frank-condon principle and adjustment of optical waveguides with nonhomogeneous refractive index

Size: px
Start display at page:

Download "frank-condon principle and adjustment of optical waveguides with nonhomogeneous refractive index"

Transcription

1 arxiv: v1 [quant-ph] 6 Mar 009 frank-condon principle and adjustment of optical waveguides with nonhomogeneous refractive index Vladimir I. Man ko 1, Leonid D. Mikheev 1, and Alexandr Sergeevich 1 P. N. Lebedev Physical Institute, Russian Academy of Sciences, Leninskii Pr. 53, Moscow , Russia School of Physics, The University of Sydney, New South Wales 006, Australia s: manko@sci.lebedev.ru mikheev@sci.lebedev.ru a.sergeevich@physics.usyd.edu.au Abstract The adjustment of two different selfocs is considered using both exact formulas for mode connection coefficients expressed in terms of Hermite polynomials of several variables and qualitative approach based on Frank-Condon principle. Several examples of the refractive index dependence are studied and illustrative plots for these examples are presented. Connection with tomographic approach to quantum states of two-dimensional oscillator and Frank-Condon factors is established. Keywords: Frank-Condon principle, entanglement, optical waveguide, molecular spectra, Hermite polynomials. 1. Introduction It is known [1, ] that the radiation beams propagating in optical waveguides can be described by Schrödinger-like equations [3, 4]. The role of time t in this equation played by longitudinal coordinate z and the role of Plank constant is played by wavelength of the radiation. The refractive index profile is an analogue of the potential energy in the quantum Schrodinger equation. The modes of the electromagnetic radiation in the optical waveguides are analogs of the wave functions of a quantum system. This quantum-like picture of the field propagating in the waveguide was intensively used to study connection of the energy distributions among the modes of the successive waveguides for two (or several waveguides with different refractive index profiles provided the distribution in the initial waveguide is known. This problem is equivalent to finding in quantum mechanics of two-atom (or several-atom molecules the vibronic structure of electronic lines in the absorption or emission spectra of polyatomic molecules. In case of harmonic potential the 1

2 structure is determined in terms of Frank-Condon factors expressed through Hermite polynomials of several variables [5, 6, 7]. Recently technique of femtosecond pulses was developed and applied in different domains of ultrapower laser physics [8, 9]. In this domain the problem of waveguiding such kind of radiation also arises [10, 11]. One of the aims of this work is to consider analogs of the quantum problems of the molecular spectra intensively discussed in [1, 13, 14, 15] to transport the results of these investigations into domain of femtosecond laser pulse physics. Another aim of this work is to connect the classical problem of optical waveguide properties with quantum problem of entanglement [16, 17]. The point is that for states with two degrees of freedom the notion of entanglement corresponds to the degree of correlation of observables related to these different degrees of freedom. In waveguide picture the entanglement analog is related to the structure of the modes propagating in the waveguides. When the initial separable two-mode field in first waveguide is propagating into second waveguide with different profile of refractive index the entanglement in the arising modes in this waveguide appears. This entanglement can be considered and related to the energy distribution among the field modes in the second waveguide. In the work we discuss this relation and consider possibility to find connection with different entanglement criteria [18, 19, 0, 1, ]. The paper is organized as follows. In next Section we review the results, related to modes in planar waveguides with quadratic refractive index. In Section 3 the two-mode problem in selfocklike waveguides will be considered and analog of two-mode squeezed light wave function will be used for considering the Frank-Condon factors. The entanglement analogs of the waveguides modes will be discussed in Section 4. The conclusion and perspectives are presented in Section 5.. Planar Waveguides In this section we will consider a transition of a light beam from one planar waveguide with quadratic refractive index to another along z coordinate. The refractive index, being constant by y and z represents here a symmetric potential energy curve of a one-electron atom: n(x = kx U(x = ω x. (1 The second waveguide has different dependence of a refractive index and its axe is shifted from the axe of the first waveguide by d: n (x = k (x d U(x = ω (x d, ( which is equivalent to shifting and stretching or shrinking of the potential energy curve. Here we take m = m = 1. The most probable energy level, to which electron jumps could be found by the Frank-Condon principle. Taking into consideration that energy levels in a parabolic potential are distributed as E n = hω(n + 1, the final state could be easily found.

3 Fig. 1. The plot of P n 0 for ω ω = 3 and ωd = 9. Let us consider a one-electron atom. approximation is equal to The nuclear hamiltonian in the Born-Oppenheimer H = 1 hω{a, a+ }, (3 where ω is a frequency, corresponding to the coordinate q, a and a + are the operators of birth and annihilation. The wave function of electron in atom with hamiltonian (1 is described by ψ (x, n, ω = ( π 1 n n!l(ω ( ( 1 exp x x H l n, (4 (ω l(ω where l(ω = h, n is a vibrational quantum number and H ω n(ξ is an nth Hermite polynomial. The shift of the center of potential from x = 0 to x = d and changing ω ω, n n gives a wave function ψ (x, n, ω, d = ( π 1 n n!l(ω 1 exp ( (x d H l (ω n ( x d. (5 l(ω The overlap integral n n = ψ(x, n, ω, 0ψ(x, n, ω, ddx (6 3

