X/94 $ IEEE 1894

Size: px
Start display at page:

Download "X/94 $ IEEE 1894"

Transcription

1 I Implementing Radial Basis Functions Using Bump-Resistor Networks John G. Harris University of Florida EE Dept., 436 CSE Bldg 42 Gainesville, FL harris@j upit er.ee.ufl.edu Abstract- Radial Basis Function (RBF) networks provide a powerful learning architecture for neural networks [6]. We have implemented a RBF network in analog VLSI using the concept of bump-resistors. A bump-resistor is a nonlinear resistor whose conductance is a Gaussian-like function of the difference of two other voltages. The width of the Gaussian basis functions may be continuously varied so that the aggregate interpolating function varies from a nearest-neighbor lookup, piecewise constant function to a globally smooth function. The bump-resis tor methodology extends to arbitrary dimensions while still preserving the radiality of the basis functions. The feedforward network architecture needs no additional circuitry other than voltage sources and the 1D bump-resistors. A nine-transistor variation of the Delbruck bump circuit is used to compute the Gaussian-like basis functions [2]. Below threshold the current output fits a Gaussian extremely well, see Figure 1. Figure 3 shows that the shape of the function deviates from the Gaussian shape above threshold. The width of the bump can to be varied by almost an order of magnitude (see Figure 4). The Delbruck bump circuit is shown in Figure A follower aggregation network shown in Figure 5 computes an average of the inputs voltages ci weighted by conductance values gi [4]: The bump current is used to control the conductance of the resistors in Figure 5 such that gi = G(x - ti) where ti is the voltage representing the center location of each bump-resistor. The circuit now computes: This normalized RBF or partition of unity form has been used by Moody and Darken in learning simula- BT Gaussian C iit 1 4 : : : : : : : : : a OS Y-TO Figure 1: Measured current from the Delbruck bump circuit (circles) and Gaussian fit (straightline). tions [5]. Some researchers have claimed that RBF networks show improved performance using this formulation [SI. Anderson, Platt and Kirk previously demonstrated the use of follower aggregation in an analog RBF chip [l]. The standard RBF form (without normalization) can be computed by holding the output to virtual ground and measuring the current. A one-dimensional eight-node circuit has been successfully fabricated and tested. Results from fitting 4 points using two different values of U are shown in Figure 6. The left plot shows the small U response which approximates a nearest neighbor lookup and the right plot shows the much smoother result for a large U. There are several strategies for extending this network to multiple dimensions. One is simply to construct a multi-dimensional bump function to use as the conductance function G(x) in Figure 5. For example, Kirk has designed a suitable multidimensional bump function by multiplying together several 1D Delbruck bump functions [3]. An alternate strategy used by Anderson, Platt and Kirk [l] X/94 $ IEEE 1894

2 : : : : : : : : : I ) U X M : : : : : : : ; : I b U X M Figure 6: Measured chip curva from fitting four data points Figure 7: Two-dimensional network 1895

3 o.m 4 I Od la W O Figure 4: Plot of the measured standard deviation of the bump function vs. voltage control knob. Figure 5: Follower aggregation network 1896

4 Vb = X-T (V) Figure 3: Normalized current from the bump circuit (circles) fit to Gaussians with identical variance. without worry of any problems with local minima. Learning the center locations (ti) and the widths of the Gaussians (ui) is a more difficult problem. REFERENCES [l] J. Anderson, J. C. Platt, and D. Kirk. An analog VLSI chip for radial basis functions. In J. Hanson, J. Cowan, and C. L. Giles, editors, Neural Information Processing Systems, pages Morgan-Kaufman, Palo Alto, [2] T. Delbruck. Bump circuits for computing similarity and disimilarity of analog voltages. In International Joint Conference on Neural Networks, Seattle, WA., July [3] D. Kirk, D. Kerns, K. Fleischer, and A. Barr. Analog VLSI implementation of multi-dimensional gradient descent. In J. Hanson, J. Cowan, and C. L. Giles, editors, Neural Information Processing Systems, pages Morgan-Kaufman, Palo Alto, [4] C. Mead. Analog VLSI and Neural Systems. Addison-Wesley, [5] J. Moody and C. Darken. Fast learning in net- works of locally-tuned processing units. Neural Computation, 1(2): , [6] T. Poggio and F. Girosi. Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247: , [7] D. Scott. Multivariate Density Estimation. Wiley, [8] H.W. Werntges. Partitions of unity improve neural function approximators. In Proc. IEEE Intl. Conf. on Neural Networks, pages , San Francisco, CA,, Feb vol 2,. 1897

