F undamentals. of Fluid Mechanics Fourth Edition

Size: px
Start display at page:

Download "F undamentals. of Fluid Mechanics Fourth Edition"

Transcription

1 F undamentals of Fluid Mechanics Fourth Edition

2

3 Fourth Edition F undamentals of Fluid Mechanics BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department of Mechanical Engineering Iowa State University Ames, Iowa, USA John Wiley & Sons, Inc. New York Chichester Weinheim Brisbane Singapore Toronto

4 ACQUISITIONS EDITOR: Wayne Anderson ASSITANT EDITOR: Jennifer Welter MARKETING MANAGER: Katherine Hepburn SENIOR PRODUCTION EDITOR: Valerie A. Vargas PRODUCTION SERVICES MANAGER: Jeanine Furino COVER DESIGNER: Madelyn Lesure ELECTRONIC ILLUSTRATIONS: Radiant Illustration and Design PRODUCTION MANAGEMENT SERVICES: Ingrao Associates This book was set in 10/12 by TechBooks and printed and bound by R. R. Donnelley & Sons. The cover was printed by Phoenix Color. This book is printed on acid-free paper. Copyright 2002 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) , fax (978) Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY , (212) , fax (212) , PERMREQ@WILEY.COM. To order books please call 1(800) ISBN: X Printed in the United States of America

5 To Erik and all others who possess the curiosity, patience, and desire to learn

6

7 About the Authors Bruce R. Munson, Professor of Engineering Mechanics at Iowa State University since 1974, received his B.S. and M.S. degrees from Purdue University and his Ph.D. degree from the Aerospace Engineering and Mechanics Department of the University of Minnesota in From 1970 to 1974, Dr. Munson was on the mechanical engineering faculty of Duke University. From 1964 to 1966, he worked as an engineer in the jet engine fuel control department of Bendix Aerospace Corporation, South Bend, Indiana. Dr. Munson s main professional activity has been in the area of fluid mechanics education and research. He has been responsible for the development of many fluid mechanics courses for studies in civil engineering, mechanical engineering, engineering science, and agricultural engineering and is the recipient of an Iowa State University Superior Engineering Teacher Award and the Iowa State University Alumni Association Faculty Citation. He has authored and coauthored many theoretical and experimental technical papers on hydrodynamic stability, low Reynolds number flow, secondary flow, and the applications of viscous incompressible flow. He is a member of The American Society of Mechanical Engineers and The American Physical Society. Donald F. Young, Anson Marston Distinguished Professor Emeritus in Engineering, is a faculty member in the Department of Aerospace Engineering and Engineering Mechanics at Iowa State University. Dr. Young received his B.S. degree in mechanical engineering, his M.S. and Ph.D. degrees in theoretical and applied mechanics from Iowa State, and has taught both undergraduate and graduate courses in fluid mechanics for many years. In addition to being named a Distinguished Professor in the College of Engineering, Dr. Young has also received the Standard Oil Foundation Outstanding Teacher Award and the Iowa State University Alumni Association Faculty Citation. He has been engaged in fluid mechanics research for more than 35 years, with special interests in similitude and modeling and the interdisciplinary field of biomedical fluid mechanics. Dr. Young has contributed to many technical publications and is the author or coauthor of two textbooks on applied mechanics. He is a Fellow of The American Society of Mechanical Engineers. vii

8 viii About the Authors Theodore H. Okiishi, Associate Dean of Engineering and past Chair of Mechanical Engineering at Iowa State University, has taught fluid mechanics courses there since He received his undergraduate and graduate degrees at Iowa State. From 1965 to 1967, Dr. Okiishi served as a U.S. Army officer with duty assignments at the National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio, where he participated in rocket nozzle heat transfer research, and at the Combined Intelligence Center, Saigon, Republic of South Vietnam, where he studied seasonal river flooding problems. Professor Okiishi is active in research on turbomachinery fluid dynamics. He and his graduate students and other colleagues have written a number of journal articles based on their studies. Some of these projects have involved significant collaboration with government and industrial laboratory researchers with two technical papers winning the ASME Melville Medal. Dr. Okiishi has received several awards for teaching. He has developed undergraduate and graduate courses in classical fluid dynamics as well as the fluid dynamics of turbomachines. He is a licensed professional engineer. His technical society activities include having been chair of the board of directors of The American Society of Mechanical Engineers (ASME) International Gas Turbine Institute. He is a Fellow of The American Society of Mechanical Engineers and the editor of the Journal of Turbomachinery.

9 P reface This book is intended for junior and senior engineering students who are interested in learning some fundamental aspects of fluid mechanics. This area of mechanics is mature, and a complete coverage of all aspects of it obviously cannot be accomplished in a single volume. We developed this text to be used as a first course. The principles considered are classical and have been well-established for many years. However, fluid mechanics education has improved with experience in the classroom, and we have brought to bear in this book our own ideas about the teaching of this interesting and important subject. This fourth edition has been prepared after several years of experience by the authors using the previous editions for an introductory course in fluid mechanics. Based on this experience, along with suggestions from reviewers, colleagues, and students, we have made a number of changes in this new edition. Many of these changes are minor and have been made to simply clarify, update and expand certain ideas and concepts. The major changes in the fourth edition involve the CD-ROM that accompanies the book. This E-book CD-ROM contains the entire print component of the book, plus additional material not in the print version. This approach allows the inclusion of various materials that would either cause the print version to be too big or materials that are ideally (and only) suited for the electronic media. Approximately 25 percent of the homework problems in both the E-book and the print version are new problems. The E-book contains the following material. (1) There are 80 video segments illustrating many interesting and practical applications of real-world fluid phenomena. Each video segment is identified at the appropriate location in the text material by an icon of the type shown in the left margin. In addition, there are approximately 160 homework problems that are tied-in directly with the topics in the videos. The appropriate videos can be viewed directly from the problems. (2) There are 30 extended, laboratory-type problems that involve actual experimental data for simple experiments of the type that are often found in the laboratory portion of many introductory fluid mechanics courses. The data for these problems are provided in an EXCEL format. (3) There is a set of 186 review problems covering most of the main topics in the book. Complete, detailed solutions to these problems are provided. (4) Chapter 12, Turbomachines, is contained in the E-book only. ix

