MATH 124B Solution Key HW 05

Size: px
Start display at page:

Download "MATH 124B Solution Key HW 05"

Transcription

1 7.1 GREEN S FIRST IENTITY MATH 14B Solution Key HW GREEN S FIRST IENTITY 1. erive the 3-dimensional maximum principle from the mean value property. SOLUTION. We aim to prove that if u is harmonic in the bounded set 3 and u is continuous on = bdy then the maximum and minimum of u occurs on bdy and nowhere else, provided that u is not constant. We proceed by proving the contrapositive. That is, if u admits an interior extremum then u must be constant. Since u is continuous on the closed, bounded set, then u must attain both its maximum, say M and its minimum, say m, somewhere in. Suppose that u attains an interior extremum at the point x 0 and let x be any other point in. Since is open and connected in 3 it follows that is polygonally path connected. 1 Let Γ be the polygonal path in joining x 0 and x and let δ be the shortest distance separating Γ and bdy : δ = min{ x y : x Γ, x bdy }. By the compactness of there exists a sequence of balls B R (x i ), for i = 0, 1,..., n, with x i on Γ, satisfying R δ, x i+1 in B R (x i ), x in B R (x n ). By the mean-value property we see that u is identically equal to M in each B R (x i ), i = 0, 1,,... n; hence, u(x ) = M. Since our choice of x was completely arbitrary, u must be identically equal to M throughout and, by continuity of u, throughout all of. Indeed, this proves that if u is not constant in, then u attains its maximum value on the boundary of and nowhere else. Similarly, this argument applied to u establishes that if u is non-constant, it can attain its minimum value on bdy and nowhere else.. Prove the uniqueness up to constant of the Neumann problem using the energy method. SOLUTION. Suppose that u 1 and u solve the Neumann problem for harmonic functions, that is, u = 0 in = g(x) on bdy. 1 This is an elementary result from point-set topology in Math 118A The existence of such a number δ > 0 follows by the continuity of the norm and the compactness of. Again, a result in math 118A. 1 Solutions prepared by Jon Tjun Seng Lo Kim Lin, TA Math 14B, Winter 013

2 7.1 GREEN S FIRST IENTITY Put w = u 1 u, then w solves the homogeneous Neumann problem w = 0 in w = 0 in bdy. An application of Green s first identity makes it plain that w w ds = w w d x + bdy Since w/ = 0 on bdy and w = 0 in, we see that 0 = w w d x = w d x. w w d x. Since the integrant w 0, it follows by the vanishing theorem that w 0 in, that is, w 0 in and we deduce that w is constant in, say w C. By our construction we see that u 1 = u + C in and we have established uniqueness of the Neumann problem up to a constant as required. 5. Prove irichlet s principle for the Neumann boundary condition. It asserts that among all real-valued functions w(x) on the quantity E[w] = 1 w d x bdy hw ds is the smallest for w = u, where u is the solution of the Neumann problem u = 0 in, = h(x) on bdy. It is required to assume that the average of the given function h(x) is zero (by Exercise ). Notice three features of this principle (i) There is no constraint at all on the trail functions w(x). (ii) The function h(x) appears in the energy. (iii) The functional E[w] does not change if a constant is added to w(x). Hint: Follow the method in Section 7.1. Solutions prepared by Jon Tjun Seng Lo Kim Lin, TA Math 14B, Winter 013

3 7.1 GREEN S FIRST IENTITY SOLUTION. For the sake of completeness we present the solution to Exercise Suppose that u solves the Neumann problem u = f in = g on bdy. By taking v 1 in Green s 1st identity we see that ds = u d x. bdy Indeed, this imposes a necessary condition in order for the Neumann problem to be well-posed. More specifically, it must be the case that bdy g(x) ds = f (x) d x. Armed with this result we now return to our original problem and see that it must be the case that for f (x) = 0 h(x) ds = ds = 0. bdy In other words, the average of the given function h(x) is zero. By Exercise, the solution to the well-posed Neumann problem is unique up to a constant. Fix a solution, say u bdy 3 Solutions prepared by Jon Tjun Seng Lo Kim Lin, TA Math 14B, Winter 013

4 7.1 GREEN S FIRST IENTITY and let w be any other trial function. By putting v = u w and we see that E[w] = 1 = 1 w d x bdy u v d x hw ds bdy = 1 ( u v) ( u v) d x h(u v) ds bdy = 1 ( u u u v + v v) d x = 1 ( u u v + v ) d x = 1 u d x = E[u] + 1 v d x = E[u] + 1 v d x = E[u] + 1 v d x + bdy h(u v) ds bdy hu ds + 1 v d x u vd x + u vd x + v u d x, bdy bdy bdy h(u v) ds h(u v) ds hv ds v ds u vd x + bdy hv ds where we invoke Green s 1st identity for the last line. Now, since u = 0 in we obtain that E[w] E[u] = 1 Since the integrant v 0 it follows that E[w] E[u] 0, v d x. hence; and the desired conclusion follows. E[w] E[u] 6. Let A and B be two disjoint bounded spatial domains, and let be their exterior. So bdy = bdy A bdy B. Consider a harmonic function u(x) in that tends to zero at infinity, which is constant on bdy A and constant on bdy B, and which satisfies bdy A ds = Q > 0 and bdy B ds = 0. Interpretation: The harmonic function u(x) is the electrostatic potential of two conductors, A and B; Q is the charge on A, while B is uncharged. 4 Solutions prepared by Jon Tjun Seng Lo Kim Lin, TA Math 14B, Winter 013