5 Figure 2: The Delbruck bump circuit. The voltage VB controls the width of the bump. is to use current summation to sum the squares of the voltage differences. A circuit must then be used to exponentiate the current and convert the result to a voltage. Rather than build more complex circuitry, we choose to use the physics of resistors in series to combine the dimensions. Figure 7 shows the the network in two dimensions (extension to further dimensions is straightforward). In two dimensions, each branch has two resistors with conductances of G(x) and G(y). The effective conductance H(z,y) is: (3) Typically we choose G(x) to be a Gaussian function since the Gaussian is the only function that can create a radial function by multiplying 1D functions. However, in this case the Gaussian is the wrong choice since H(x,y) will be nonradial. Instead, we choose G with the following form: Now the series combination is: 1 G(x) = (4) 1 + (x/c)2 which is radial. In many applications, radial functions are not strictly necessary. In fact, the density estimation literature reveals that some nonradial functions have been shown to be optimal under certain criteria [7]. We are also studying resistors that are controlled by sigmoidal functions. A feedforward RBF network is sufficient for many applications. A microprocessor can be used to implement a learning network and download the weights to the chip. On-chip learning will drastically speed up the learning process. Learning the coefficients ci is a straightforward process that can be performed with gradient descent 1898

Radial Basis Function Networks. Ravi Kaushik Project 1 CSC Neural Networks and Pattern Recognition

Radial Basis Function Networks. Ravi Kaushik Project 1 CSC Neural Networks and Pattern Recognition Radial Basis Function Networks Ravi Kaushik Project 1 CSC 84010 Neural Networks and Pattern Recognition History Radial Basis Function (RBF) emerged in late 1980 s as a variant of artificial neural network.

More information

Notes on Regularization and Robust Estimation Psych 267/CS 348D/EE 365 Prof. David J. Heeger September 15, 1998

Notes on Regularization and Robust Estimation Psych 267/CS 348D/EE 365 Prof. David J. Heeger September 15, 1998 Notes on Regularization and Robust Estimation Psych 67/CS 348D/EE 365 Prof. David J. Heeger September 5, 998 Regularization. Regularization is a class of techniques that have been widely used to solve

More information

J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C. A. Mead California Institute of Technology Pasadena, CA 91125

J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C. A. Mead California Institute of Technology Pasadena, CA 91125 WINNER-TAKE-ALL NETWORKS OF O(N) COMPLEXITY J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C. A. Mead California Institute of Technology Pasadena, CA 91125 ABSTRACT We have designed, fabricated, and tested

More information

CHAPTER IX Radial Basis Function Networks

CHAPTER IX Radial Basis Function Networks Ugur HAICI - METU EEE - ANKARA 2/2/2005 CHAPTER IX Radial Basis Function Networks Introduction Radial basis function (RBF) networks are feed-forward networks trained using a supervised training algorithm.

More information

In the Name of God. Lectures 15&16: Radial Basis Function Networks

In the Name of God. Lectures 15&16: Radial Basis Function Networks 1 In the Name of God Lectures 15&16: Radial Basis Function Networks Some Historical Notes Learning is equivalent to finding a surface in a multidimensional space that provides a best fit to the training

More information

A Parallel Gradient Descent Method for Learning in Analog VLSI Neural Networks

A Parallel Gradient Descent Method for Learning in Analog VLSI Neural Networks A Parallel Gradient Descent Method for Learning in Analog VLSI Neural Networks J. Alspector R. Meir'" B. Yuhas A. Jayakumar D. Lippet Bellcore Morristown, NJ 07962-1910 Abstract Typical methods for gradient

More information

Plan of Class 4. Radial Basis Functions with moving centers. Projection Pursuit Regression and ridge. Principal Component Analysis: basic ideas

Plan of Class 4. Radial Basis Functions with moving centers. Projection Pursuit Regression and ridge. Principal Component Analysis: basic ideas Plan of Class 4 Radial Basis Functions with moving centers Multilayer Perceptrons Projection Pursuit Regression and ridge functions approximation Principal Component Analysis: basic ideas Radial Basis

More information

Effects of Moving the Centers in an RBF Network

Effects of Moving the Centers in an RBF Network IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 6, NOVEMBER 2002 1299 Effects of Moving the Centers in an RBF Network Chitra Panchapakesan, Marimuthu Palaniswami, Senior Member, IEEE, Daniel Ralph,

More information

Application of a radial basis function neural network for diagnosis of diabetes mellitus

Application of a radial basis function neural network for diagnosis of diabetes mellitus Application of a radial basis function neural network for diagnosis of diabetes mellitus P. Venkatesan* and S. Anitha Tuberculosis Research Centre, ICMR, Chennai 600 031, India In this article an attempt

More information

IN neural-network training, the most well-known online

IN neural-network training, the most well-known online IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 1, JANUARY 1999 161 On the Kalman Filtering Method in Neural-Network Training and Pruning John Sum, Chi-sing Leung, Gilbert H. Young, and Wing-kay Kan

More information

E techniques for identification of linear time-invariant

E techniques for identification of linear time-invariant 568 IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 2. NO. 6. NOVEMBER 1991 Brief Papers A General Regression Neural Network Donald F. Specht Abstract-This paper describes a memory-based network that provides

More information

ARTIFICIAL INTELLIGENCE LABORATORY. and CENTER FOR BIOLOGICAL INFORMATION PROCESSING. A.I. Memo No August Federico Girosi.