4 Fig.. The plot of P n 3 for ω ω = 3 and ωd = 16. describes the amplitude of probability of the transfer ψ(x, n, ω, 0 ψ(x, n, ω, d. (7 The integral (4 can be expressed through the Hermite polynomial, depending on two variables: n n = ( n+n n!n! ( 1 l(ωl(ω l(ω + l(ω exp d H {R} (l(ω + l(ω nn (y 1, y. (8 The arguments of the Hermite polynomial are ( l(ω R = l(ω l(ωl(ω l(ω +l(ω l(ωl(ω l(ω + l(ω ( ( y1 = dl(ω 1 (9 y l(ω +l(ω l(ω l(ω The probability of transition from the state n to n is equal to P n n = ( n n. (10 To illustrate the distribution of probability we will construct a graph of the function Pn n. On the Fig. 1 the plot for the initial level n = 0, potential stretching ω = 3 and shift ω ωd = 9 is shown. 4

5 Fig. 3. The plot of P n x,n y 0,0 for ω x ω x =, ω y ω y = 3, ω x d x = 9, ω y d y = 16. The maximum probability is observed for the 13th level. This result is in chime with the number, calculated directly from the Frank-Condon principle. The graph for transition from n = 3 with ω ω = 3 and ωd = 16 is shown. In this case the most probable final state is Elliptic Waveguides Now let us extend our considerations to the case of elliptical waveguides with quadratic refractive index, which corresponds to one-electron atom with a 3D parabolic potential: n(x, y = k x x + k y y U(x, y = ω xx + ω y y. (11 5

6 Fig. 4. The plot of P n x,n y,1 for ω x ω x Analogously, the shifted and deformed potential is =, ω y ω y = 3, ω x d x = 16, ω y d y = 16. U (x, y = ω x(x d x + ω y(y d y. (1 The unshifted wave function of electron in potential (11 is ψ (x, y, n x, n y, ω x, ω y, 0, 0 = exp ( ( 1 x + y ( ( l (ω x l (ω y x y H (π nx+ny n x!n y!l(ω x l(ω y 1 nx H ny. (13 l(ω x l(ω y In the same way, we can find the probability distribution in D case for the transition ψ (x, y, n x, n y, ω x, ω y, 0, 0 ψ ( x, y, n x, n y, ω x, ω y, d x, d y by calculating the overlap integral n n = ψ (x, y, n x, n y, ω x, ω y, 0, 0 ψ ( x, y, n x, n y, ω x, ω y, d x, d y dxdy. (15 6 (14

7 The Fig. 3 presents the distribution for the transition from the basic level for ω x ω x =, ω y ω y = 3, ω x d x = 9, ω y d y = 16. The maximum of this function is observed for the final state 3, 8. In the Fig. 4 the 3D plot of transition probability for the initial state, 1 and ω x ω y ω y ω x =, = 3, and ω x d x = ω y d y = 16 is depicted. The state 8, 4 is the most probable final state. The pictures are obviously very similar to the planar case. The transition probability distribution for the initial state of 0, 0 has the form reminding Gaussian. For the transitions from not the base state, we also can observe a multi-maximum surface. Since the potential (1 has no the xy component, the wave created as a result of transition doesn t contain the entanglement term. To get the state analogous to entangled, we should actually consider the potential with this term. U(x, y = ω xx + ω y y + γxy The wave function after the transition will have the following form. ψ (x, y = exp ( ( 1 x + y l (ω x l (ω y+γxy H (π nx+ny n x!n y!l(ω x l(ω y 1 nx (ax + by H ny (cx + dy. (17 But the resulting picture for probability distribution will change slightly in this case, so we are presenting just plots for potential (1 with γ = 0, keeping in mind that the actual graphs are very close to these. 4. Acknowledgments V.I.M. acknowledges the support of the Russian Foundation for Basic Research under Project No (16 References 1. M. A. Man ko and G. T. Mikaelyan, Sov. J. Quantum Electron., 13, 1506 ( M. A. Man ko, V. I. Man ko and R. V. Mendes, Phys. Lett. A, 88, 13 ( M. A. Leontovich, Izv. Akad. Nauk SSSR, Ser. Fiz., 8, 16 ( V. A. Fock and M. A. Leontovich, Zh. Eksp. Teor. Fiz., 16, 557 ( E. V. Doktorov, I. A. Malkin and V. I. Man ko, J. Mol. Spectr., 56, 1 ( E. V. Doktorov, I. A. Malkin and V. I. Man ko, J. Mol. Spectr., 64, 30 (

8 7. I. A. Malkin and V. I. Man ko, Dynamical Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow ( L. D. Mikheev, Laser Part. Beams, 10, 473 ( V. I. Tcheremiskine, M. L. Sentis, L. D. Mikheev, Appl. phys. lett., 81, 403 ( S. Jackel, R. Burris, J. Grun, A. Ting, C. Manka, K. Evans and J. Kosakowskii, Opt. Lett., 10, 1086 ( F. Gerome, K. Cook, A. K. George, W. J. Wadsworth and J. C. Knight, Optics Express, 1, 835 ( A. Toniolo, M. Persico, J. Comput. Chem.,, 968 ( H. Kikuchi, M. Kubo, N. Watanabe, and H. Suzuki, J. Chem. Phys., 119, 79 ( P. T. Ruhoff, Chem. Phys., 186, 355 ( P. T. Ruhoff, M. A. Ratner, Int. J. Quant. Chem., 77, 383 ( E. Schrödinger, Proc. Camb. Phil. Soc., 31, 555 ( A. Einstein, B. Podolsky, N. Rosen, Phys. Rev., 47, 777 ( V. I. Manko, A. A. Sergeevich, J. Russ. Laser Res., 8, 516 ( R. Simon, Phys. Rev. Lett., 84, 76 ( A. S. Chirkin and M. Yu. Saigin, Acta Phys. Hung. B, 6/1-, 63 ( M. Yu. Saigin and A. S. Chirkin, Mod. Probl. Stat. Phys., 5, 169 (006.. A. S. Chirkin and M. Yu. Saigin, J. Russ. Laser Res., 8, 505 (007. 8