5 7.1 GREEN S FIRST IENTITY (a) Show that the solution is unique. Hint: Use the Hopf maximum principle. (b) Show that u 0 in. Hint: If not, then u(x) has a negative minimum. Use the Hopf principle again. (c) Show that u > 0 in. SOLUTION. First, we recall the Hopf form of the maximum principle as presented in Exercise 1(a) on page 177 of our textbook. If u(x) is a non-constant harmonic function in a connected plane domain with a smooth boundary that has a maximum at x 0 (necessarily on the boundary by the strong maximum principle), then / > 0 at x 0 where n is the unit outward normal vector. (a) The Hopf principle is pis aller since its proof is outside the scope of this class. Accordingly, we present an alternative proof. Suppose that u 1 and u solve our PE of interest, namely, u = 0, in, u = a, on bdy A, u = b, on bdy B, ds = Q > 0 bdy A and bdy B u(x) 0, uniformly, as x. Put w = u 1 u, then w solves w = 0, in, w = 0, on bdy = bdy A bdy B, bdy w ds = bdy A w ds = w(x) 0, uniformly, as x. bdy B ds = 0 w ds = 0 Let x 0 be an arbitrary point in. Since w(x) 0 as x, it follows that given ɛ > 0, the radius R can be chosen sufficiently large so that x 0 < R, and w(x) < ɛ for x R. In the bounded region R defined by the intersection of and the ball x < R, the maximum principle applies. Since the boundary of R consists partly of bdy and partly of the surface of the sphere x = R, and since w 0 on bdy while w < ɛ on x = R, if follows that w(x) < ɛ throughout R. In particular, 5 Solutions prepared by Jon Tjun Seng Lo Kim Lin, TA Math 14B, Winter 013

6 7.1 GREEN S FIRST IENTITY w(x 0 ) < ɛ. Since our choice of ɛ may be arbitrarily small it follows that w(x 0 ) = 0, hence w(x 0 ) = 0. Also, since the choice of x 0 was arbitrary we see that w 0, or u 1 = u in and we have established uniqueness. (b) First note that it cannot be the case that u is constant, otherwise u 0 since u vanishes at infinity. More specifically, u 0, so n u = / 0, which in turn contradicts the hypothesis that the charge on A is positive. Second, when u is assumed to be non-constant we argue by means of a contradiction. Suppose that there exist a point x such that u(x ) < 0. By applying the Hopf principle to u we see that the minimum of u, that is, the maximum of u is attained on bdy and nowhere else, say at x 0, and /(x 0 ) > 0, or equivalently /(x 0 ) < 0. If the minimum is attained on bdy A, then the condition ds = Q > 0, bdy A makes it plain that it cannot be the case that / is negative on all of bdy A. More specifically, there must exist a point x A bdy A such that /(x A ) > 0, but then when moving outward along the normal directional derive it must be the case that the value of u is decreasing as we move away from the boundary of A into our domain, inasmuch u is constant on bdy A. But this contradicts our assumption that the minimum value of u is attained on bdy A and nowhere else. Conversely, if the minimum of u is attained on bdy B, then the condition ds = 0, bdy B along with the fact that / 0 on bdy B makes it plain that there must exist a point x B bdy B such that /(x B ) > 0, but then again we arrive at a contradiction. Therefore it follows that u 0 on. (c) We argue by means of a contradiction. Suppose that there exists a point x where u(x ) = 0. Since u cannot be constant it follows by the continuity of u there exist a small enough neighborhood along x where u is negative. By applying the argument from part (b) to a point in such a neighborhood we arrive at yet another contradiction. 7. (Rayleigh-Ritz approximation to the harmonic function u in with u = h on bdy.) Let w 0, w 1,..., w n be arbitrary functions such that w 0 = h on bdy and w 1 = = w n = 0 on bdy. The problem is to find constants c 1, c,..., c n so that w 0 + c 1 w c n w n had the least possible energy. Show that the constants must solve the linear system ( w j, w k )c k = ( w 0, w j ) for j = 1,,..., n. k=1 6 Solutions prepared by Jon Tjun Seng Lo Kim Lin, TA Math 14B, Winter 013