ARTIFICIAL INTELLIGENCE LABORATORY. and CENTER FOR BIOLOGICAL INFORMATION PROCESSING. A.I. Memo No August Federico Girosi. MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL INFORMATION PROCESSING WHITAKER COLLEGE A.I. Memo No. 1287 August 1991 C.B.I.P. Paper No. 66 Models of

More information

A Robust PCA by LMSER Learning with Iterative Error. Bai-ling Zhang Irwin King Lei Xu.

A Robust PCA by LMSER Learning with Iterative Error. Bai-ling Zhang Irwin King Lei Xu. A Robust PCA by LMSER Learning with Iterative Error Reinforcement y Bai-ling Zhang Irwin King Lei Xu blzhang@cs.cuhk.hk king@cs.cuhk.hk lxu@cs.cuhk.hk Department of Computer Science The Chinese University

More information

Introduction to Neural Networks: Structure and Training

Introduction to Neural Networks: Structure and Training Introduction to Neural Networks: Structure and Training Professor Q.J. Zhang Department of Electronics Carleton University, Ottawa, Canada www.doe.carleton.ca/~qjz, qjz@doe.carleton.ca A Quick Illustration

More information

Stable Adaptive Momentum for Rapid Online Learning in Nonlinear Systems

Stable Adaptive Momentum for Rapid Online Learning in Nonlinear Systems Stable Adaptive Momentum for Rapid Online Learning in Nonlinear Systems Thore Graepel and Nicol N. Schraudolph Institute of Computational Science ETH Zürich, Switzerland {graepel,schraudo}@inf.ethz.ch

More information

The Power of Approximating: a Comparison of Activation Functions

The Power of Approximating: a Comparison of Activation Functions The Power of Approximating: a Comparison of Activation Functions Bhaskar DasGupta Department of Computer Science University of Minnesota Minneapolis, MN 55455-0159 email: dasgupta~cs.umn.edu Georg Schnitger

More information

Chapter 8: Generalization and Function Approximation

Chapter 8: Generalization and Function Approximation Chapter 8: Generalization and Function Approximation Objectives of this chapter: Look at how experience with a limited part of the state set be used to produce good behavior over a much larger part. Overview

More information

Frequency Selective Surface Design Based on Iterative Inversion of Neural Networks

Frequency Selective Surface Design Based on Iterative Inversion of Neural Networks J.N. Hwang, J.J. Choi, S. Oh, R.J. Marks II, "Query learning based on boundary search and gradient computation of trained multilayer perceptrons", Proceedings of the International Joint Conference on Neural

More information

Introduction to Machine Learning Spring 2018 Note Neural Networks

Introduction to Machine Learning Spring 2018 Note Neural Networks CS 189 Introduction to Machine Learning Spring 2018 Note 14 1 Neural Networks Neural networks are a class of compositional function approximators. They come in a variety of shapes and sizes. In this class,

More information

CSE 190: Reinforcement Learning: An Introduction. Chapter 8: Generalization and Function Approximation. Pop Quiz: What Function Are We Approximating?

CSE 190: Reinforcement Learning: An Introduction. Chapter 8: Generalization and Function Approximation. Pop Quiz: What Function Are We Approximating? CSE 190: Reinforcement Learning: An Introduction Chapter 8: Generalization and Function Approximation Objectives of this chapter: Look at how experience with a limited part of the state set be used to

More information

Generalization and Function Approximation

Generalization and Function Approximation Generalization and Function Approximation 0 Generalization and Function Approximation Suggested reading: Chapter 8 in R. S. Sutton, A. G. Barto: Reinforcement Learning: An Introduction MIT Press, 1998.

More information

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur Module 12 Machine Learning Lesson 39 Neural Networks - III 12.4.4 Multi-Layer Perceptrons In contrast to perceptrons, multilayer networks can learn not only multiple decision boundaries, but the boundaries

More information

EM-algorithm for Training of State-space Models with Application to Time Series Prediction

EM-algorithm for Training of State-space Models with Application to Time Series Prediction EM-algorithm for Training of State-space Models with Application to Time Series Prediction Elia Liitiäinen, Nima Reyhani and Amaury Lendasse Helsinki University of Technology - Neural Networks Research

More information

Computation of Smooth Optical Flow in a Feedback Connected Analog Network

Computation of Smooth Optical Flow in a Feedback Connected Analog Network Computation of Smooth Optical Flow in a Feedback Connected Analog Network Alan Stocker Institute of Neuroinformatics University and ETH Zürich Winterthurerstrasse 90 80 Zürich, Switzerland Rodney Douglas

More information

COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning. Nakul Verma COMS 4771 Introduction to Machine Learning Nakul Verma Announcements HW1 due next lecture Project details are available decide on the group and topic by Thursday Last time Generative vs. Discriminative

More information

A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation

A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation 1 Introduction A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation J Wesley Hines Nuclear Engineering Department The University of Tennessee Knoxville, Tennessee,

More information

Artificial Neural Networks (ANN) Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso

Artificial Neural Networks (ANN) Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso Artificial Neural Networks (ANN) Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Fall, 2018 Outline Introduction A Brief History ANN Architecture Terminology

More information

Neural networks. Chapter 20, Section 5 1

Neural networks. Chapter 20, Section 5 1 Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of