frank-condon principle and adjustment of optical waveguides with nonhomogeneous refractive indices

frank-condon principle and adjustment of optical waveguides with nonhomogeneous refractive indices arxiv:0903.100v [quant-ph] 3 Mar 009 frank-condon principle and adjustment of optical waveguides with nonhomogeneous refractive indices Vladimir I. Man ko 1, Leonid D. Mikheev 1, and Alexandr Sergeevich

More information

CLASSICAL PROPAGATOR AND PATH INTEGRAL IN THE PROBABILITY REPRESENTATION OF QUANTUM MECHANICS

CLASSICAL PROPAGATOR AND PATH INTEGRAL IN THE PROBABILITY REPRESENTATION OF QUANTUM MECHANICS CLASSICAL PROPAGATOR AND PATH INTEGRAL IN THE PROBABILITY REPRESENTATION OF QUANTUM MECHANICS Olga Man ko 1 andv.i.man ko P. N. Lebedev Physical Institute, Russian Academy of Sciences, Leninskii Pr. 53,

More information

Born-Oppenheimer Approximation

Born-Oppenheimer Approximation Born-Oppenheimer Approximation Adiabatic Assumption: Nuclei move so much more slowly than electron that the electrons that the electrons are assumed to be obtained if the nuclear kinetic energy is ignored,

More information

Erwin Schrödinger and his cat

Erwin Schrödinger and his cat Erwin Schrödinger and his cat How to relate discrete energy levels with Hamiltonian described in terms of continгous coordinate x and momentum p? Erwin Schrödinger (887-96) Acoustics: set of frequencies

More information

arxiv: v2 [quant-ph] 14 Mar 2018

arxiv: v2 [quant-ph] 14 Mar 2018 God plays coins or superposition principle for classical probabilities in quantum suprematism representation of qubit states. V. N. Chernega 1, O. V. Man ko 1,2, V. I. Man ko 1,3 1 - Lebedev Physical Institute,

More information

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer Franz Schwabl QUANTUM MECHANICS Translated by Ronald Kates Second Revised Edition With 122Figures, 16Tables, Numerous Worked Examples, and 126 Problems ff Springer Contents 1. Historical and Experimental

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

Mechanisms of Interaction between Ultrasound and Sound in Liquids with Bubbles: Singular Focusing

Mechanisms of Interaction between Ultrasound and Sound in Liquids with Bubbles: Singular Focusing Acoustical Physics, Vol. 47, No., 1, pp. 14 144. Translated from Akusticheskiœ Zhurnal, Vol. 47, No., 1, pp. 178 18. Original Russian Text Copyright 1 by Akhatov, Khismatullin. REVIEWS Mechanisms of Interaction

More information

Molecular orbitals, potential energy surfaces and symmetry

Molecular orbitals, potential energy surfaces and symmetry Molecular orbitals, potential energy surfaces and symmetry mathematical presentation of molecular symmetry group theory spectroscopy valence theory molecular orbitals Wave functions Hamiltonian: electronic,

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

Charge and Energy Transfer Dynamits in Molecular Systems

Charge and Energy Transfer Dynamits in Molecular Systems Volkhard May, Oliver Kühn Charge and Energy Transfer Dynamits in Molecular Systems Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents 1 Introduction 19 2 Electronic

More information

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6. Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite- 6.6 Simple Harmonic

More information

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy Chemistry 795T Lecture 4 Vibrational and Rotational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

Analytical Evaluation of Two-Center Franck-Condon Overlap Integrals over Harmonic Oscillator Wave Function

Analytical Evaluation of Two-Center Franck-Condon Overlap Integrals over Harmonic Oscillator Wave Function Analytical Evaluation of Two-Center Franck-Condon Overlap Integrals over Harmonic Oscillator Wave Function Israfil I. Guseinov a, Bahtiyar A. Mamedov b, and Arife S. Ekenoğlu b a Department of Physics,

More information

MOLECULAR SPECTROSCOPY

MOLECULAR SPECTROSCOPY MOLECULAR SPECTROSCOPY First Edition Jeanne L. McHale University of Idaho PRENTICE HALL, Upper Saddle River, New Jersey 07458 CONTENTS PREFACE xiii 1 INTRODUCTION AND REVIEW 1 1.1 Historical Perspective

More information

Theoretical Photochemistry WiSe 2016/17

Theoretical Photochemistry WiSe 2016/17 Theoretical Photochemistry WiSe 2016/17 Lecture 8 Irene Burghardt burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ Theoretical Photochemistry 1 Topics 1. Photophysical

More information

Quantum mechanical analogy and supersymmetry of electromagnetic wave modes in planar waveguides