7 7.1 GREEN S FIRST IENTITY SOLUTION. First, recall the inner-product notation and put ( w j, w k ) = w j w k d x = ( w k, w j ) w = w 0 + c 1 w c n w n = w 0 + c j w j, where w 0, c j, and w j have the properties described in the statement of our problem for j = 1,,..., n. It follows that the energy is given by E[w] = 1 = 1 w d x w w d x = 1 ( w, w) = 1 ( w 0 + c j w j, w 0 + = 1 ( w 0, w 0 ) + ( w 0, = 1 ( w 0, w 0 ) + ( w 0, = 1 ( w 0, w 0 ) + = 1 ( w 0, w 0 ) + c j w j ) c j w j ) + ( c j w j, w 0 ) + ( c j w j, c j w j ) + ( c j w j, ( w 0, w j )c j + ( w 0, w j )c j + 1 c j w j ) ( w j, w j )c + j ( w j, w j )c + j k=1 j k k=1 j k c j w j ) ( w k, w j )c k c j ( w k, w j )c k c j. For the choice of coefficients c k for k = 1,,..., n which minimize E, the partial derivative of E with respect to each c k must vanish. In other words, for each k = 1,,..., n, it follows that c k E[w] = 0. More specifically, 0 = ( w 0, w k ) + ( w k, w k )c k + ( w k, w j )c j = ( w 0, w k ) + ( w k, w j )c j, j k 7 Solutions prepared by Jon Tjun Seng Lo Kim Lin, TA Math 14B, Winter 013

8 7.1 GREEN S FIRST IENTITY hence; as required. ( w k, w j )c j = ( w 0, w k ) for k = 1,,..., n, 8 Solutions prepared by Jon Tjun Seng Lo Kim Lin, TA Math 14B, Winter 013

MATH 124B Solution Key HW 03

MATH 124B Solution Key HW 03 6.1 LAPLACE S EQUATION MATH 124B Solution Key HW 03 6.1 LAPLACE S EQUATION 4. Solve u x x + u y y + u zz = 0 in the spherical shell 0 < a < r < b with the boundary conditions u = A on r = a and u = B on

More information

GREEN S IDENTITIES AND GREEN S FUNCTIONS

GREEN S IDENTITIES AND GREEN S FUNCTIONS GREEN S IENTITIES AN GREEN S FUNCTIONS Green s first identity First, recall the following theorem. Theorem: (ivergence Theorem) Let be a bounded solid region with a piecewise C 1 boundary surface. Let

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial ifferential Equations «Viktor Grigoryan 3 Green s first identity Having studied Laplace s equation in regions with simple geometry, we now start developing some tools, which will lead

More information

u xx + u yy = 0. (5.1)

u xx + u yy = 0. (5.1) Chapter 5 Laplace Equation The following equation is called Laplace equation in two independent variables x, y: The non-homogeneous problem u xx + u yy =. (5.1) u xx + u yy = F, (5.) where F is a function

More information

Suggested Solution to Assignment 7

Suggested Solution to Assignment 7 MATH 422 (25-6) partial diferential equations Suggested Solution to Assignment 7 Exercise 7.. Suppose there exists one non-constant harmonic function u in, which attains its maximum M at x. Then by the

More information

MATH 124A Solution Key HW 05

MATH 124A Solution Key HW 05 3. DIFFUSION ON THE HALF-LINE Solutions prepared by Jon Tjun Seng Lo Kim Lin, TA Math 24A MATH 24A Solution Key HW 5 3. DIFFUSION ON THE HALF-LINE. Solve u t ku x x ; u(x, ) e x ; u(, t) on the half-line

More information

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions Economics 24 Fall 211 Problem Set 2 Suggested Solutions 1. Determine whether the following sets are open, closed, both or neither under the topology induced by the usual metric. (Hint: think about limit

More information

Math 541 Fall 2008 Connectivity Transition from Math 453/503 to Math 541 Ross E. Staffeldt-August 2008

Math 541 Fall 2008 Connectivity Transition from Math 453/503 to Math 541 Ross E. Staffeldt-August 2008 Math 541 Fall 2008 Connectivity Transition from Math 453/503 to Math 541 Ross E. Staffeldt-August 2008 Closed sets We have been operating at a fundamental level at which a topological space is a set together

More information

Applications of the Maximum Principle

Applications of the Maximum Principle Jim Lambers MAT 606 Spring Semester 2015-16 Lecture 26 Notes These notes correspond to Sections 7.4-7.6 in the text. Applications of the Maximum Principle The maximum principle for Laplace s equation is

More information

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck MATH 8.52 COURSE NOTES - CLASS MEETING # 6 8.52 Introduction to PDEs, Spring 208 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations

More information

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Fall 2011 Professor: Jared Speck

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Fall 2011 Professor: Jared Speck MATH 8.52 COURSE NOTES - CLASS MEETING # 6 8.52 Introduction to PDEs, Fall 20 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