More information

Implementation of Carry Look-Ahead in Domino Logic

Implementation of Carry Look-Ahead in Domino Logic Implementation of Carry Look-Ahead in Domino Logic G. Vijayakumar 1 M. Poorani Swasthika 2 S. Valarmathi 3 And A. Vidhyasekar 4 1, 2, 3 Master of Engineering (VLSI design) & 4 Asst.Prof/ Dept.of ECE Akshaya

More information

When can Deep Networks avoid the curse of dimensionality and other theoretical puzzles

When can Deep Networks avoid the curse of dimensionality and other theoretical puzzles When can Deep Networks avoid the curse of dimensionality and other theoretical puzzles Tomaso Poggio, MIT, CBMM Astar CBMM s focus is the Science and the Engineering of Intelligence We aim to make progress

More information

CHAPTER 2 NEW RADIAL BASIS NEURAL NETWORKS AND THEIR APPLICATION IN A LARGE-SCALE HANDWRITTEN DIGIT RECOGNITION PROBLEM

CHAPTER 2 NEW RADIAL BASIS NEURAL NETWORKS AND THEIR APPLICATION IN A LARGE-SCALE HANDWRITTEN DIGIT RECOGNITION PROBLEM CHAPTER 2 NEW RADIAL BASIS NEURAL NETWORKS AND THEIR APPLICATION IN A LARGE-SCALE HANDWRITTEN DIGIT RECOGNITION PROBLEM N.B. Karayiannis Department of Electrical and Computer Engineering University of

More information

Old painting digital color restoration

Old painting digital color restoration Old painting digital color restoration Michail Pappas Ioannis Pitas Dept. of Informatics, Aristotle University of Thessaloniki GR-54643 Thessaloniki, Greece Abstract Many old paintings suffer from the

More information

An Analog-digital CMOS circuit for motion detection based on direction-selective neural networks

An Analog-digital CMOS circuit for motion detection based on direction-selective neural networks An Analog-digital CMOS circuit for motion detection based on direction-selective neural networks Masato Koutani, Tetsuya Asai, and Yoshihito Amemiya Department of Electrical Engineering, Hokkaido University

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

Second-order Learning Algorithm with Squared Penalty Term

Second-order Learning Algorithm with Squared Penalty Term Second-order Learning Algorithm with Squared Penalty Term Kazumi Saito Ryohei Nakano NTT Communication Science Laboratories 2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 69-2 Japan {saito,nakano}@cslab.kecl.ntt.jp

More information

Adaptive Control of a Class of Nonlinear Systems with Nonlinearly Parameterized Fuzzy Approximators

Adaptive Control of a Class of Nonlinear Systems with Nonlinearly Parameterized Fuzzy Approximators IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 2, APRIL 2001 315 Adaptive Control of a Class of Nonlinear Systems with Nonlinearly Parameterized Fuzzy Approximators Hugang Han, Chun-Yi Su, Yury Stepanenko

More information

An Error-Entropy Minimization Algorithm for Supervised Training of Nonlinear Adaptive Systems

An Error-Entropy Minimization Algorithm for Supervised Training of Nonlinear Adaptive Systems 1780 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 7, JULY 2002 An Error-Entropy Minimization Algorithm for Supervised Training of Nonlinear Adaptive Systems Deniz Erdogmus, Member, IEEE, and Jose

More information

below, kernel PCA Eigenvectors, and linear combinations thereof. For the cases where the pre-image does exist, we can provide a means of constructing

below, kernel PCA Eigenvectors, and linear combinations thereof. For the cases where the pre-image does exist, we can provide a means of constructing Kernel PCA Pattern Reconstruction via Approximate Pre-Images Bernhard Scholkopf, Sebastian Mika, Alex Smola, Gunnar Ratsch, & Klaus-Robert Muller GMD FIRST, Rudower Chaussee 5, 12489 Berlin, Germany fbs,

More information

CS599 Lecture 2 Function Approximation in RL

CS599 Lecture 2 Function Approximation in RL CS599 Lecture 2 Function Approximation in RL Look at how experience with a limited part of the state set be used to produce good behavior over a much larger part. Overview of function approximation (FA)

More information

Electric Load Forecasting Using Wavelet Transform and Extreme Learning Machine

Electric Load Forecasting Using Wavelet Transform and Extreme Learning Machine Electric Load Forecasting Using Wavelet Transform and Extreme Learning Machine Song Li 1, Peng Wang 1 and Lalit Goel 1 1 School of Electrical and Electronic Engineering Nanyang Technological University

More information

Gaussian Processes for Regression. Carl Edward Rasmussen. Department of Computer Science. Toronto, ONT, M5S 1A4, Canada.