Quantum mechanical analogy and supersymmetry of electromagnetic wave modes in planar waveguides Quantum mechanical analogy and supersymmetry of electromagnetic wave modes in planar waveguides H. P. Laba 1, V. M Tkachuk 2 1 Lviv Polytechnic National Univerity, Department of Telecomunications, 12,

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

Lecture 10 Diatomic Vibration Spectra Harmonic Model

Lecture 10 Diatomic Vibration Spectra Harmonic Model Chemistry II: Introduction to Molecular Spectroscopy Prof. Mangala Sunder Department of Chemistry and Biochemistry Indian Institute of Technology, Madras Lecture 10 Diatomic Vibration Spectra Harmonic

More information

Dissociation of deuteron, 6 He and 11 Be from Coulomb dissociation reaction cross-section

Dissociation of deuteron, 6 He and 11 Be from Coulomb dissociation reaction cross-section PRAMANA c Indian Academy of Sciences Vol. 70, No. 5 journal of May 2008 physics pp. 949 953 Dissociation of deuteron, 6 He and 11 Be from Coulomb dissociation reaction cross-section RAMENDRA NATH MAJUMDAR

More information

Spectra of Atoms and Molecules. Peter F. Bernath

Spectra of Atoms and Molecules. Peter F. Bernath Spectra of Atoms and Molecules Peter F. Bernath New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1 Introduction 3 Waves, Particles, and Units 3 The Electromagnetic Spectrum 6 Interaction of Radiation

More information

5.1 Classical Harmonic Oscillator

5.1 Classical Harmonic Oscillator Chapter 5 Harmonic Oscillator 5.1 Classical Harmonic Oscillator m l o l Hooke s Law give the force exerting on the mass as: f = k(l l o ) where l o is the equilibrium length of the spring and k is the

More information

Atomic Diffraction Microscope of the de Broglie Waves

Atomic Diffraction Microscope of the de Broglie Waves ISSN 5-66X, Laser Physics,, Vol., No., pp. 7 5. Pleiades Publishing, Ltd.,. Original Russian Text Astro, Ltd.,. PAPERS Atomic Diffraction Microscope of the de Broglie Waves V. I. Balykin Institute of Spectroscopy,

More information

Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution

Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution entropy Article Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution Luis Amilca Andrade-Morales, Braulio M. Villegas-Martínez and Hector M. Moya-Cessa * Instituto

More information

Quantum Mechanics: Vibration and Rotation of Molecules

Quantum Mechanics: Vibration and Rotation of Molecules Quantum Mechanics: Vibration and Rotation of Molecules 8th April 2008 I. 1-Dimensional Classical Harmonic Oscillator The classical picture for motion under a harmonic potential (mass attached to spring

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

Niklas Rehfeld. Universität Konstanz. Diploma Thesis Niklas Rehfeld p.1/21

Niklas Rehfeld. Universität Konstanz. Diploma Thesis Niklas Rehfeld p.1/21 The Theory of the Manipulation of Molecules with Laser Beams Manipulation of the Spontaneous Emission Rate in Diatomic Molecules Diploma Thesis http://www.ub.uni-konstanz.de/kops/volltexte/2002/896/ Niklas

More information

Energy Level Sets for the Morse Potential

Energy Level Sets for the Morse Potential Energy Level Sets for the Morse Potential Fariel Shafee Department of Physics Princeton University Princeton, NJ 08540 Abstract: In continuation of our previous work investigating the possibility of the

More information

arxiv: v1 [math-ph] 3 Nov 2011

arxiv: v1 [math-ph] 3 Nov 2011 Formalism of operators for Laguerre-Gauss modes A. L. F. da Silva (α), A. T. B. Celeste (β), M. Pazetti (γ), C. E. F. Lopes (δ) (α,β) Instituto Federal do Sertão Pernambucano, Petrolina - PE, Brazil (γ)

More information

Vibrations and Rotations of Diatomic Molecules

Vibrations and Rotations of Diatomic Molecules Chapter 6 Vibrations and Rotations of Diatomic Molecules With the electronic part of the problem treated in the previous chapter, the nuclear motion shall occupy our attention in this one. In many ways

More information

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator Time Dependent Wave Equation Quantum Mechanical Description Hamiltonian Static/Time-dependent Time-dependent Energy operator H 0 + H t Ψ t = ih Ψ t t The Hamiltonian and wavefunction are time-dependent

More information

Quantum Harmonic Oscillator

Quantum Harmonic Oscillator Quantum Harmonic Oscillator Chapter 13 P. J. Grandinetti Chem. 4300 Oct 20, 2017 P. J. Grandinetti (Chem. 4300) Quantum Harmonic Oscillator Oct 20, 2017 1 / 26 Kinetic and Potential Energy Operators Harmonic

More information

Theoretical Photochemistry WiSe 2017/18

Theoretical Photochemistry WiSe 2017/18 Theoretical Photochemistry WiSe 2017/18 Lecture 7 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ Theoretical Photochemistry 1 Topics 1. Photophysical

More information

Physical Chemistry I Fall 2016 Second Hour Exam (100 points) Name:

Physical Chemistry I Fall 2016 Second Hour Exam (100 points) Name: Physical Chemistry I Fall 2016 Second Hour Exam (100 points) Name: (20 points) 1. Quantum calculations suggest that the molecule U 2 H 2 is planar and has symmetry D 2h. D 2h E C 2 (z) C 2 (y) C 2 (x)

More information

Lectures on Certain Problems in the Theory of Oscillations

Lectures on Certain Problems in the Theory of Oscillations Lectures on Certain Problems in the Theory of Oscillations L. I. Mandel shtam May 5, 1944 Abstract [By the translator] This lecture covers the problems of energy velocity and its relation to group velocity.