10 x Preface The E-book material on the CD-ROM with all its links is navigated using Adobe Acrobat TM. The links within the E-book include the following types: 1. Links from the Table of Contents to major segments of the E-book (i.e., chapters, appendices, index, videos, lab problems, review problem). 2. Links from the Index to topics within the E-book. 3. Links from reference to a figure, table, equation, or section to the actual figure, table, equation, or section. All figures can be enlarged and printed. 4. Links from end-of-chapter Key Words and Topics to the appropriate location within the chapter. 5. Links from a video icon in the margin to that video segment. 6. Links from a video homework problem to the appropriate video segment. 7. Links from the beginning of the homework problems at the end of a chapter to the review problems for that chapter. 8. Links from a review problem to the complete solution for that problem. 9. Links from a brief problem statement for a lab-type homework problem to the complete detailed problem statement. 10. Links from a lab-type problem statement to the EXCEL data page for that problem. 11. Links from an even-numbered problem to its answer. A summary or (highlight) sentence is inserted on each page of text. One of our aims is to represent fluid mechanics as it really is an exciting and useful discipline. To this end, we include analyses of numerous everyday examples of fluid-flow phenomena to which students and faculty can easily relate. In the fourth edition 165 examples are presented that provide detailed solutions to a variety of problems. Also, a generous set of homework problems in each chapter stresses the practical application of principles. Those problems that can be worked best with a programmable calculator or a computer, about 10% of the problems, are so identified. Also included in most chapters are several open-ended problems. These problems require critical thinking in that in order to work them one must make various assumptions and provide the necessary data. Students are thus required to make reasonable estimates or to obtain additional information outside the classroom. These openended problems are clearly identified. Other features are the inclusion of extended, laboratory-type problems in most chapters and problems directly related to the video segments provided. Since this is an introductory text, we have designed the presentation of material to allow for the gradual development of student confidence in fluid mechanics problem solving. Each important concept or notion is considered in terms of simple and easy-to-understand circumstances before more complicated features are introduced. A brief summary (or highlight) sentence has been added to each page of text. These sentences serve to prepare or remind the reader about an important concept discussed on that page. The entire page must still be read to understand the material the summary sentences merely reinforce the comprehension. Two systems of units continue to be used throughout the text: the British Gravitational System (pounds, slugs, feet, and seconds), and the International System of Units (newtons, kilograms, meters, and seconds). Both systems are widely used, and we believe that students need to be knowledgeable and comfortable with both systems. Approximately one-half of the examples and homework problems use the British System; the other half is based on the International System. In the first four chapters, the student is made aware of some fundamental aspects of fluid motion, including important fluid properties, regimes of flow, pressure variations in fluids at rest and in motion, fluid kinematics, and methods of flow description and analysis.

11 Preface xi The Bernoulli equation is introduced in Chapter 3 to draw attention, early on, to some of the interesting effects of fluid motion on the distribution of pressure in a flow field. We believe that this timely consideration of elementary fluid dynamics will increase student enthusiasm for the more complicated material that follows. In Chapter 4, we convey the essential elements of kinematics, including Eulerian and Lagrangian mathematical descriptions of flow phenomena, and indicate the vital relationship between the two views. For teachers who wish to consider kinematics in detail before the material on elementary fluid dynamics, Chapters 3 and 4 can be interchanged without loss of continuity. Chapters 5, 6, and 7 expand on the basic analysis methods generally used to solve or to begin solving fluid mechanics problems. Emphasis is placed on understanding how flow phenomena are described mathematically and on when and how to use infinitesimal and finite control volumes. Owing to the importance of numerical techniques in fluid mechanics, we have included introductory material on this subject in Chapter 6. The effects of fluid friction on pressure and velocity distributions are also considered in some detail. A formal course in thermodynamics is not required to understand the various portions of the text that consider some elementary aspects of the thermodynamics of fluid flow. Chapter 7 features the advantages of using dimensional analysis and similitude for organizing test data and for planning experiments and the basic techniques involved. Chapters 8 to 12 offer students opportunities for the further application of the principles learned early in the text. Also, where appropriate, additional important notions such as boundary layers, transition from laminar to turbulent flow, turbulence modeling, chaos, and flow separation are introduced. Practical concerns such as pipe flow, open-channel flow, flow measurement, drag and lift, the effects of compressibility, and the fluid mechanics fundamentals associated with turbomachines are included. The compressible flow tables found in the previous editions (and in other texts) have been replaced by corresponding graphs. It is felt that in the current era of visual learning, these graphs allow a fuller understanding of the characteristics of the compressible flow functions. An Instructor s Manual is available to professors who adopt this book for classroom use. This manual contains complete, detailed solutions to all the problems in the text and is in CD format. It may be obtained by contacting your local Wiley representative who can be found at Students who study this text and who solve a representative set of the exercises provided should acquire a useful knowledge of the fundamentals of fluid mechanics. Faculty who use this text are provided with numerous topics to select from in order to meet the objectives of their own courses. More material is included than can be reasonably covered in one term. All are reminded of the fine collection of supplementary material. Where appropriate, we have cited throughout the text the articles and books that are available for enrichment. We express our thanks to the many colleagues who have helped in the development of this text, including Professor Bruce Reichert of Kansas State University for help with Chapter 11 and Professor Patrick Kavanagh of Iowa State University for help with Chapter 12. We wish to express our gratitude to the many persons who supplied the photographs used throughout the text and to Milton Van Dyke for his help in this effort. Finally, we thank our families for their continued encouragement during the writing of this fourth edition. Working with students over the years has taught us much about fluid mechanics education. We have tried in earnest to draw from this experience for the benefit of users of this book. Obviously we are still learning, and we welcome any suggestions and comments from you. BRUCE R. MUNSON DONALD F. YOUNG THEODORE H. OKIISHI