AN EXTENSION OF THE NOTION OF ZERO-EPI MAPS TO THE CONTEXT OF TOPOLOGICAL SPACES

AN EXTENSION OF THE NOTION OF ZERO-EPI MAPS TO THE CONTEXT OF TOPOLOGICAL SPACES AN EXTENSION OF THE NOTION OF ZERO-EPI MAPS TO THE CONTEXT OF TOPOLOGICAL SPACES MASSIMO FURI AND ALFONSO VIGNOLI Abstract. We introduce the class of hyper-solvable equations whose concept may be regarded

More information

The Minimal Element Theorem

The Minimal Element Theorem The Minimal Element Theorem The CMC Dynamics Theorem deals with describing all of the periodic or repeated geometric behavior of a properly embedded CMC surface with bounded second fundamental form in

More information

Math The Laplacian. 1 Green s Identities, Fundamental Solution

Math The Laplacian. 1 Green s Identities, Fundamental Solution Math. 209 The Laplacian Green s Identities, Fundamental Solution Let be a bounded open set in R n, n 2, with smooth boundary. The fact that the boundary is smooth means that at each point x the external

More information

Thus, X is connected by Problem 4. Case 3: X = (a, b]. This case is analogous to Case 2. Case 4: X = (a, b). Choose ε < b a

Thus, X is connected by Problem 4. Case 3: X = (a, b]. This case is analogous to Case 2. Case 4: X = (a, b). Choose ε < b a Solutions to Homework #6 1. Complete the proof of the backwards direction of Theorem 12.2 from class (which asserts the any interval in R is connected). Solution: Let X R be a closed interval. Case 1:

More information

Analysis III Solutions - Serie 12

Analysis III Solutions - Serie 12 .. Necessary condition Let us consider the following problem for < x, y < π, u =, for < x, y < π, u y (x, π) = x a, for < x < π, u y (x, ) = a x, for < x < π, u x (, y) = u x (π, y) =, for < y < π. Find

More information

Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon Measures

Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon Measures 2 1 Borel Regular Measures We now state and prove an important regularity property of Borel regular outer measures: Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon

More information

TOPOLOGICAL GROUPS MATH 519

TOPOLOGICAL GROUPS MATH 519 TOPOLOGICAL GROUPS MATH 519 The purpose of these notes is to give a mostly self-contained topological background for the study of the representations of locally compact totally disconnected groups, as

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005

MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005 MATH 23b, SPRING 2005 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Midterm (part 1) Solutions March 21, 2005 1. True or False (22 points, 2 each) T or F Every set in R n is either open or closed

More information

Krein-Rutman Theorem and the Principal Eigenvalue

Krein-Rutman Theorem and the Principal Eigenvalue Chapter 1 Krein-Rutman Theorem and the Principal Eigenvalue The Krein-Rutman theorem plays a very important role in nonlinear partial differential equations, as it provides the abstract basis for the proof

More information

Part III. 10 Topological Space Basics. Topological Spaces

Part III. 10 Topological Space Basics. Topological Spaces Part III 10 Topological Space Basics Topological Spaces Using the metric space results above as motivation we will axiomatize the notion of being an open set to more general settings. Definition 10.1.

More information

(x k ) sequence in F, lim x k = x x F. If F : R n R is a function, level sets and sublevel sets of F are any sets of the form (respectively);

(x k ) sequence in F, lim x k = x x F. If F : R n R is a function, level sets and sublevel sets of F are any sets of the form (respectively); STABILITY OF EQUILIBRIA AND LIAPUNOV FUNCTIONS. By topological properties in general we mean qualitative geometric properties (of subsets of R n or of functions in R n ), that is, those that don t depend

More information

Def. A topological space X is disconnected if it admits a non-trivial splitting: (We ll abbreviate disjoint union of two subsets A and B meaning A B =

Def. A topological space X is disconnected if it admits a non-trivial splitting: (We ll abbreviate disjoint union of two subsets A and B meaning A B = CONNECTEDNESS-Notes Def. A topological space X is disconnected if it admits a non-trivial splitting: X = A B, A B =, A, B open in X, and non-empty. (We ll abbreviate disjoint union of two subsets A and

More information

Set, functions and Euclidean space. Seungjin Han

Set, functions and Euclidean space. Seungjin Han Set, functions and Euclidean space Seungjin Han September, 2018 1 Some Basics LOGIC A is necessary for B : If B holds, then A holds. B A A B is the contraposition of B A. A is sufficient for B: If A holds,

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions Math 50 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 205 Homework #5 Solutions. Let α and c be real numbers, c > 0, and f is defined

More information

MATH 104A HW 02 SOLUTION KEY

MATH 104A HW 02 SOLUTION KEY .3 Algorithms and Convergence Solutions by Jon Lo Kim Lin - Fall 04 MATH 04A HW 0 SOLUTION KEY You are encouraged to collaborate with your classmates and utilize internet resources provided you adhere

More information

EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018

EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018 EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018 While these notes are under construction, I expect there will be many typos. The main reference for this is volume 1 of Hörmander, The analysis of liner