More information

Nonclassical properties and generation of superposition state of excited coherent states of motion of trapped ion

Nonclassical properties and generation of superposition state of excited coherent states of motion of trapped ion J. At. Mol. Sci. doi: 10.408/jams.010811.0311a Vol., o. 4, pp. 35-359 ovember 011 onclassical properties and generation of superposition state of excited coherent states of motion of trapped ion Zhong-Jie

More information

Chapter 2 Solutions of the Dirac Equation in an External Electromagnetic Field

Chapter 2 Solutions of the Dirac Equation in an External Electromagnetic Field Chapter 2 Solutions of the Dirac Equation in an External Electromagnetic Field In this chapter, the solutions of the Dirac equation for a fermion in an external electromagnetic field are presented for

More information

Remarks on the tunneling limit of strong-field photoionization

Remarks on the tunneling limit of strong-field photoionization Remarks on the tunneling limit of strong-field photoionization Jarosław H. Bauer * Katedra Fizyki Teoretycznej Uniwersytetu Łódzkiego, Ul. Pomorska 149/153, 90-36 Łódź, Poland Some results from a recent

More information

An optical analog of quantum optomechanics. Abstract arxiv: v1 [physics.optics] 26 Mar 2014

An optical analog of quantum optomechanics. Abstract arxiv: v1 [physics.optics] 26 Mar 2014 An optical analog of quantum optomechanics B. M. Rodríguez-Lara 1 and H. M. Moya-Cessa 1 1 Instituto Nacional de Astrofísica, Óptica y Electrónica Calle Luis Enrique Erro No. 1, Sta. Ma. Tonantzintla,

More information

Propagation of Lorentz Gaussian Beams in Strongly Nonlocal Nonlinear Media

Propagation of Lorentz Gaussian Beams in Strongly Nonlocal Nonlinear Media Commun. Theor. Phys. 6 04 4 45 Vol. 6, No., February, 04 Propagation of Lorentz Gaussian Beams in Strongly Nonlocal Nonlinear Media A. Keshavarz and G. Honarasa Department of Physics, Faculty of Science,

More information

As a partial differential equation, the Helmholtz equation does not lend itself easily to analytical

As a partial differential equation, the Helmholtz equation does not lend itself easily to analytical Aaron Rury Research Prospectus 21.6.2009 Introduction: The Helmhlotz equation, ( 2 +k 2 )u(r)=0 1, serves as the basis for much of optical physics. As a partial differential equation, the Helmholtz equation

More information

Energy spectrum inverse problem of q-deformed harmonic oscillator and WBK approximation

Energy spectrum inverse problem of q-deformed harmonic oscillator and WBK approximation Journal of Physics: Conference Series PAPER OPEN ACCESS Energy spectrum inverse problem of q-deformed harmonic oscillator and WBK approximation To cite this article: Nguyen Anh Sang et al 06 J. Phys.:

More information

Molecular Resonance Raman and Rayleigh Scattering Stimulated by a Short Laser Pulse

Molecular Resonance Raman and Rayleigh Scattering Stimulated by a Short Laser Pulse Molecular Resonance Raman and Rayleigh Scattering Stimulated by a Short Laser Pulse George A. Hagedorn Department of Mathematics and Center for Statistical Mechanics, Mathematical Physics, and Theoretical

More information

Interaction Mechanism of a Field Emission Based THz Oscillator

Interaction Mechanism of a Field Emission Based THz Oscillator PIERS ONLINE, VOL. 3, NO. 7, 2007 1011 Interaction Mechanism of a Field Emission Based THz Oscillator M. C. Lin 1 and P. S. Lu 1, 2 1 NanoScience Simulation Laboratory, Department of Physics, Fu Jen Catholic

More information

Theoretical Photochemistry SoSe 2014

Theoretical Photochemistry SoSe 2014 Theoretical Photochemistry SoSe 2014 Lecture 9 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ Theoretical Photochemistry 1 Topics 1. Photophysical Processes

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

Diatomic Molecules. 7th May Hydrogen Molecule: Born-Oppenheimer Approximation

Diatomic Molecules. 7th May Hydrogen Molecule: Born-Oppenheimer Approximation Diatomic Molecules 7th May 2009 1 Hydrogen Molecule: Born-Oppenheimer Approximation In this discussion, we consider the formulation of the Schrodinger equation for diatomic molecules; this can be extended

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

by focussed laser beam

by focussed laser beam Appl. Phys. B 78, 87 92 (2004) DOI: 10.1007/s00340-003-1313-5 Applied Physics B Lasers and Optics k. koynov 2 s. saltiel 1 generation in single nonlinear medium r. ivanov 1, Double phase-matched cascaded

More information

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics Molecular Spectroscopy Lectures 1 & 2 Part I : Introductory concepts Topics Why spectroscopy? Introduction to electromagnetic radiation Interaction of radiation with matter What are spectra? Beer-Lambert

More information

1.3 Harmonic Oscillator

1.3 Harmonic Oscillator 1.3 Harmonic Oscillator 1. For the case of the harmonic oscillator, the potential energy is quadratic and hence the total Hamiltonian looks like: H = h2 d 2 2mdx + 1 2 2 kx2 (1.3.1) where k is the force

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

p-adic Feynman s path integrals

p-adic Feynman s path integrals p-adic Feynman s path integrals G.S. Djordjević, B. Dragovich and Lj. Nešić Abstract The Feynman path integral method plays even more important role in p-adic and adelic quantum mechanics than in ordinary

More information

Eigenmodes for coupled harmonic vibrations. Algebraic Method for Harmonic Oscillator.