Gaussian Processes for Regression. Carl Edward Rasmussen. Department of Computer Science. Toronto, ONT, M5S 1A4, Canada. In Advances in Neural Information Processing Systems 8 eds. D. S. Touretzky, M. C. Mozer, M. E. Hasselmo, MIT Press, 1996. Gaussian Processes for Regression Christopher K. I. Williams Neural Computing

More information

From CDF to PDF A Density Estimation Method for High Dimensional Data

From CDF to PDF A Density Estimation Method for High Dimensional Data From CDF to PDF A Density Estimation Method for High Dimensional Data Shengdong Zhang Simon Fraser University sza75@sfu.ca arxiv:1804.05316v1 [stat.ml] 15 Apr 2018 April 17, 2018 1 Introduction Probability

More information

Σ N (d i,p z i,p ) 2 (1)

Σ N (d i,p z i,p ) 2 (1) A CLASSICAL ALGORITHM FOR AVOIDING LOCAL MINIMA D Gorse and A Shepherd Department of Computer Science University College, Gower Street, London WC1E 6BT, UK J G Taylor Department of Mathematics King s College,

More information

NEAR-OPTIMAL FLIGHT LOAD SYNTHESIS USING NEURAL NETS

NEAR-OPTIMAL FLIGHT LOAD SYNTHESIS USING NEURAL NETS NEAR-OPTIMAL FLIGHT LOAD SYNTHESIS USING NEURAL NETS Michael T. Manry, Cheng-Hsiung Hsieh, and Hema Chandrasekaran Department of Electrical Engineering University of Texas at Arlington Arlington, Texas

More information

Constructing Transportable Behavioural Models for Nonlinear Electronic Devices

Constructing Transportable Behavioural Models for Nonlinear Electronic Devices Constructing Transportable Behavioural Models for Nonlinear Electronic Devices David M. Walker*, Reggie Brown, Nicholas Tufillaro Integrated Solutions Laboratory HP Laboratories Palo Alto HPL-1999-3 February,

More information

NN V: The generalized delta learning rule

NN V: The generalized delta learning rule NN V: The generalized delta learning rule We now focus on generalizing the delta learning rule for feedforward layered neural networks. The architecture of the two-layer network considered below is shown

More information

Advanced statistical methods for data analysis Lecture 2

Advanced statistical methods for data analysis Lecture 2 Advanced statistical methods for data analysis Lecture 2 RHUL Physics www.pp.rhul.ac.uk/~cowan Universität Mainz Klausurtagung des GK Eichtheorien exp. Tests... Bullay/Mosel 15 17 September, 2008 1 Outline

More information

Keywords- Source coding, Huffman encoding, Artificial neural network, Multilayer perceptron, Backpropagation algorithm

Keywords- Source coding, Huffman encoding, Artificial neural network, Multilayer perceptron, Backpropagation algorithm Volume 4, Issue 5, May 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Huffman Encoding

More information

18.6 Regression and Classification with Linear Models

18.6 Regression and Classification with Linear Models 18.6 Regression and Classification with Linear Models 352 The hypothesis space of linear functions of continuous-valued inputs has been used for hundreds of years A univariate linear function (a straight

More information

PATTERN CLASSIFICATION

PATTERN CLASSIFICATION PATTERN CLASSIFICATION Second Edition Richard O. Duda Peter E. Hart David G. Stork A Wiley-lnterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011!

Artificial Neural Networks and Nonparametric Methods CMPSCI 383 Nov 17, 2011! Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011! 1 Todayʼs lecture" How the brain works (!)! Artificial neural networks! Perceptrons! Multilayer feed-forward networks! Error

More information

Comments. Assignment 3 code released. Thought questions 3 due this week. Mini-project: hopefully you have started. implement classification algorithms

Comments. Assignment 3 code released. Thought questions 3 due this week. Mini-project: hopefully you have started. implement classification algorithms Neural networks Comments Assignment 3 code released implement classification algorithms use kernels for census dataset Thought questions 3 due this week Mini-project: hopefully you have started 2 Example:

More information

A Bayesian Local Linear Wavelet Neural Network

A Bayesian Local Linear Wavelet Neural Network A Bayesian Local Linear Wavelet Neural Network Kunikazu Kobayashi, Masanao Obayashi, and Takashi Kuremoto Yamaguchi University, 2-16-1, Tokiwadai, Ube, Yamaguchi 755-8611, Japan {koba, m.obayas, wu}@yamaguchi-u.ac.jp

More information

Automatic Noise Recognition Based on Neural Network Using LPC and MFCC Feature Parameters

Automatic Noise Recognition Based on Neural Network Using LPC and MFCC Feature Parameters Proceedings of the Federated Conference on Computer Science and Information Systems pp 69 73 ISBN 978-83-60810-51-4 Automatic Noise Recognition Based on Neural Network Using LPC and MFCC Feature Parameters

More information

Artificial Neural Network Simulation of Battery Performance

Artificial Neural Network Simulation of Battery Performance Artificial work Simulation of Battery Performance C.C. O Gorman, D. Ingersoll, R.G. Jungst and T.L. Paez Sandia National Laboratories PO Box 58 Albuquerque, NM 8785 Abstract Although they appear deceptively

More information

Neural Control for Rolling Mills: Incorporating Domain Theories to Overcome Data Deficiency

Neural Control for Rolling Mills: Incorporating Domain Theories to Overcome Data Deficiency Neural Control for Rolling Mills: Incorporating Domain Theories to Overcome Data Deficiency Martin Roscheisen Computer Science Dept. Munich Technical University 8 Munich 40, FRG Reimar Hofmann Computer

More information

On Learning µ-perceptron Networks with Binary Weights

On Learning µ-perceptron Networks with Binary Weights On Learning µ-perceptron Networks with Binary Weights Mostefa Golea Ottawa-Carleton Institute for Physics University of Ottawa Ottawa, Ont., Canada K1N 6N5 050287@acadvm1.uottawa.ca Mario Marchand Ottawa-Carleton

More information

CSE 190: Reinforcement Learning: An Introduction. Chapter 8: Generalization and Function Approximation. Pop Quiz: What Function Are We Approximating?