12

13 C ontents 1 INTRODUCTION Some Characteristics of Fluids Dimensions, Dimensional Homogeneity, and Units Systems of Units 7 1.3Analysis of Fluid Behavior Measures of Fluid Mass and Weight Density Specific Weight Specific Gravity Ideal Gas Law Viscosity Compressibility of Fluids Bulk Modulus Compression and Expansion of Gases Speed of Sound Vapor Pressure Surface Tension A Brief Look Back in History 28 Key Words and Topics 31 References 31 Review Problems 31 Problems 32 2 FLUID STATICS Pressure at a Point Basic Equation for Pressure Field Pressure Variation in a Fluid at Rest Incompressible Fluid Compressible Fluid Standard Atmosphere Measurement of Pressure Manometry Piezometer Tube U-Tube Manometer Inclined-Tube Manometer Mechanical and Electronic Pressure Measuring Devices Hydrostatic Force on a Plane Surface Pressure Prism Hydrostatic Force on a Curved Surface Buoyancy, Flotation, and Stability Archimedes Principle Stability Pressure Variation in a Fluid with Rigid-Body Motion Linear Motion Rigid-Body Rotation 81 Key Words and Topics 84 References 84 Review Problems 84 Problems 84 3 ELEMENTARY FLUID DYNAMICS THE BERNOULLI EQUATION Newton s Second Law F ma Along a Streamline 104 xiii

14 xiv Contents 3.3 F ma Normal to a Streamline Physical Interpretation Static, Stagnation, Dynamic, and Total Pressure Examples of Use of the Bernoulli Equation Free Jets Confined Flows Flowrate Measurement The Energy Line and the Hydraulic Grade Line Restrictions on Use of the Bernoulli Equation Compressibility Effects Unsteady Effects Rotational Effects Other Restrictions 144 Key Words and Topics 144 References 144 Review Problems 145 Problems FLUID KINEMATICS The Velocity Field Eulerian and Lagrangian Flow Descriptions One-, Two-, and Three- Dimensional Flows Steady and Unsteady Flows Streamlines, Streaklines, and Pathlines The Acceleration Field The Material Derivative Unsteady Effects Convective Effects Streamline Coordinates Control Volume and System Representations The Reynolds Transport Theorem Derivation of the Reynolds Transport Theorem Physical Interpretation Relationship to Material Derivative Steady Effects Unsteady Effects Moving Control Volumes Selection of a Control Volume 194 Key Words and Topics 195 References 195 Review Problems 196 Problems FINITE CONTROL VOLUME ANALYSIS Conservation of Mass The Continuity Equation Derivation of the Continuity Equation Fixed, Nondeforming Control Volume Moving, Nondeforming Control Volume Deforming Control Volume Newton s Second Law The Linear Momentum and Moment-of- Momentum Equations Derivation of the Linear Momentum Equation Application of the Linear Momentum Equation Derivation of the Moment-of- Momentum Equation Application of the Moment-of- Momentum Equation First Law of Thermodynamics The Energy Equation Derivation of the Energy Equation Application of the Energy Equation Comparison of the Energy Equation with the Bernoulli Equation Application of the Energy Equation to Nonuniform Flows Combination of the Energy Equation and the Moment-of- Momentum Equation Second Law of Thermodynamics Irreversible Flow Semi-infinitesimal Control Volume Statement of the Energy Equation Semi-infinitesimal Control Volume Statement of the Second Law of Thermodynamics Combination of the Equations of the First and Second Laws of Thermodynamics 274