More information

SOME VIEWS ON GLOBAL REGULARITY OF THE THIN FILM EQUATION

SOME VIEWS ON GLOBAL REGULARITY OF THE THIN FILM EQUATION SOME VIEWS ON GLOBAL REGULARITY OF THE THIN FILM EQUATION STAN PALASEK Abstract. We introduce the thin film equation and the problem of proving positivity and global regularity on a periodic domain with

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

Green s Functions and Distributions

Green s Functions and Distributions CHAPTER 9 Green s Functions and Distributions 9.1. Boundary Value Problems We would like to study, and solve if possible, boundary value problems such as the following: (1.1) u = f in U u = g on U, where

More information

Maximum Principles for Elliptic and Parabolic Operators

Maximum Principles for Elliptic and Parabolic Operators Maximum Principles for Elliptic and Parabolic Operators Ilia Polotskii 1 Introduction Maximum principles have been some of the most useful properties used to solve a wide range of problems in the study

More information

McGill University Math 354: Honors Analysis 3

McGill University Math 354: Honors Analysis 3 Practice problems McGill University Math 354: Honors Analysis 3 not for credit Problem 1. Determine whether the family of F = {f n } functions f n (x) = x n is uniformly equicontinuous. 1st Solution: The

More information

MATH 411 NOTES (UNDER CONSTRUCTION)

MATH 411 NOTES (UNDER CONSTRUCTION) MATH 411 NOTES (NDE CONSTCTION 1. Notes on compact sets. This is similar to ideas you learned in Math 410, except open sets had not yet been defined. Definition 1.1. K n is compact if for every covering

More information

COMPLETELY INVARIANT JULIA SETS OF POLYNOMIAL SEMIGROUPS

COMPLETELY INVARIANT JULIA SETS OF POLYNOMIAL SEMIGROUPS Series Logo Volume 00, Number 00, Xxxx 19xx COMPLETELY INVARIANT JULIA SETS OF POLYNOMIAL SEMIGROUPS RICH STANKEWITZ Abstract. Let G be a semigroup of rational functions of degree at least two, under composition

More information

CHAPTER 9. Embedding theorems

CHAPTER 9. Embedding theorems CHAPTER 9 Embedding theorems In this chapter we will describe a general method for attacking embedding problems. We will establish several results but, as the main final result, we state here the following:

More information

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University February 7, 2007 2 Contents 1 Metric Spaces 1 1.1 Basic definitions...........................

More information

Math General Topology Fall 2012 Homework 8 Solutions

Math General Topology Fall 2012 Homework 8 Solutions Math 535 - General Topology Fall 2012 Homework 8 Solutions Problem 1. (Willard Exercise 19B.1) Show that the one-point compactification of R n is homeomorphic to the n-dimensional sphere S n. Note that

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

MATH 4200 HW: PROBLEM SET FOUR: METRIC SPACES

MATH 4200 HW: PROBLEM SET FOUR: METRIC SPACES MATH 4200 HW: PROBLEM SET FOUR: METRIC SPACES PETE L. CLARK 4. Metric Spaces (no more lulz) Directions: This week, please solve any seven problems. Next week, please solve seven more. Starred parts of

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

Electric flux. Electric Fields and Gauss s Law. Electric flux. Flux through an arbitrary surface

Electric flux. Electric Fields and Gauss s Law. Electric flux. Flux through an arbitrary surface Electric flux Electric Fields and Gauss s Law Electric flux is a measure of the number of field lines passing through a surface. The flux is the product of the magnitude of the electric field and the surface

More information

A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators

A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators Lei Ni And I cherish more than anything else the Analogies, my most trustworthy masters. They know all the secrets of

More information

Existence and Uniqueness

Existence and Uniqueness Chapter 3 Existence and Uniqueness An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect

More information

4 Countability axioms

4 Countability axioms 4 COUNTABILITY AXIOMS 4 Countability axioms Definition 4.1. Let X be a topological space X is said to be first countable if for any x X, there is a countable basis for the neighborhoods of x. X is said

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17

DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17 DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17 6. Geodesics A parametrized line γ : [a, b] R n in R n is straight (and the parametrization is uniform) if the vector γ (t) does not depend on t. Thus,

More information

Math 147, Homework 6 Solutions Due: May 22, 2012

Math 147, Homework 6 Solutions Due: May 22, 2012 Math 147, Homework 6 Solutions Due: May 22, 2012 1. Let T = S 1 S 1 be the torus. Is it possible to find a finite set S = {P 1,..., P n } of points in T and an embedding of the complement T \ S into R

More information

Algebraic Topology Homework 4 Solutions

Algebraic Topology Homework 4 Solutions Algebraic Topology Homework 4 Solutions Here are a few solutions to some of the trickier problems... Recall: Let X be a topological space, A X a subspace of X. Suppose f, g : X X are maps restricting to

More information

REAL AND COMPLEX ANALYSIS

REAL AND COMPLEX ANALYSIS REAL AND COMPLE ANALYSIS Third Edition Walter Rudin Professor of Mathematics University of Wisconsin, Madison Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any

More information

Exercise 2. Prove that [ 1, 1] is the set of all the limit points of ( 1, 1] = {x R : 1 <

Exercise 2. Prove that [ 1, 1] is the set of all the limit points of ( 1, 1] = {x R : 1 < Math 316, Intro to Analysis Limits of functions We are experts at taking limits of sequences as the indexing parameter gets close to infinity. What about limits of functions as the independent variable

More information

Theory of PDE Homework 2

Theory of PDE Homework 2 Theory of PDE Homework 2 Adrienne Sands April 18, 2017 In the following exercises we assume the coefficients of the various PDE are smooth and satisfy the uniform ellipticity condition. R n is always an

More information

V (v i + W i ) (v i + W i ) is path-connected and hence is connected.