CSE 190: Reinforcement Learning: An Introduction. Chapter 8: Generalization and Function Approximation. Pop Quiz: What Function Are We Approximating? CSE 190: Reinforcement Learning: An Introduction Chapter 8: Generalization and Function Approximation Objectives of this chapter: Look at how experience with a limited part of the state set be used to

More information

Multilayer Perceptron Learning Utilizing Singular Regions and Search Pruning

Multilayer Perceptron Learning Utilizing Singular Regions and Search Pruning Multilayer Perceptron Learning Utilizing Singular Regions and Search Pruning Seiya Satoh and Ryohei Nakano Abstract In a search space of a multilayer perceptron having hidden units, MLP(), there exist

More information

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

Multilayer Neural Networks

Multilayer Neural Networks Multilayer Neural Networks Multilayer Neural Networks Discriminant function flexibility NON-Linear But with sets of linear parameters at each layer Provably general function approximators for sufficient

More information

Ch.6 Deep Feedforward Networks (2/3)

Ch.6 Deep Feedforward Networks (2/3) Ch.6 Deep Feedforward Networks (2/3) 16. 10. 17. (Mon.) System Software Lab., Dept. of Mechanical & Information Eng. Woonggy Kim 1 Contents 6.3. Hidden Units 6.3.1. Rectified Linear Units and Their Generalizations

More information

Radial-Basis Function Networks. Radial-Basis Function Networks

Radial-Basis Function Networks. Radial-Basis Function Networks Radial-Basis Function Networks November 00 Michel Verleysen Radial-Basis Function Networks - Radial-Basis Function Networks p Origin: Cover s theorem p Interpolation problem p Regularization theory p Generalized

More information

Optimal transfer function neural networks

Optimal transfer function neural networks Optimal transfer function neural networks Norbert Jankowski and Włodzisław Duch Department of Computer ethods Nicholas Copernicus University ul. Grudziądzka, 87 Toru ń, Poland, e-mail:{norbert,duch}@phys.uni.torun.pl

More information

Artificial Neural Networks. Edward Gatt

Artificial Neural Networks. Edward Gatt Artificial Neural Networks Edward Gatt What are Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning Very

More information

Feed-forward Network Functions

Feed-forward Network Functions Feed-forward Network Functions Sargur Srihari Topics 1. Extension of linear models 2. Feed-forward Network Functions 3. Weight-space symmetries 2 Recap of Linear Models Linear Models for Regression, Classification

More information

Model of a Biological Neuron as a Temporal Neural Network

Model of a Biological Neuron as a Temporal Neural Network Model of a Biological Neuron as a Temporal Neural Network Sean D. Murphy and Edward W. Kairiss Interdepartmental Neuroscience Program, Department of Psychology, and The Center for Theoretical and Applied

More information

INTERNATIONAL COMPUTER SCIENCE INSTITUTE

INTERNATIONAL COMPUTER SCIENCE INSTITUTE -. How Receptive Field Parameters Affect eural Learning Stephen M. Omohundro Barlett W. Mel TR-91-010 January, 1991 ITERATIOAL COMPUTER SCIECE ISTITUTE 1947 Center Street, Suite 600 Berkeley, California

More information

Comparing linear and non-linear transformation of speech

Comparing linear and non-linear transformation of speech Comparing linear and non-linear transformation of speech Larbi Mesbahi, Vincent Barreaud and Olivier Boeffard IRISA / ENSSAT - University of Rennes 1 6, rue de Kerampont, Lannion, France {lmesbahi, vincent.barreaud,

More information

Modeling High-Dimensional Discrete Data with Multi-Layer Neural Networks

Modeling High-Dimensional Discrete Data with Multi-Layer Neural Networks Modeling High-Dimensional Discrete Data with Multi-Layer Neural Networks Yoshua Bengio Dept. IRO Université de Montréal Montreal, Qc, Canada, H3C 3J7 bengioy@iro.umontreal.ca Samy Bengio IDIAP CP 592,

More information

A Fast Stochastic Error-Descent Algorithm for Supervised Learning and Optimization

A Fast Stochastic Error-Descent Algorithm for Supervised Learning and Optimization A Fast Stochastic Error-Descent Algorithm for Supervised Learning and Optimization Gert Cauwenberghs California Institute of Technology Mail-Code 128-95 Pasadena, CA 91125 E-mail: gert(qcco. cal tech.