15 Contents xv Application of the Loss Form of the Energy Equation 275 Key Words and Topics 277 References 277 Review Problems 277 Problems DIFFERENTIAL ANALYSIS OF FLUID FLOW Fluid Element Kinematics Velocity and Acceleration Fields Revisited Linear Motion and Deformation Angular Motion and Deformation Conservation of Mass Differential Form of Continuity Equation Cylindrical Polar Coordinates The Stream Function Conservation of Linear Momentum Description of Forces Acting on the Differential Element Equations of Motion Inviscid Flow Euler s Equations of Motion The Bernoulli Equation Irrotational Flow The Bernoulli Equation for Irrotational Flow The Velocity Potential Some Basic, Plane Potential Flows Uniform Flow Source and Sink Vortex Doublet Superposition of Basic, Plane Potential Flows Source in a Uniform Stream Half-Body Rankine Ovals Flow Around a Circular Cylinder Other Aspects of Potential Flow Analysis Viscous Flow Stress-Deformation Relationships The Naiver Stokes Equations Some Simple Solutions for Viscous, Incompressible Fluids Steady, Laminar Flow Between Fixed Parallel Plates Couette Flow Steady, Laminar Flow in Circular Tubes Steady, Axial, Laminar Flow in an Annulus Other Aspects of Differential Analysis Numerical Methods 363 Key Words and Topics 371 References 371 Review Problems 371 Problems SIMILITUDE, DIMENSIONAL ANALYSIS, AND MODELING Dimensional Analysis Buckingham Pi Theorem Determination of Pi Terms Some Additional Comments About Dimensional Analysis Selection of Variables Determination of Reference Dimensions Uniqueness of Pi Terms Determination of Pi Terms by Inspection Common Dimensionless Groups in Fluid Mechanics Correlation of Experimental Data Problems with One Pi Term Problems with Two or More Pi Terms Modeling and Similitude Theory of Models Model Scales Practical Aspects of Using Models Some Typical Model Studies Flow Through Closed Conduits Flow Around Immersed Bodies Flow with a Free Surface Similitude Based on Governing Differential Equations 429 Key Words and Topics 432 References 432 Review Problems 432 Problems 432

16 xvi Contents 8 VISCOUS FLOW IN PIPES General Characteristics of Pipe Flow Laminar or Turbulent Flow Entrance Region and Fully Developed Flow Pressure and Shear Stress Fully Developed Laminar Flow From F ma Applied to a Fluid Element From the Navier Stokes Equations From Dimensional Analysis Energy Considerations Fully Developed Turbulent Flow Transition from Laminar to Turbulent Flow Turbulent Shear Stress Turbulent Velocity Profile Turbulence Modeling Chaos and Turbulence Dimensional Analysis of Pipe Flow The Moody Chart Minor Losses Noncircular Conduits Pipe Flow Examples Single Pipes Multiple Pipe Systems Pipe Flowrate Measurement Pipe Flowrate Meters Volume Flow Meters 518 Key Words and Topics 520 References 520 Review Problems 520 Problems FLOW OVER IMMERSED BODIES General External Flow Characteristics Lift and Drag Concepts Characteristics of Flow Past an Object Boundary Layer Characteristics Boundary Layer Structure and Thickness on a Flat Plate Prandtl/Blasius Boundary Layer Solution Momentum Integral Boundary Layer Equation for a Flat Plate Transition from Laminar to Turbulent Flow Turbulent Boundary Layer Flow Effects of Pressure Gradient Momentum-Integral Boundary Layer Equation with Nonzero Pressure Gradient Drag Friction Drag Pressure Drag Drag Coefficient Data and Examples Lift Surface Pressure Distribution Circulation 603 Key Words and Topics 607 References 607 Review Problems 608 Problems OPEN-CHANNEL FLOW General Characteristics of Open-Channel Flow Surface Waves Wave Speed Froude Number Effects Energy Considerations Specific Energy Channel Depth Variations Uniform Depth Channel Flow Uniform Flow Approximations The Chezy and Manning Equations Uniform Depth Examples Gradually Varied Flow Classification of Surface Shapes Examples of Gradually Varied Flows Rapidly Varied Flow The Hydraulic Jump Sharp-Crested Weirs Broad-Crested Weirs Underflow Gates 665 Key Words and Topics 668 References 668 Review Problems 668 Problems 668

17 Contents xvii 11 COMPRESSIBLE FLOW Ideal Gas Relationships Mach Number and Speed of Sound Categories of Compressible Flow Isentropic Flow of an Ideal Gas Effect of Variations in Flow Cross-Sectional Area Converging-Diverging Duct Flow Constant-Area Duct Flow Nonisentropic Flow of an Ideal Gas Adiabatic Constant-Area Duct Flow with Friction (Fanno Flow) Frictionless Constant-Area Duct Flow with Heat Transfer (Rayleigh Flow) Normal Shock Waves Analogy Between Compressible and Open-Channel Flows Two-Dimensional Compressible Flow 748 Key Words and Topics 751 References 751 Review Problems 752 Problems TURBOMACHINES (E-book only) Introduction Basic Energy Considerations Basic Angular Momentum Considerations The Centrifugal Pump Theoretical Considerations Pump Performance Characteristics Net Positive Suction Head (NPSH) System Characteristics and Pump Selection Dimensionless Parameters and Similarity Laws Special Pump Scaling Laws Specific Speed Suction Specific Speed Axial-Flow and Mixed-Flow Pumps Fans Turbines Impulse Turbines Reaction Turbines Compressible Flow Turbomachines Compressors Compressible Flow Turbines 812 Key Words and Topics 814 References 815 Review Problems 815 Problems 815 A UNIT CONVERSION TABLES 824 B PHYSICAL PROPERTIES OF FLUIDS 828 C PROPERTIES OF THE U.S. STANDARD ATMOSPHERE 834 D COMPRESSIBLE FLOW DATA FOR AN IDEAL GAS 836 E VIDEO LIBRARY (E-book only) F REVIEW PROBLEMS (E-book only) R-1 G LABORATORY PROBLEMS (E-book only) L-1 ANSWERS ANS-1 INDEX I-1

Fundamentals of Fluid Mechanics

Fundamentals of Fluid Mechanics Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018 CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018 Date Day Subject Read HW Sept. 21 F Introduction 1, 2 24 M Finite control volume analysis