V (v i + W i ) (v i + W i ) is path-connected and hence is connected. Math 396. Connectedness of hyperplane complements Note that the complement of a point in R is disconnected and the complement of a (translated) line in R 2 is disconnected. Quite generally, we claim that

More information

x 0 + f(x), exist as extended real numbers. Show that f is upper semicontinuous This shows ( ɛ, ɛ) B α. Thus

x 0 + f(x), exist as extended real numbers. Show that f is upper semicontinuous This shows ( ɛ, ɛ) B α. Thus Homework 3 Solutions, Real Analysis I, Fall, 2010. (9) Let f : (, ) [, ] be a function whose restriction to (, 0) (0, ) is continuous. Assume the one-sided limits p = lim x 0 f(x), q = lim x 0 + f(x) exist

More information

Topological properties of Z p and Q p and Euclidean models

Topological properties of Z p and Q p and Euclidean models Topological properties of Z p and Q p and Euclidean models Samuel Trautwein, Esther Röder, Giorgio Barozzi November 3, 20 Topology of Q p vs Topology of R Both R and Q p are normed fields and complete

More information

Math 320-2: Final Exam Practice Solutions Northwestern University, Winter 2015

Math 320-2: Final Exam Practice Solutions Northwestern University, Winter 2015 Math 30-: Final Exam Practice Solutions Northwestern University, Winter 015 1. Give an example of each of the following. No justification is needed. (a) A closed and bounded subset of C[0, 1] which is

More information

Lecture notes: Introduction to Partial Differential Equations

Lecture notes: Introduction to Partial Differential Equations Lecture notes: Introduction to Partial Differential Equations Sergei V. Shabanov Department of Mathematics, University of Florida, Gainesville, FL 32611 USA CHAPTER 1 Classification of Partial Differential

More information

Chapter 2 Metric Spaces

Chapter 2 Metric Spaces Chapter 2 Metric Spaces The purpose of this chapter is to present a summary of some basic properties of metric and topological spaces that play an important role in the main body of the book. 2.1 Metrics

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

10.8 Further Applications of the Divergence Theorem

10.8 Further Applications of the Divergence Theorem 10.8 Further Applications of the Divergence Theorem Let D be an open subset of R 3, and let f : D R. Recall that the Laplacian of f, denoted by 2 f, is defined by We say that f is harmonic on D provided

More information

We saw in the previous lectures that continuity and differentiability help to understand some aspects of a

We saw in the previous lectures that continuity and differentiability help to understand some aspects of a Module 3 : Differentiation and Mean Value Theorems Lecture 9 : Roll's theorem and Mean Value Theorem Objectives In this section you will learn the following : Roll's theorem Mean Value Theorem Applications

More information

REGULARITY FOR INFINITY HARMONIC FUNCTIONS IN TWO DIMENSIONS

REGULARITY FOR INFINITY HARMONIC FUNCTIONS IN TWO DIMENSIONS C,α REGULARITY FOR INFINITY HARMONIC FUNCTIONS IN TWO DIMENSIONS LAWRENCE C. EVANS AND OVIDIU SAVIN Abstract. We propose a new method for showing C,α regularity for solutions of the infinity Laplacian

More information

39.1 Absolute maxima/minima

39.1 Absolute maxima/minima Module 13 : Maxima, Minima Saddle Points, Constrained maxima minima Lecture 39 : Absolute maxima / minima [Section 39.1] Objectives In this section you will learn the following : The notion of absolute

More information

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction SHARP BOUNDARY TRACE INEQUALITIES GILES AUCHMUTY Abstract. This paper describes sharp inequalities for the trace of Sobolev functions on the boundary of a bounded region R N. The inequalities bound (semi-)norms

More information

Mohammad Almahameed Department of Mathematics, Irbid National University, Irbid, Jordan. and

Mohammad Almahameed Department of Mathematics, Irbid National University, Irbid, Jordan. and ISSN: 2394-9333, wwwijtrdcom Maximum Principles For Some Differential Inequalities With Applications Mohammad Almahameed Department of Mathematics, Irbid National University, Irbid, Jordan Abstract In