More information

Radial Basis Functions for Process Control Lyle H. Ungar Tom Johnson Richard D. De Veaux University ofpennsylvania Voice Processing Corp. Princeton Un

Radial Basis Functions for Process Control Lyle H. Ungar Tom Johnson Richard D. De Veaux University ofpennsylvania Voice Processing Corp. Princeton Un Radial Basis Functions for Process Control Lyle H. Ungar Tom Johnson Richard D. De Veaux University ofpennsylvania Voice Processing Corp. Princeton University Abstract Radial basis function èrbfsè neural

More information

Multilayer Feedforward Networks. Berlin Chen, 2002

Multilayer Feedforward Networks. Berlin Chen, 2002 Multilayer Feedforard Netors Berlin Chen, 00 Introduction The single-layer perceptron classifiers discussed previously can only deal ith linearly separable sets of patterns The multilayer netors to be

More information

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition NONLINEAR CLASSIFICATION AND REGRESSION Nonlinear Classification and Regression: Outline 2 Multi-Layer Perceptrons The Back-Propagation Learning Algorithm Generalized Linear Models Radial Basis Function

More information

Modification of Hard-Limiting Multilayer Neural Networks for Confidence Evaluation

Modification of Hard-Limiting Multilayer Neural Networks for Confidence Evaluation Modification of Hard-Limiting Multilayer Neural Networks for Confidence Evaluation Robert Eigenmann and Josef A. Nossek nstitute for Network Theory and Circuit Design Munich University of Technology 8333

More information

Neural Networks Lecture 4: Radial Bases Function Networks

Neural Networks Lecture 4: Radial Bases Function Networks Neural Networks Lecture 4: Radial Bases Function Networks H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011. A. Talebi, Farzaneh Abdollahi

More information

ENTROPIC ANALYSIS AND INCREMENTAL SYNTHESIS OF MULTILAYERED FEEDFORWARD NEURAL NETWORKS

ENTROPIC ANALYSIS AND INCREMENTAL SYNTHESIS OF MULTILAYERED FEEDFORWARD NEURAL NETWORKS International Journal of Neural Systems, Vol. 8, Nos. & 6 (October/December, 997) 67 69 c World Scientific Publishing Company ENTROPIC ANALYSIS AND INCREMENTAL SYNTHESIS OF MULTILAYERED FEEDFORWARD NEURAL

More information

Deep Learning. Convolutional Neural Network (CNNs) Ali Ghodsi. October 30, Slides are partially based on Book in preparation, Deep Learning

Deep Learning. Convolutional Neural Network (CNNs) Ali Ghodsi. October 30, Slides are partially based on Book in preparation, Deep Learning Convolutional Neural Network (CNNs) University of Waterloo October 30, 2015 Slides are partially based on Book in preparation, by Bengio, Goodfellow, and Aaron Courville, 2015 Convolutional Networks Convolutional

More information

Multi-Layer Boosting for Pattern Recognition

Multi-Layer Boosting for Pattern Recognition Multi-Layer Boosting for Pattern Recognition François Fleuret IDIAP Research Institute, Centre du Parc, P.O. Box 592 1920 Martigny, Switzerland fleuret@idiap.ch Abstract We extend the standard boosting

More information

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18 CSE 417T: Introduction to Machine Learning Final Review Henry Chai 12/4/18 Overfitting Overfitting is fitting the training data more than is warranted Fitting noise rather than signal 2 Estimating! "#$

More information

Lecture 13 - Handling Nonlinearity

Lecture 13 - Handling Nonlinearity Lecture 3 - Handling Nonlinearit Nonlinearit issues in control practice Setpoint scheduling/feedforward path planning repla - linear interpolation Nonlinear maps B-splines Multivariable interpolation:

More information

Artificial Neural Networks 2

Artificial Neural Networks 2 CSC2515 Machine Learning Sam Roweis Artificial Neural s 2 We saw neural nets for classification. Same idea for regression. ANNs are just adaptive basis regression machines of the form: y k = j w kj σ(b

More information

Different Criteria for Active Learning in Neural Networks: A Comparative Study

Different Criteria for Active Learning in Neural Networks: A Comparative Study Different Criteria for Active Learning in Neural Networks: A Comparative Study Jan Poland and Andreas Zell University of Tübingen, WSI - RA Sand 1, 72076 Tübingen, Germany Abstract. The field of active

More information

Relating Real-Time Backpropagation and. Backpropagation-Through-Time: An Application of Flow Graph. Interreciprocity.