More information

Engineering Fluid Mechanics

Engineering Fluid Mechanics Engineering Fluid Mechanics Eighth Edition Clayton T. Crowe WASHINGTON STATE UNIVERSITY, PULLMAN Donald F. Elger UNIVERSITY OF IDAHO, MOSCOW John A. Roberson WASHINGTON STATE UNIVERSITY, PULLMAN WILEY

More information

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific

More information

CLASS SCHEDULE 2013 FALL

CLASS SCHEDULE 2013 FALL CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties

More information

ME3560 Tentative Schedule Spring 2019

ME3560 Tentative Schedule Spring 2019 ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to

More information

ME3560 Tentative Schedule Fall 2018

ME3560 Tentative Schedule Fall 2018 ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read

More information

The Pilot Design Studio-Classroom. Joseph Cataldo The Cooper Union for the Advancement of Science and Art

The Pilot Design Studio-Classroom. Joseph Cataldo The Cooper Union for the Advancement of Science and Art The Pilot Design Studio-Classroom Joseph Cataldo The Cooper Union for the Advancement of Science and Art Studio Method Used for Many decades in Architectural and Art Schools Origins The concept of the

More information

Higher Education. Mc Grauu FUNDAMENTALS AND APPLICATIONS SECOND EDITION

Higher Education. Mc Grauu FUNDAMENTALS AND APPLICATIONS SECOND EDITION FLUID MECHANICS FUNDAMENTALS AND APPLICATIONS SECOND EDITION Mc Grauu Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok Bogota Caracas Kuala Lumpur

More information

ME EN 3700: FLUID MECHANICS (Fall 2003)

ME EN 3700: FLUID MECHANICS (Fall 2003) ME EN 3700: FLUID MECHANICS (Fall 2003) Lecturer: Eric R. Pardyjak Lecture: MTWThF 7:30am - 8:20am Room 104 EMCB Office Hours: (9:00am - 10:30am M W F, Room 169 KEN Website: http://www.mech.utah.edu/~pardyjak/

More information

TRANSPORT PHENOMENA AND UNIT OPERATIONS

TRANSPORT PHENOMENA AND UNIT OPERATIONS TRANSPORT PHENOMENA AND UNIT OPERATIONS TRANSPORT PHENOMENA AND UNIT OPERATIONS A COMBINED APPROACH Richard G. Griskey A JOHN WILEY & SONS, INC., PUBLICATION This book is printed on acid-free paper Copyright

More information

Process Fluid Mechanics

Process Fluid Mechanics Process Fluid Mechanics CENG 2220 Instructor: Francesco Ciucci, Room 2577A (Lift 27-29), Tel: 2358 7187, email: francesco.ciucci@ust.hk. Office Hours: Tuesday 17:00-18:00 or by email appointment Teaching

More information

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C.

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C. William В. Brower, Jr. A PRIMER IN FLUID MECHANICS Dynamics of Flows in One Space Dimension CRC Press Boca Raton London New York Washington, D.C. Table of Contents Chapter 1 Fluid Properties Kinetic Theory

More information

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow

More information

B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I

B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I Department of Chemical Engineering B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I LP: CH 16304 Rev. No: 00

More information

FUNDAMENTALS OF AERODYNAMICS

FUNDAMENTALS OF AERODYNAMICS *A \ FUNDAMENTALS OF AERODYNAMICS Second Edition John D. Anderson, Jr. Professor of Aerospace Engineering University of Maryland H ' McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved

More information

University of Engineering and Technology, Taxila. Department of Civil Engineering

University of Engineering and Technology, Taxila. Department of Civil Engineering University of Engineering and Technology, Taxila Department of Civil Engineering Course Title: CE-201 Fluid Mechanics - I Pre-requisite(s): None Credit Hours: 2 + 1 Contact Hours: 2 + 3 Text Book(s): Reference

More information

2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B.

2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B. CHAPTER 03 1. Write Newton's second law of motion. YOUR ANSWER: F = ma 2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False 3.Streamwise

More information

Theory and Fundamental of Fluid Mechanics

Theory and Fundamental of Fluid Mechanics 1 2 Lecture (1) on Fayoum University Theory and Fundamental of Fluid Mechanics By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical

More information

Physical Science and Engineering. Course Information. Course Number: ME 100

Physical Science and Engineering. Course Information. Course Number: ME 100 Physical Science and Engineering Course Number: ME 100 Course Title: Course Information Basic Principles of Mechanics Academic Semester: Fall Academic Year: 2016-2017 Semester Start Date: 8/21/2016 Semester

More information

Fundamentals of Aerodynamics

Fundamentals of Aerodynamics Fundamentals of Aerodynamics Fourth Edition John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland Me Graw Hill

More information

FLUID FLOW FOR THE PRACTICING CHEMICAL ENGINEER

FLUID FLOW FOR THE PRACTICING CHEMICAL ENGINEER FLUID FLOW FOR THE PRACTICING CHEMICAL ENGINEER J. Patrick Abulencia Louis Theodore WILEY A JOHN WILEY & SONS, INC., PUBLICATION PREFACE INTRODUCTION xvii xix I INTRODUCTION TO FLUID FLOW 1 II History

More information

Chapter 3 Bernoulli Equation

Chapter 3 Bernoulli Equation 1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around

More information

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595 l. Course #: PHYSC 121 2. NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR NAME OF COURSE ENGINEERING PHYSICS 1 WITH LAB 3. CURRENT DATE: SUMMER