Eigenmodes for coupled harmonic vibrations. Algebraic Method for Harmonic Oscillator. PHYS208 spring 2008 Eigenmodes for coupled harmonic vibrations. Algebraic Method for Harmonic Oscillator. 07.02.2008 Adapted from the text Light - Atom Interaction PHYS261 autumn 2007 Go to list of topics

More information

Limits on Tunneling Theories of Strong-Field Ionization

Limits on Tunneling Theories of Strong-Field Ionization Limits on Tunneling Theories of Strong-Field Ionization H. R. Reiss Max Born Institute, 12489 Berlin, Germany American University, Washington, D.C. 20016-8058, USA (Received 6 March 2008; published 22

More information

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

arxiv: v1 [quant-ph] 29 May 2007

arxiv: v1 [quant-ph] 29 May 2007 arxiv:0705.4184v1 [quant-ph] 9 May 007 Fresnel-transform s quantum correspondence and quantum optical ABCD Law Fan Hong-Yi and Hu Li-Yun Department of Physics, Shanghai Jiao Tong University, Shanghai,

More information

A model system for adaptive strong field control

A model system for adaptive strong field control A model system for adaptive strong field control M. Wollenhaupt, T. Bayer and T. Baumert Universität Kassel Institut für Physik Principle of adaptive control 2 Shaping light: full control over the light

More information

Diffraction effects in superfluorescence

Diffraction effects in superfluorescence Diffraction effects in superfluorescence Yu. A. Avetisyan, A. I. Zaitsev, V. A. Malyshev, and E. D. Trifonov Leningrad State Pedagogical Institute (Submitted 9 July 1988) Zh. Eksp. Teor. Fiz. 95,1541-1552

More information

pulses. Sec. III contains the simulated results of the interaction process and their analysis, followed by conclusions in Sec. IV.

pulses. Sec. III contains the simulated results of the interaction process and their analysis, followed by conclusions in Sec. IV. High and uniform coherence creation in Doppler broadened double Ʌ- like atomic system by a train of femtosecond optical pulses Amarendra K. Sarma* and Pawan Kumar Department of Physics, Indian Institute

More information

arxiv: v3 [quant-ph] 6 Apr 2011

arxiv: v3 [quant-ph] 6 Apr 2011 OPTICAL PROPAGATOR OF QUANTUM SYSTEMS IN THE PROBABILITY REPRESENTATION Yakov A. Korennoy and Vladimir I. Man ko arxiv:1104.0309v3 [quant-ph] 6 Apr 011 P. N. Lebedev Physical Institute, Russian Academy

More information

Brief introduction to molecular symmetry

Brief introduction to molecular symmetry Chapter 1 Brief introduction to molecular symmetry It is possible to understand the electronic structure of diatomic molecules and their interaction with light without the theory of molecular symmetry.

More information

Algebraic Study of Stretching and Bending Modes in Linear Tetra-atomic Molecules: HCCCl

Algebraic Study of Stretching and Bending Modes in Linear Tetra-atomic Molecules: HCCCl The African Review of Physics (2013) 8:0016 99 Algebraic Study of Stretching and Bending Modes in Linear Tetra-atomic Molecules: HCCCl Kamal Ziadi * Department of Chemistry, Faculty of Science, University

More information

Physics Letters A 374 (2010) Contents lists available at ScienceDirect. Physics Letters A.

Physics Letters A 374 (2010) Contents lists available at ScienceDirect. Physics Letters A. Physics Letters A 374 (2010) 1063 1067 Contents lists available at ScienceDirect Physics Letters A www.elsevier.com/locate/pla Macroscopic far-field observation of the sub-wavelength near-field dipole

More information

Modern Optical Spectroscopy

Modern Optical Spectroscopy Modern Optical Spectroscopy With Exercises and Examples from Biophysics and Biochemistry von William W Parson 1. Auflage Springer-Verlag Berlin Heidelberg 2006 Verlag C.H. Beck im Internet: www.beck.de

More information

II. Spontaneous symmetry breaking

II. Spontaneous symmetry breaking . Spontaneous symmetry breaking .1 Weinberg s chair Hamiltonian rotational invariant eigenstates of good angular momentum: M > have a density distribution that is an average over all orientations with

More information

arxiv: v1 [quant-ph] 11 Nov 2014

arxiv: v1 [quant-ph] 11 Nov 2014 Electric dipoles on the Bloch sphere arxiv:1411.5381v1 [quant-ph] 11 Nov 014 Amar C. Vutha Dept. of Physics & Astronomy, York Univerity, Toronto ON M3J 1P3, Canada email: avutha@yorku.ca Abstract The time