More information

Calculus of Variations. Final Examination

Calculus of Variations. Final Examination Université Paris-Saclay M AMS and Optimization January 18th, 018 Calculus of Variations Final Examination Duration : 3h ; all kind of paper documents (notes, books...) are authorized. The total score of

More information

CHAPTER I THE RIESZ REPRESENTATION THEOREM

CHAPTER I THE RIESZ REPRESENTATION THEOREM CHAPTER I THE RIESZ REPRESENTATION THEOREM We begin our study by identifying certain special kinds of linear functionals on certain special vector spaces of functions. We describe these linear functionals

More information

Solutions: Problem Set 4 Math 201B, Winter 2007

Solutions: Problem Set 4 Math 201B, Winter 2007 Solutions: Problem Set 4 Math 2B, Winter 27 Problem. (a Define f : by { x /2 if < x

More information

Tangent spaces, normals and extrema

Tangent spaces, normals and extrema Chapter 3 Tangent spaces, normals and extrema If S is a surface in 3-space, with a point a S where S looks smooth, i.e., without any fold or cusp or self-crossing, we can intuitively define the tangent

More information

M545 Homework 8. Mark Blumstein. December 9, [f (x)] 2 dx = 1. Find such a function if you can. If it cannot be found, explain why not.

M545 Homework 8. Mark Blumstein. December 9, [f (x)] 2 dx = 1. Find such a function if you can. If it cannot be found, explain why not. M545 Homework 8 Mark Blumstein ecember 9, 5..) Let fx) be a function such that f) f3), 3 [fx)] dx, and 3 [f x)] dx. Find such a function if you can. If it cannot be found, explain why not. Proof. We will

More information

Bounded and continuous functions on a locally compact Hausdorff space and dual spaces

Bounded and continuous functions on a locally compact Hausdorff space and dual spaces Chapter 6 Bounded and continuous functions on a locally compact Hausdorff space and dual spaces Recall that the dual space of a normed linear space is a Banach space, and the dual space of L p is L q where

More information

The natural numbers. Definition. Let X be any inductive set. We define the set of natural numbers as N = C(X).

The natural numbers. Definition. Let X be any inductive set. We define the set of natural numbers as N = C(X). The natural numbers As mentioned earlier in the course, the natural numbers can be constructed using the axioms of set theory. In this note we want to discuss the necessary details of this construction.

More information

Mid Term-1 : Practice problems

Mid Term-1 : Practice problems Mid Term-1 : Practice problems These problems are meant only to provide practice; they do not necessarily reflect the difficulty level of the problems in the exam. The actual exam problems are likely to

More information

The Heine-Borel and Arzela-Ascoli Theorems

The Heine-Borel and Arzela-Ascoli Theorems The Heine-Borel and Arzela-Ascoli Theorems David Jekel October 29, 2016 This paper explains two important results about compactness, the Heine- Borel theorem and the Arzela-Ascoli theorem. We prove them

More information

Convex Analysis and Optimization Chapter 2 Solutions

Convex Analysis and Optimization Chapter 2 Solutions Convex Analysis and Optimization Chapter 2 Solutions Dimitri P. Bertsekas with Angelia Nedić and Asuman E. Ozdaglar Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1 ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP HONG GYUN KIM Abstract. I studied the construction of an algebraically trivial, but topologically non-trivial map by Hopf map p : S 3 S 2 and a

More information

Math 426 Homework 4 Due 3 November 2017

Math 426 Homework 4 Due 3 November 2017 Math 46 Homework 4 Due 3 November 017 1. Given a metric space X,d) and two subsets A,B, we define the distance between them, dista,b), as the infimum inf a A, b B da,b). a) Prove that if A is compact and

More information

18 Green s function for the Poisson equation

18 Green s function for the Poisson equation 8 Green s function for the Poisson equation Now we have some experience working with Green s functions in dimension, therefore, we are ready to see how Green s functions can be obtained in dimensions 2

More information

LECTURE 15: COMPLETENESS AND CONVEXITY

LECTURE 15: COMPLETENESS AND CONVEXITY LECTURE 15: COMPLETENESS AND CONVEXITY 1. The Hopf-Rinow Theorem Recall that a Riemannian manifold (M, g) is called geodesically complete if the maximal defining interval of any geodesic is R. On the other

More information

Math 361: Homework 1 Solutions

Math 361: Homework 1 Solutions January 3, 4 Math 36: Homework Solutions. We say that two norms and on a vector space V are equivalent or comparable if the topology they define on V are the same, i.e., for any sequence of vectors {x

More information

Foliations of hyperbolic space by constant mean curvature surfaces sharing ideal boundary

Foliations of hyperbolic space by constant mean curvature surfaces sharing ideal boundary Foliations of hyperbolic space by constant mean curvature surfaces sharing ideal boundary David Chopp and John A. Velling December 1, 2003 Abstract Let γ be a Jordan curve in S 2, considered as the ideal

More information

THE GREEN FUNCTION. Contents

THE GREEN FUNCTION. Contents THE GREEN FUNCTION CRISTIAN E. GUTIÉRREZ NOVEMBER 5, 203 Contents. Third Green s formula 2. The Green function 2.. Estimates of the Green function near the pole 2 2.2. Symmetry of the Green function 3