More information

FLUID MECHANICS AND HEAT TRANSFER

FLUID MECHANICS AND HEAT TRANSFER AN INTRODUCTION TO FLUID MECHANICS AND HEAT TRANSFER AN INTRODUCTION TO FLUID MECHANICS AND HEAT TRANSFER WITH APPLICATIONS IN CHEMICAL & MECHANICAL PROCESS ENGINEERING BY J. M. KAY AND R. M. NEDDERMAN

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING. Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : II-I- B. Tech Year : 0 0 Course Coordinator

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

Latif M. Jiji. Heat Convection. With 206 Figures and 16 Tables

Latif M. Jiji. Heat Convection. With 206 Figures and 16 Tables Heat Convection Latif M. Jiji Heat Convection With 206 Figures and 16 Tables Prof. Latif M. Jiji City University of New York School of Engineering Dept. of Mechanical Engineering Convent Avenue at 138th

More information

Fluid Mechanics. du dy

Fluid Mechanics. du dy FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

More information

Part A: 1 pts each, 10 pts total, no partial credit.

Part A: 1 pts each, 10 pts total, no partial credit. Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: -3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,

More information

Signature: (Note that unsigned exams will be given a score of zero.)

Signature: (Note that unsigned exams will be given a score of zero.) Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.

More information

An Introduction to Engineering Fluid Mechanics

An Introduction to Engineering Fluid Mechanics An Introduction to Engineering Fluid Mechanics Other Macmillan titles of related interest Jonas M. K. Dake: Essentials of Engineering Hydrology L. Huisman: Groundwater Recovery L. M. Milne-Thomson: Theoretical

More information

conservation of linear momentum 1+8Fr = 1+ Sufficiently short that energy loss due to channel friction is negligible h L = 0 Bernoulli s equation.

conservation of linear momentum 1+8Fr = 1+ Sufficiently short that energy loss due to channel friction is negligible h L = 0 Bernoulli s equation. 174 Review Flow through a contraction Critical and choked flows The hydraulic jump conservation of linear momentum y y 1 = 1+ 1+8Fr 1 8.1 Rapidly Varied Flows Weirs 8.1.1 Broad-Crested Weir Consider the

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

UNIT I FLUID PROPERTIES AND STATICS

UNIT I FLUID PROPERTIES AND STATICS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: II-B.Tech & I-Sem Course & Branch:

More information

Fluid Mechanics Testbank By David Admiraal

Fluid Mechanics Testbank By David Admiraal Fluid Mechanics Testbank By David Admiraal This testbank was created for an introductory fluid mechanics class. The primary intentions of the testbank are to help students improve their performance on

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

Fundamentals of Aerodynamits

Fundamentals of Aerodynamits Fundamentals of Aerodynamits Fifth Edition in SI Units John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland

More information

NPTEL Quiz Hydraulics

NPTEL Quiz Hydraulics Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic

More information

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering

More information

SCHOOL OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM UNIVERSITY COURSE PLAN

SCHOOL OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM UNIVERSITY COURSE PLAN SCHOOL OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM UNIVERSITY COURSE PLAN Course code : CH0317 Course Title : Momentum Transfer Semester : V Course Time : July Nov 2011 Required Text

More information

in this web service Cambridge University Press

in this web service Cambridge University Press CONTINUUM MECHANICS This is a modern textbook for courses in continuum mechanics. It provides both the theoretical framework and the numerical methods required to model the behavior of continuous materials.

More information

HYDRAULIC CONTROL SYSTEMS

HYDRAULIC CONTROL SYSTEMS HYDRAULIC CONTROL SYSTEMS Noah D. Manring Mechanical and Aerospace Engineering Department University of Missouri-Columbia WILEY John Wiley & Sons, Inc. vii Preface Introduction xiii XV FUNDAMENTALS 1 Fluid

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Lecture 3 The energy equation

Lecture 3 The energy equation Lecture 3 The energy equation Dr Tim Gough: t.gough@bradford.ac.uk General information Lab groups now assigned Timetable up to week 6 published Is there anyone not yet on the list? Week 3 Week 4 Week 5

More information

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour Basic Equations in fluid Dynamics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Description of Fluid

More information

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In

More information

COURSE OUTLINE General Physics I

COURSE OUTLINE General Physics I Butler Community College Science, Technology, Engineering, and Math Division Robert Carlson Revised Fall 2008 Implemented Spring 2009 Textbook Update Fall 2015 COURSE OUTLINE General Physics I Course Description

More information

Convective Heat Transfer

Convective Heat Transfer Convective Heat Transfer Solved Problems Michel Favre-Marinet Sedat Tardu This page intentionally left blank Convective Heat Transfer This page intentionally left blank Convective Heat Transfer Solved

More information

FLUID MECHANICS. Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation

FLUID MECHANICS. Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation FLUID MECHANICS Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation CHAP 3. ELEMENTARY FLUID DYNAMICS - THE BERNOULLI EQUATION CONTENTS 3. Newton s Second Law 3. F = ma along a Streamline 3.3

More information

BASIC STRUCTURAL DYNAMICS

BASIC STRUCTURAL DYNAMICS BASIC STRUCTURAL DYNAMICS BASIC STRUCTURAL DYNAMICS James C. Anderson Ph.D. Professor of Civil Engineering, University of Southern California Farzad Naeim Ph.D., S.E., Esq. Vice President and General

More information

ESSEX COUNTY COLLEGE Engineering Technologies and Computer Sciences Division MET 215 Fluid Mechanics Course Outline