More information

Diagonal Representation of Density Matrix Using q-coherent States

Diagonal Representation of Density Matrix Using q-coherent States Proceedings of Institute of Mathematics of NAS of Ukraine 24, Vol. 5, Part 2, 99 94 Diagonal Representation of Density Matrix Using -Coherent States R. PARTHASARATHY and R. SRIDHAR The Institute of Mathematical

More information

Chemistry 532 Problem Set 7 Spring 2012 Solutions

Chemistry 532 Problem Set 7 Spring 2012 Solutions Chemistry 53 Problem Set 7 Spring 01 Solutions 1. The study of the time-independent Schrödinger equation for a one-dimensional particle subject to the potential function leads to the differential equation

More information

Optical theorem and unitarity

Optical theorem and unitarity Optical theorem and unitarity arxiv:403.3576v2 [hep-ph] 20 Mar 204 V.I.Nazaruk Institute for Nuclear Research of RAS, 60th October Anniversary Prospect 7a, 732 Moscow, Russia.* Abstract It is shown that

More information

Entanglement versus quantum degree of polarization

Entanglement versus quantum degree of polarization Entanglement versus quantum degree of polarization arxiv:1804.04863v1 [quant-ph] 13 Apr 2018 Iulia Ghiu University of Bucharest, Faculty of Physics, Centre for Advanced Quantum Physics, PO Box MG-11, R-077125,

More information

Journal of Theoretical Physics

Journal of Theoretical Physics 1 Journal of Theoretical Physics Founded and Edited by M. Apostol 53 (2000) ISSN 1453-4428 Ionization potential for metallic clusters L. C. Cune and M. Apostol Department of Theoretical Physics, Institute

More information

V( x) = V( 0) + dv. V( x) = 1 2

V( x) = V( 0) + dv. V( x) = 1 2 Spectroscopy 1: rotational and vibrational spectra The vibrations of diatomic molecules Molecular vibrations Consider a typical potential energy curve for a diatomic molecule. In regions close to R e (at

More information

2m 2 Ze2. , where δ. ) 2 l,n is the quantum defect (of order one but larger

2m 2 Ze2. , where δ. ) 2 l,n is the quantum defect (of order one but larger PHYS 402, Atomic and Molecular Physics Spring 2017, final exam, solutions 1. Hydrogenic atom energies: Consider a hydrogenic atom or ion with nuclear charge Z and the usual quantum states φ nlm. (a) (2

More information

Inner composition law of pure states as a purification of impure states

Inner composition law of pure states as a purification of impure states 14 August 000 Ž. Physics Letters A 73 000 31 36 www.elsevier.nlrlocaterpla Inner composition law of pure states as a purification of impure states V.I. Man ko a,, G. Marmo a, E.C.G. Sudarshan b, F. Zaccaria

More information

Introduction to Vibrational Spectroscopy

Introduction to Vibrational Spectroscopy Introduction to Vibrational Spectroscopy Harmonic oscillators The classical harmonic oscillator The uantum mechanical harmonic oscillator Harmonic approximations in molecular vibrations Vibrational spectroscopy

More information

Smilansky-Solomyak model with a δ -interaction

Smilansky-Solomyak model with a δ -interaction Smilansky-Solomyak model with a δ -interaction Jiří Lipovský University of Hradec Králové, Faculty of Science jiri.lipovsky@uhk.cz joint work with P. Exner Ostrava, April 6, 2018 Jiří Lipovský Smilansky-Solomyak

More information

Atomic Motion in a Laser Standing Wave

Atomic Motion in a Laser Standing Wave Atomic Motion in a Laser Standing Wave J. DaJjbard, C. Salomon, A. Aspect, H. MetcaJf( *), A. Heidmann, and C. Cohen- Tannoudji Laboratoire de Spectroscopie Hertzienne de l'ens et Collège de France, 24

More information

Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2)

Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2) Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2) Obtaining fundamental information about the nature of molecular structure is one of the interesting aspects of molecular

More information

Black hole in a waveguide: Hawking radiation or selfphase

Black hole in a waveguide: Hawking radiation or selfphase 1 Black hole in a waveguide: Hawking radiation or selfphase modulation? Igor I. Smolyaninov Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 07, USA Recently

More information

eigenvalues eigenfunctions

eigenvalues eigenfunctions Born-Oppenheimer Approximation Atoms and molecules consist of heavy nuclei and light electrons. Consider (for simplicity) a diatomic molecule (e.g. HCl). Clamp/freeze the nuclei in space, a distance r

More information

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6.

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6. Introduction to Spectroscopy Spectroscopic techniques are widely used to detect molecules, to measure the concentration of a species in solution, and to determine molecular structure. For proteins, most

More information

THE PARAXIAL WAVE EQUATION GAUSSIAN BEAMS IN UNIFORM MEDIA:

THE PARAXIAL WAVE EQUATION GAUSSIAN BEAMS IN UNIFORM MEDIA: THE PARAXIAL WAVE EQUATION GAUSSIAN BEAMS IN UNIFORM MEDIA: In point-to-point communication, we may think of the electromagnetic field as propagating in a kind of "searchlight" mode -- i.e. a beam of finite

More information

Ayan Chattopadhyay Mainak Mustafi 3 rd yr Undergraduates Integrated MSc Chemistry IIT Kharagpur

Ayan Chattopadhyay Mainak Mustafi 3 rd yr Undergraduates Integrated MSc Chemistry IIT Kharagpur Ayan Chattopadhyay Mainak Mustafi 3 rd yr Undergraduates Integrated MSc Chemistry IIT Kharagpur Under the supervision of: Dr. Marcel Nooijen Associate Professor Department of Chemistry University of Waterloo