More information

CONVERGENCE OF EXTERIOR SOLUTIONS TO RADIAL CAUCHY SOLUTIONS FOR 2 t U c 2 U = 0

CONVERGENCE OF EXTERIOR SOLUTIONS TO RADIAL CAUCHY SOLUTIONS FOR 2 t U c 2 U = 0 Electronic Journal of Differential Equations, Vol. 206 (206), No. 266, pp. 6. ISSN: 072-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu CONVERGENCE OF EXTERIOR SOLUTIONS TO RADIAL CAUCHY

More information

On the Optimal Insulation of Conductors 1

On the Optimal Insulation of Conductors 1 JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 100, No. 2, pp. 253-263, FEBRUARY 1999 On the Optimal Insulation of Conductors 1 S. J. COX, 2 B. KAWOHL, 3 AND P. X. UHLIG 4 Communicated by K. A.

More information

ON THE INVERSE FUNCTION THEOREM

ON THE INVERSE FUNCTION THEOREM PACIFIC JOURNAL OF MATHEMATICS Vol. 64, No 1, 1976 ON THE INVERSE FUNCTION THEOREM F. H. CLARKE The classical inverse function theorem gives conditions under which a C r function admits (locally) a C Γ

More information

Math 147, Homework 1 Solutions Due: April 10, 2012

Math 147, Homework 1 Solutions Due: April 10, 2012 1. For what values of a is the set: Math 147, Homework 1 Solutions Due: April 10, 2012 M a = { (x, y, z) : x 2 + y 2 z 2 = a } a smooth manifold? Give explicit parametrizations for open sets covering M

More information

A symmetry problem. R be its complement in R3. We

A symmetry problem. R be its complement in R3. We ANNALE POLONICI MATHEMATICI 92.1 (2007) A symmetry problem by A. G. Ramm (Manhattan, K) Abstract. Consider the Newtonian potential of a homogeneous bounded body R 3 with known constant density and connected

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

Solutions to Homework 7

Solutions to Homework 7 Solutions to Homework 7 Exercise #3 in section 5.2: A rectangular box is inscribed in a hemisphere of radius r. Find the dimensions of the box of maximum volume. Solution: The base of the rectangular box

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Solve EACH of the exercises 1-3

Solve EACH of the exercises 1-3 Topology Ph.D. Entrance Exam, August 2011 Write a solution of each exercise on a separate page. Solve EACH of the exercises 1-3 Ex. 1. Let X and Y be Hausdorff topological spaces and let f: X Y be continuous.

More information

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3 Index Page 1 Topology 2 1.1 Definition of a topology 2 1.2 Basis (Base) of a topology 2 1.3 The subspace topology & the product topology on X Y 3 1.4 Basic topology concepts: limit points, closed sets,

More information

PROBLEM SET 6. E [w] = 1 2 D. is the smallest for w = u, where u is the solution of the Neumann problem. u = 0 in D u = h (x) on D,

PROBLEM SET 6. E [w] = 1 2 D. is the smallest for w = u, where u is the solution of the Neumann problem. u = 0 in D u = h (x) on D, PROBLEM SET 6 UE ATE: - APR 25 Chap 7, 9. Questions are either directl from the text or a small variation of a problem in the text. Collaboration is oka, but final submission must be written individuall.

More information

Hence, (f(x) f(x 0 )) 2 + (g(x) g(x 0 )) 2 < ɛ

Hence, (f(x) f(x 0 )) 2 + (g(x) g(x 0 )) 2 < ɛ Matthew Straughn Math 402 Homework 5 Homework 5 (p. 429) 13.3.5, 13.3.6 (p. 432) 13.4.1, 13.4.2, 13.4.7*, 13.4.9 (p. 448-449) 14.2.1, 14.2.2 Exercise 13.3.5. Let (X, d X ) be a metric space, and let f

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

MAT 257, Handout 13: December 5-7, 2011.

MAT 257, Handout 13: December 5-7, 2011. MAT 257, Handout 13: December 5-7, 2011. The Change of Variables Theorem. In these notes, I try to make more explicit some parts of Spivak s proof of the Change of Variable Theorem, and to supply most

More information

MAT 544 Problem Set 2 Solutions

MAT 544 Problem Set 2 Solutions MAT 544 Problem Set 2 Solutions Problems. Problem 1 A metric space is separable if it contains a dense subset which is finite or countably infinite. Prove that every totally bounded metric space X is separable.

More information

F 1 =. Setting F 1 = F i0 we have that. j=1 F i j

F 1 =. Setting F 1 = F i0 we have that. j=1 F i j Topology Exercise Sheet 5 Prof. Dr. Alessandro Sisto Due to 28 March Question 1: Let T be the following topology on the real line R: T ; for each finite set F R, we declare R F T. (a) Check that T is a

More information