ESSEX COUNTY COLLEGE Engineering Technologies and Computer Sciences Division MET 215 Fluid Mechanics Course Outline ESSEX COUNTY COLLEGE Engineering Technologies and Computer Sciences Division MET 215 Fluid Mechanics Course Outline Course Number & Name: MET 215 Fluid Mechanics Credit Hours: 3.0 Contact Hours: 4.5 Lecture:

More information

Dimensions represent classes of units we use to describe a physical quantity. Most fluid problems involve four primary dimensions

Dimensions represent classes of units we use to describe a physical quantity. Most fluid problems involve four primary dimensions BEE 5330 Fluids FE Review, Feb 24, 2010 1 A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container will form a free

More information

MECFLUID - Advanced Fluid Mechanics

MECFLUID - Advanced Fluid Mechanics Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 250 - ETSECCPB - Barcelona School of Civil Engineering 751 - DECA - Department of Civil and Environmental Engineering ERASMUS

More information

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum

More information

Chapter Four fluid flow mass, energy, Bernoulli and momentum

Chapter Four fluid flow mass, energy, Bernoulli and momentum 4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering

More information

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127 C ONTENTS Preface xviii Nomenclature xxvi CHAPTER ONE BASICS OF HEAT TRANSFER 1 1-1 Thermodynamics and Heat Transfer 2 Application Areas of Heat Transfer 3 Historical Background 3 1-2 Engineering Heat

More information

Steven Burian Civil & Environmental Engineering September 25, 2013

Steven Burian Civil & Environmental Engineering September 25, 2013 Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

More information

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

More information

Friction Factors and Drag Coefficients

Friction Factors and Drag Coefficients Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the

More information

Detailed Outline, M E 521: Foundations of Fluid Mechanics I

Detailed Outline, M E 521: Foundations of Fluid Mechanics I Detailed Outline, M E 521: Foundations of Fluid Mechanics I I. Introduction and Review A. Notation 1. Vectors 2. Second-order tensors 3. Volume vs. velocity 4. Del operator B. Chapter 1: Review of Basic

More information

BRAZOSPORT COLLEGE LAKE JACKSON, TEXAS SYLLABUS PHYS MECHANICS AND HEAT

BRAZOSPORT COLLEGE LAKE JACKSON, TEXAS SYLLABUS PHYS MECHANICS AND HEAT BRAZOSPORT COLLEGE LAKE JACKSON, TEXAS SYLLABUS PHYS 2325 - MECHANICS AND HEAT CATALOG DESCRIPTION: PHYS 2325 Mechanics and Heat. CIP 4008015403 A calculus-based approach to the principles of mechanics

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

CONVECTION HEAT TRANSFER

CONVECTION HEAT TRANSFER CONVECTION HEAT TRANSFER SECOND EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina A WILEY-INTERSCIENCE PUBUCATION JOHN WILEY & SONS, INC. New York

More information

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics AEROSPACE ENGINEERING DEPARTMENT Second Year - Second Term (2008-2009) Fluid Mechanics & Gas Dynamics Similitude,Dimensional Analysis &Modeling (1) [7.2R*] Some common variables in fluid mechanics include:

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

Table of Contents. Preface... xiii

Table of Contents. Preface... xiii Preface... xiii PART I. ELEMENTS IN FLUID MECHANICS... 1 Chapter 1. Local Equations of Fluid Mechanics... 3 1.1. Forces, stress tensor, and pressure... 4 1.2. Navier Stokes equations in Cartesian coordinates...

More information

REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology

REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology REE 307 Fluid Mechanics II Lecture 1 Sep 27, 2017 Dr./ Ahmed Mohamed Nagib Elmekawy Zewail City for Science and Technology Course Materials drahmednagib.com 2 COURSE OUTLINE Fundamental of Flow in pipes

More information

APPLIED FLUID DYNAMICS HANDBOOK

APPLIED FLUID DYNAMICS HANDBOOK APPLIED FLUID DYNAMICS HANDBOOK ROBERT D. BLEVINS H imhnisdia ttodisdiule Darmstadt Fachbereich Mechanik 'rw.-nr.. [VNR1 VAN NOSTRAND REINHOLD COMPANY ' ' New York Contents Preface / v 1. Definitions /

More information

Course Syllabus: Continuum Mechanics - ME 212A

Course Syllabus: Continuum Mechanics - ME 212A Course Syllabus: Continuum Mechanics - ME 212A Division Course Number Course Title Academic Semester Physical Science and Engineering Division ME 212A Continuum Mechanics Fall Academic Year 2017/2018 Semester

More information

Egon Krause. Fluid Mechanics

Egon Krause. Fluid Mechanics Egon Krause Fluid Mechanics Egon Krause Fluid Mechanics With Problems and Solutions, and an Aerodynamic Laboratory With 607 Figures Prof. Dr. Egon Krause RWTH Aachen Aerodynamisches Institut Wüllnerstr.5-7

More information

Syllabus for AE3610, Aerodynamics I

Syllabus for AE3610, Aerodynamics I Syllabus for AE3610, Aerodynamics I Current Catalog Data: AE 3610 Aerodynamics I Credit: 4 hours A study of incompressible aerodynamics of flight vehicles with emphasis on combined application of theory

More information

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer Forced Convection Outlines To examine the methods of calculating convection heat transfer (particularly, the ways of predicting the value of convection heat transfer coefficient, h) Convection heat transfer