More information

Calculation of Franck-Condon factors and r-centroids using isospectral Hamiltonian approach

Calculation of Franck-Condon factors and r-centroids using isospectral Hamiltonian approach Indian Journal of Pure & Applied Physics Vol. 43, October 5, pp. 738-74 Calculation of Franck-Condon factors and r-centroids using isospectral Hamiltonian approach Anil Kumar & C Nagaraja Kumar* Department

More information

1. For the case of the harmonic oscillator, the potential energy is quadratic and hence the total Hamiltonian looks like: d 2 H = h2

1. For the case of the harmonic oscillator, the potential energy is quadratic and hence the total Hamiltonian looks like: d 2 H = h2 15 Harmonic Oscillator 1. For the case of the harmonic oscillator, the potential energy is quadratic and hence the total Hamiltonian looks like: d 2 H = h2 2mdx + 1 2 2 kx2 (15.1) where k is the force

More information

A Guide to Experiments in Quantum Optics

A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy C. Ralph A Guide to Experiments in Quantum Optics Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag CmbH Co. KGaA Contents Preface 1 Introduction 1.1 Historical

More information

Topological insulator particles as optically induced oscillators: Towards dynamical force measurements and optical rheology

Topological insulator particles as optically induced oscillators: Towards dynamical force measurements and optical rheology Topological insulator particles as optically induced oscillators: Towards dynamical force measurements and optical rheology Warlley Hudson Campos warlley.campos@ufv.br Departamento de Física - Universidade

More information

Lecture 6 Quantum Mechanical Systems and Measurements

Lecture 6 Quantum Mechanical Systems and Measurements Lecture 6 Quantum Mechanical Systems and Measurements Today s Program: 1. Simple Harmonic Oscillator (SHO). Principle of spectral decomposition. 3. Predicting the results of measurements, fourth postulate

More information

CHEM 301: Homework assignment #5

CHEM 301: Homework assignment #5 CHEM 30: Homework assignment #5 Solutions. A point mass rotates in a circle with l =. Calculate the magnitude of its angular momentum and all possible projections of the angular momentum on the z-axis.

More information

arxiv: v1 [physics.optics] 30 Mar 2010

arxiv: v1 [physics.optics] 30 Mar 2010 Analytical vectorial structure of non-paraxial four-petal Gaussian beams in the far field Xuewen Long a,b, Keqing Lu a, Yuhong Zhang a,b, Jianbang Guo a,b, and Kehao Li a,b a State Key Laboratory of Transient

More information

Lecture Introduction

Lecture Introduction Lecture 1 1.1 Introduction The theory of Partial Differential Equations (PDEs) is central to mathematics, both pure and applied. The main difference between the theory of PDEs and the theory of Ordinary

More information

PHYS 172: Modern Mechanics Fall 2009

PHYS 172: Modern Mechanics Fall 2009 PHYS 172: Modern Mechanics Fall 2009 Lecture 14 Energy Quantization Read 7.1 7.9 Reading Question: Ch. 7, Secs 1-5 A simple model for the hydrogen atom treats the electron as a particle in circular orbit

More information

Advanced Spectroscopy. Dr. P. Hunt Rm 167 (Chemistry) web-site:

Advanced Spectroscopy. Dr. P. Hunt Rm 167 (Chemistry) web-site: Advanced Spectroscopy Dr. P. Hunt p.hunt@imperial.ac.uk Rm 167 (Chemistry) web-site: http://www.ch.ic.ac.uk/hunt Maths! Coordinate transformations rotations! example 18.1 p501 whole chapter on Matrices

More information

Vacuum ultraviolet 5d-4f luminescence of Gd 3+ and Lu 3+ ions in fluoride matrices

Vacuum ultraviolet 5d-4f luminescence of Gd 3+ and Lu 3+ ions in fluoride matrices Vacuum ultraviolet 5d-4f luminescence of Gd 3+ and Lu 3+ ions in fluoride matrices M. Kirm, 1 G. Stryganyuk, 2,3 S. Vielhauer, 1 G. Zimmerer, 2,3 V.N. Makhov, 1,4 B.Z. Malkin, 5 O.V. Solovyev, 5 R.Yu.

More information

Dark pulses for resonant two-photon transitions

Dark pulses for resonant two-photon transitions PHYSICAL REVIEW A 74, 023408 2006 Dark pulses for resonant two-photon transitions P. Panek and A. Becker Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden,

More information

INTRODUCTION TO QUANTUM MECHANICS

INTRODUCTION TO QUANTUM MECHANICS 4 CHAPTER INTRODUCTION TO QUANTUM MECHANICS 4.1 Preliminaries: Wave Motion and Light 4.2 Evidence for Energy Quantization in Atoms 4.3 The Bohr Model: Predicting Discrete Energy Levels in Atoms 4.4 Evidence

More information

Asymptotic behaviour of the heat equation in twisted waveguides

Asymptotic behaviour of the heat equation in twisted waveguides Asymptotic behaviour of the heat equation in twisted waveguides Gabriela Malenová Faculty of Nuclear Sciences and Physical Engineering, CTU, Prague Nuclear Physics Institute, AS ČR, Řež Graphs and Spectra,

More information