik Supervisors: Dr. Massimo Barbagallo & Dr. Federica Mingrone September 8, 7 Abstract A new

More information

WAVE PARTICLE DUALITY

WAVE PARTICLE DUALITY WAVE PARTICLE DUALITY Evidence for wave-particle duality Photoelectric effect Compton effect Electron diffraction Interference of matter-waves Consequence: Heisenberg uncertainty principle PHOTOELECTRIC

More information

Mid-IR Methods. Matti Hotokka

Mid-IR Methods. Matti Hotokka Mid-IR Methods Matti Hotokka Traditional methods KBr disk Liquid cell Gas cell Films, fibres, latexes Oil suspensions GC-IR PAS KBr Disk 1 mg sample, 200 mg KBr May be used for quantitative analysis Mix

More information

Mie vs Rayleigh. Sun

Mie vs Rayleigh. Sun Mie vs Rayleigh Sun Chemists Probe Various Energy Levels of Molecules With Appropiate Energy Radiation It is convenient (and accurate enough for our purposes) to treat a molecule or system of molecules

More information

two slits and 5 slits

two slits and 5 slits Electronic Spectroscopy 2015January19 1 1. UV-vis spectrometer 1.1. Grating spectrometer 1.2. Single slit: 1.2.1. I diffracted intensity at relative to un-diffracted beam 1.2.2. I - intensity of light

More information

Supporting Information. Effect of Backbone Chemistry on the Structure of Polyurea Films Deposited by Molecular Layer Deposition

Supporting Information. Effect of Backbone Chemistry on the Structure of Polyurea Films Deposited by Molecular Layer Deposition Supporting Information Effect of Backbone Chemistry on the Structure of Polyurea Films Deposited by Molecular Layer Deposition David S. Bergsman, Richard G. Closser, Christopher J. Tassone, Bruce M. Clemens

More information

Optical Properties of Thin Semiconductor Films

Optical Properties of Thin Semiconductor Films Optical Properties of Thin Semiconductor Films Grolik Benno,KoppJoachim October, 31st 2003 1 Introduction Optical experiments provide a good way of examining the properties of semiconductors. Particulary

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

Quantum Mechanics & Atomic Structure (Chapter 11)

Quantum Mechanics & Atomic Structure (Chapter 11) Quantum Mechanics & Atomic Structure (Chapter 11) Quantum mechanics: Microscopic theory of light & matter at molecular scale and smaller. Atoms and radiation (light) have both wave-like and particlelike

More information

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at 2001 Spectrometers Instrument Machinery Movies from this presentation can be access at http://www.shsu.edu/~chm_tgc/sounds/sound.html Chp20: 1 Optical Instruments Instrument Components Components of various

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

Surface plasmon resonance based refractive index sensor for liquids

Surface plasmon resonance based refractive index sensor for liquids Indian Journal of Pure & Applied Physics Vol. 43, November 005, pp. 854-858 Surface plasmon resonance based refractive index sensor for liquids Navina Mehan, Vinay Gupta, K Sreenivas & Abhai Mansingh Department

More information

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7 Advanced Lab Course X-Ray Photoelectron Spectroscopy M210 As of: 2015-04-01 Aim: Chemical analysis of surfaces. Content 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT 3 3.1 Qualitative analysis 6 3.2 Chemical

More information

Course 2: Basic Technologies

Course 2: Basic Technologies Course 2: Basic Technologies Part II: X-ray optics What do you see here? Seite 2 wavefront distortion http://www.hyperiontelescopes.com/performance12.php http://astronomy.jawaid1.com/articles/spherical%20ab

More information

Surface Sensitivity & Surface Specificity

Surface Sensitivity & Surface Specificity Surface Sensitivity & Surface Specificity The problems of sensitivity and detection limits are common to all forms of spectroscopy. In its simplest form, the question of sensitivity boils down to whether

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY SCHEME OF EVAUATION MANIPA INSTITUTE OF TECHNOOGY MANIPA UNIVERSITY, MANIPA SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY SUBJECT: ENGINEERING PHYSICS (PHY/) Time: 3 Hrs. Max. Marks: 5 Note: Answer

More information

The optical constants of highly absorbing films using the spectral reflectance measured by double beam spectrophotometer

The optical constants of highly absorbing films using the spectral reflectance measured by double beam spectrophotometer The optical constants of highly absorbing films using the spectral reflectance measured by double beam spectrophotometer ElSayed Moustafa Faculty of science, El-Azhar university, physics department, Assuit,

More information

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1?

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1? Physics 243A--Surface Physics of Materials: Spectroscopy Final Examination December 16, 2014 (3 problems, 100 points total, open book, open notes and handouts) Name: [1] (50 points), including Figures

More information

and another with a peak frequency ω 2

and another with a peak frequency ω 2 Physics Qualifying Examination Part I 7-Minute Questions September 13, 2014 1. A sealed container is divided into two volumes by a moveable piston. There are N A molecules on one side and N B molecules

More information

Lecture 20 Optical Characterization 2

Lecture 20 Optical Characterization 2 Lecture 20 Optical Characterization 2 Schroder: Chapters 2, 7, 10 1/68 Announcements Homework 5/6: Is online now. Due Wednesday May 30th at 10:00am. I will return it the following Wednesday (6 th June).

More information

PHY2002 UNIVERSITY OF EXETER SCHOOL OF PHYSICS JANUARY 2010 QUANTUM PHYSICS I. Hints and Tips

PHY2002 UNIVERSITY OF EXETER SCHOOL OF PHYSICS JANUARY 2010 QUANTUM PHYSICS I. Hints and Tips PHY2002 UNIVERSITY OF EXETER SCHOOL OF PHYSICS JANUARY 2010 QUANTUM PHYSICS I Hints and Tips 1. When you substitute the first and second spatial derivatives into the Schrödinger equation, note that the

More information

Electromagnetic Waves

Electromagnetic Waves Physics 8 Electromagnetic Waves Overview. The most remarkable conclusion of Maxwell s work on electromagnetism in the 860 s was that waves could exist in the fields themselves, traveling with the speed

More information

Supplementary Information

Supplementary Information 1 Supplementary Information 3 Supplementary Figures 4 5 6 7 8 9 10 11 Supplementary Figure 1. Absorbing material placed between two dielectric media The incident electromagnetic wave propagates in stratified

More information

Diffraction gratings. B.Tech-I

Diffraction gratings. B.Tech-I Diffraction gratings B.Tech-I Introduction Diffraction grating can be understood as an optical unit that separates polychromatic light into constant monochromatic composition. Uses are tabulated below

More information