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

Subject-wise Tests. Tests will be activated at 6:00 pm on scheduled day

Subject-wise Tests. Tests will be activated at 6:00 pm on scheduled day Subject-wise Tests Tests will be activated at 6:00 pm on scheduled day Test No Test-01 Test-02 SM-1 Economic development in India since independence with emphasis on Andhra Pradesh + Science & Technology

More information

A FIRST COURSE IN INTEGRAL EQUATIONS

A FIRST COURSE IN INTEGRAL EQUATIONS A FIRST COURSE IN INTEGRAL EQUATIONS This page is intentionally left blank A FIRST COURSE IN INTEGRAL EQUATIONS Abdul-M ajid Wazwaz Saint Xavier University, USA lib World Scientific 1M^ Singapore New Jersey

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 09 Introduction to Reaction Type of Hydraulic

More information

4 Finite Control Volume Analysis Introduction Reynolds Transport Theorem Conservation of Mass

4 Finite Control Volume Analysis Introduction Reynolds Transport Theorem Conservation of Mass iv 2.3.2 Bourdon Gage................................... 92 2.3.3 Pressure Transducer................................ 93 2.3.4 Manometer..................................... 95 2.3.4.1 Piezometer................................

More information

Athena A C A D E M I C. V. Babu

Athena A C A D E M I C. V. Babu Athena A C A D E M I C V. Babu Fundamentals of Gas Dynamics (2nd Edition) Cover illustration: Schlieren picture of an under-expanded flow issuing from a convergent divergent nozzle. Prandtl-Meyer expansion

More information

SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY, MESA, AND MIRAMAR COLLEGES ASSOCIATE DEGREE COURSE OUTLINE

SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY, MESA, AND MIRAMAR COLLEGES ASSOCIATE DEGREE COURSE OUTLINE PHYS 195 CIC Approval: 04/27/2006 BOT APPROVAL: 05/25/2006 STATE APPROVAL: EFFECTIVE TERM: Fall 2006 SECTION I SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY, MESA, AND MIRAMAR COLLEGES ASSOCIATE DEGREE COURSE

More information

R09. d water surface. Prove that the depth of pressure is equal to p +.

R09. d water surface. Prove that the depth of pressure is equal to p +. Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

More information

ME3250 Fluid Dynamics I

ME3250 Fluid Dynamics I ME3250 Fluid Dynamics I Section I, Fall 2012 Instructor: Prof. Zhuyin Ren Department of Mechanical Engineering University of Connecticut Course Information Website: http://www.engr.uconn.edu/~rzr11001/me3250_f12/

More information

FRIDAYS 14:00 to 15:40. FRIDAYS 16:10 to 17:50

FRIDAYS 14:00 to 15:40. FRIDAYS 16:10 to 17:50 Brad Peterson, P.E. FRIDAYS 14:00 to 15:40 FRIDAYS 16:10 to 17:50 BRAD PETERSON, P.E., PTOE Brigham Young University, 1975 Highway and Bridge Design Montana, Utah, Idaho, Wyoming Worked 27 Years in Helena,

More information

6.1 Momentum Equation for Frictionless Flow: Euler s Equation The equations of motion for frictionless flow, called Euler s

6.1 Momentum Equation for Frictionless Flow: Euler s Equation The equations of motion for frictionless flow, called Euler s Chapter 6 INCOMPRESSIBLE INVISCID FLOW All real fluids possess viscosity. However in many flow cases it is reasonable to neglect the effects of viscosity. It is useful to investigate the dynamics of an

More information

COURSE OUTLINE: HYDROMECHANICS VVR N35 January May 2019

COURSE OUTLINE: HYDROMECHANICS VVR N35 January May 2019 WATER RESOURCES ENGINEERING FACULTY OF ENGINEERING/LUND UNIVERSITY COURSE OUTLINE: HYDROMECHANICS VVR N35 January May 2019 Information about the course is available through various files in pdf-format

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9 Preface page xv 1 Introduction to Gas-Turbine Engines...1 Definition 1 Advantages of Gas-Turbine Engines 1 Applications of Gas-Turbine Engines 3 The Gas Generator 3 Air Intake and Inlet Flow Passage 3

More information

Mechanical Engineering Science for Medical Engineers Level: 4 Credit value: 8 GLH: 62 TQT: 80

Mechanical Engineering Science for Medical Engineers Level: 4 Credit value: 8 GLH: 62 TQT: 80 This unit has 6 learning outcomes. 1. Be able to solve engineering problems that involve variable and constant acceleration motion. 1.1. Apply dimensional analysis to an equation involving units of length,

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

Advanced Engineering. Dynamics. H. R. Harrison. T. Nettleton. Formerly Department of Mechanical Engineering & Aeronautics City University London

Advanced Engineering. Dynamics. H. R. Harrison. T. Nettleton. Formerly Department of Mechanical Engineering & Aeronautics City University London Advanced Engineering Dynamics H. R. Harrison Formerly Department of Mechanical Engineering & Aeronautics City University London T. Nettleton Formerly Department of Mechanical Engineering & Aeronautics

More information

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey GAS DYNAMICS M. Halük Aksel and O. Cahit Eralp Middle East Technical University Ankara, Turkey PRENTICE HALL f r \ New York London Toronto Sydney Tokyo Singapore; \ Contents Preface xi Nomenclature xiii

More information

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements. PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion

More information

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii Contents 1 Working Principles... 1 1.1 Definition of a Turbomachine... 1 1.2 Examples of Axial Turbomachines... 2 1.2.1 Axial Hydraulic Turbine... 2 1.2.2 Axial Pump... 4 1.3 Mean Line Analysis... 5 1.4

More information