Relating Real-Time Backpropagation and. Backpropagation-Through-Time: An Application of Flow Graph. Interreciprocity. Neural Computation, 1994 Relating Real-Time Backpropagation and Backpropagation-Through-Time: An Application of Flow Graph Interreciprocity. Francoise Beaufays and Eric A. Wan Abstract We show that signal

More information

Robust Multiple Estimator Systems for the Analysis of Biophysical Parameters From Remotely Sensed Data

Robust Multiple Estimator Systems for the Analysis of Biophysical Parameters From Remotely Sensed Data IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 1, JANUARY 2005 159 Robust Multiple Estimator Systems for the Analysis of Biophysical Parameters From Remotely Sensed Data Lorenzo Bruzzone,

More information

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 BIOLOGICAL INSPIRATIONS Some numbers The human brain contains about 10 billion nerve cells (neurons) Each neuron is connected to the others through 10000

More information

A Course in Machine Learning

A Course in Machine Learning A Course in Machine Learning Hal Daumé III Copyright 2012 Hal Daumé III http://ciml.info This book is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy

More information

Iterative Construction of Sparse Polynomial Approximations

Iterative Construction of Sparse Polynomial Approximations Iterative Construction of Sparse Polynomial Approximations Terence D. Sanger Massachusetts Institute of Technology Room E25-534 Cambridge, MA 02139 tds@ai.mit.edu Richard S. Sutton GTE Laboratories Incorporated

More information

Neural networks. Chapter 20. Chapter 20 1

Neural networks. Chapter 20. Chapter 20 1 Neural networks Chapter 20 Chapter 20 1 Outline Brains Neural networks Perceptrons Multilayer networks Applications of neural networks Chapter 20 2 Brains 10 11 neurons of > 20 types, 10 14 synapses, 1ms

More information

Lecture 2. G. Cowan Lectures on Statistical Data Analysis Lecture 2 page 1

Lecture 2. G. Cowan Lectures on Statistical Data Analysis Lecture 2 page 1 Lecture 2 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

LECTURE NOTE #NEW 6 PROF. ALAN YUILLE

LECTURE NOTE #NEW 6 PROF. ALAN YUILLE LECTURE NOTE #NEW 6 PROF. ALAN YUILLE 1. Introduction to Regression Now consider learning the conditional distribution p(y x). This is often easier than learning the likelihood function p(x y) and the

More information

An Adaptive Neural Network Scheme for Radar Rainfall Estimation from WSR-88D Observations

An Adaptive Neural Network Scheme for Radar Rainfall Estimation from WSR-88D Observations 2038 JOURNAL OF APPLIED METEOROLOGY An Adaptive Neural Network Scheme for Radar Rainfall Estimation from WSR-88D Observations HONGPING LIU, V.CHANDRASEKAR, AND GANG XU Colorado State University, Fort Collins,

More information

10 NEURAL NETWORKS Bio-inspired Multi-Layer Networks. Learning Objectives:

10 NEURAL NETWORKS Bio-inspired Multi-Layer Networks. Learning Objectives: 10 NEURAL NETWORKS TODO The first learning models you learned about (decision trees and nearest neighbor models) created complex, non-linear decision boundaries. We moved from there to the perceptron,

More information

Upper Bounds on the Number of Hidden Neurons in Feedforward Networks with Arbitrary Bounded Nonlinear Activation Functions

Upper Bounds on the Number of Hidden Neurons in Feedforward Networks with Arbitrary Bounded Nonlinear Activation Functions 224 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 1, JANUARY 1998 Upper Bounds on the Number of Hidden Neurons in Feedforward Networks with Arbitrary Bounded Nonlinear Activation Functions Guang-Bin

More information

Abstract. In this paper we propose recurrent neural networks with feedback into the input

Abstract. In this paper we propose recurrent neural networks with feedback into the input Recurrent Neural Networks for Missing or Asynchronous Data Yoshua Bengio Dept. Informatique et Recherche Operationnelle Universite de Montreal Montreal, Qc H3C-3J7 bengioy@iro.umontreal.ca Francois Gingras

More information

On Inverse Sigmoid Functions

On Inverse Sigmoid Functions Syracuse University SURFACE Electrical Engineering and Computer Science Technical Reports College of Engineering and Computer Science 6-15-1993 On Inverse Sigmoid Functions Anil Ravindran Menon Syracuse

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Neural Networks Varun Chandola x x 5 Input Outline Contents February 2, 207 Extending Perceptrons 2 Multi Layered Perceptrons 2 2. Generalizing to Multiple Labels.................

More information

Neural Network Weight Space Symmetries Can Speed up Genetic Learning

Neural Network Weight Space Symmetries Can Speed up Genetic Learning Neural Network Weight Space Symmetries Can Speed up Genetic Learning ROMAN NERUDA Λ Institue of Computer Science Academy of Sciences of the Czech Republic P.O. Box 5, 187 Prague, Czech Republic tel: (4)665375,fax:(4)8585789

More information

On Optimal Physical Synthesis of Sleep Transistors

On Optimal Physical Synthesis of Sleep Transistors On Optimal Physical Synthesis of Sleep Transistors Changbo Long, Jinjun Xiong and Lei He {longchb, jinjun, lhe}@ee.ucla.edu EE department, University of California, Los Angeles, CA, 90095 ABSTRACT Considering

More information

output dimension input dimension Gaussian evidence Gaussian Gaussian evidence evidence from t +1 inputs and outputs at time t x t+2 x t-1 x t+1

output dimension input dimension Gaussian evidence Gaussian Gaussian evidence evidence from t +1 inputs and outputs at time t x t+2 x t-1 x t+1 To appear in M. S. Kearns, S. A. Solla, D. A. Cohn, (eds.) Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 999. Learning Nonlinear Dynamical Systems using an EM Algorithm Zoubin

More information