2D Motion Projectile Motion

Size: px
Start display at page:

Download "2D Motion Projectile Motion"

Transcription

1 2D Motion Projectile Motion Lana heridan De Anza College Oct 3, 2017

2 Last time vectors vector operations

3 Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors. Let l, m, and n be non-zero scalars. Could this possibly be a valid equation? a = b (A) yes (B) no

4 Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors. Let l, m, and n be non-zero scalars. Could this possibly be a valid equation? a = b (A) yes (B) no

5 Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors. Let l, m, and n be non-zero scalars. Could this possibly be a valid equation? a = n (A) yes (B) no

6 Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors. Let l, m, and n be non-zero scalars. Could this possibly be a valid equation? a = n (A) yes (B) no

7 Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors. Let l, m, and n be non-zero scalars. Could this possibly be a valid equation? a = n (A) yes (B) no

8 Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors. Let l, m, and n be non-zero scalars. Could this possibly be a valid equation? a = n (A) yes (B) no

9 Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors. Let l, m, and n be non-zero scalars. Could this possibly be a valid equation? a = b + n (A) yes (B) no

10 Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors. Let l, m, and n be non-zero scalars. Could this possibly be a valid equation? a = b + n (A) yes (B) no

11 Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors. Let l, m, and n be non-zero scalars. Could this possibly be a valid equation? a = n b (A) yes (B) no

12 Overview 2 dimensional motion projectile motion height of a projectile

13 Motion in 2 Dimensions The Plan: All the same kinematics equations apply in 2 dimensions. We can use our knowledge of vectors to solve separately the motion in the x and y directions.

14 such as Dt placement Motion in 2 Dimensions conclude are Equan. That is ends only with onepoint and ecause its Figure 2.2 back and sional suracross the ry compliver, a play- O y ri The displacement of the particle is the vector r. t i rf r t f Path of particle Figure 4.1 r A = particle xi + yj moving in the xy plane is located with the position r vector = r f r rdrawn i from x

15 Motion in 2 Dimensions apter 4 Motion in Two Dimensions As the end point approaches, t approaches zero and the direction of r approaches that of the green line tangent to the curve at. y Direction of v at r 1 r 2 r 3 As the end point of the path is moved from to to, the respective displacements and corresponding time intervals become smaller and smaller. O x r(t + t) r(t) = dr icle moves average ion of the r. By definis velocity at line tan- As a particle moves from one point to another along some path, its instantaneous velocity vector v changes = limfrom vi at time t i to vf at time t f. Knowing the velocity t 0 t dt at these points allows us to determine the average acceleration of the particle. The average acceleration a avg of a particle is defined as the change in its instantaneous

16 Velocity in 2 Dimensions Different directions are independent differentiate separately! r = xi + yj v = dr dt = dx dt i + dy dt j v = v x i + v y j (Differentiation is a linear operation.)

17 hen a particle accelerates. First, the magnitude ) Acceleration may change with in 2time Dimensions as in straight-line (one- ion to m v i to v f. how two the initial O y r i r f v i v v f v i v f or v f v i x v v = v(t + t) v(t) = v f v i v(t + t) v(t) a = lim = dv t 0 t dt

18 r Kinematic Equations in 2 Dimensions same reason, from Figure 4.5b we see that rf is gen i, vi, or a. Finally, notice that vf and rf are gener y v yf a y t v f at y f a y t v f = v i + at Figure 4.5 Vector representations and components of (a) the velocity and (b) the position of a particle under constant acceleration in two dimensions. a v yi v xi v i v xf a x t x b v yi t y i

19 r Kinematic Equations in 2 Dimensions same reason, from Figure 4.5b we see that rf is gen i, vi, or a. Finally, notice that vf and rf are gener y v f = v i + at v yf a y t v f at y f a y t v f = (v x,i i + v y,i j) + (a x i + a y j)t Figure 4.5 Vector representations and components of (a) the velocity and (b) the position of a particle under constant acceleration in two dimensions. v x i + v y j = (v x,i + a x t)i + (v y,i + a y t)j Equating x-components (i-components): a v yi v xi v i v xf a x t x b v yi t y i v x = v x,i + a x t Equating y-components (j-components): v y = v y,i + a y t

20 Kinematic Equations in 2 Dimensions The other kinematics equations work basically the same way as v f = v i + at.

21 Kinematic Equations in 2 Dimensions The other kinematics equations work basically the same way as v f = v i + at. These are also vector equations and the components add up the same way: r = v i t at2 r = 1 2 (v i + v f )t

22 Kinematic Equations in 2 Dimensions The other kinematics equations work basically the same way as v f = v i + at. These are also vector equations and the components add up the same way: This one is a scalar equation: r = v i t at2 r = 1 2 (v i + v f )t v 2 f = v 2 i (Why is it a scalar equation?) + 2a r

23 Projectiles projectile Any object that is thrown. We will use this word specifically to refer to thrown objects that experience a vertical acceleration g. Assumption Air resistance is negligible. Why do we care?

24 Projectiles projectile Any object that is thrown. We will use this word specifically to refer to thrown objects that experience a vertical acceleration g. Assumption Air resistance is negligible. Why do we care?

25 Projectiles projectile Any object that is thrown. We will use this word specifically to refer to thrown objects that experience a vertical acceleration g. Assumption Air resistance is negligible. Why do we care?

26 Projectiles projectile Any object that is thrown. We will use this word specifically to refer to thrown objects that experience a vertical acceleration g. Assumption Air resistance is negligible. Why do we care?

27 Projectile Velocity 4 v y i y The y component of velocity is zero at the peak of the path. vi u i v xi v y u v v xi v y 0 v The projectile is launched with initial velocity v i. v y g v xi u v v y The x component of velocity remains constant because there is no acceleration in the x direction. v xi u i x v ection 4.2, we stated that two-dimensional motion with constant accele

28 Projectile Velocity 4 v y i y The y component of velocity is zero at the peak of the path. vi u i v xi v y u v v xi v y 0 The projectile is launched with initial velocity v i. But the y acceleration is not zero! v v y g v xi u v v y The x component of velocity remains constant because there is no acceleration in the x direction. v xi u i v x ection 4.2, we stated that two-dimensional motion with constant accele

29 Vector Addition can give a Projectile s Trajectory eleraand y ed in a y 5 e two ction O y vit rf 1 t 2 2 g (x,y) x (Eqs. Figure 4.8 The position vector r f of a projectile r = r f 0 = launched v i t + 1 from 2 at2 the origin whose initial velocity

30 Height of a Projectile tely om- How can we find the maximum height that a projectile reaches? - he re c y vi v y 0 tile t i 5 oriolf O u i h R Figure 4.9 A projectile launched over a flat surface from the origin at t i 5 0 with an initial velocity x

31 Height of a Projectile tely om- How can we find the maximum height that a projectile reaches? Find the height when v y = 0. - he re c y vi v y 0 tile t i 5 oriolf O u i h R Figure 4.9 A projectile launched over a flat surface from the origin at t i 5 0 with an initial velocity x

32 Height of a Projectile tely om- How can we find the maximum height that a projectile reaches? Find the height when v y = 0. - he re c y vi v y 0 v 2 f,y = v 2 i,y 2g y tile t i 5 oriolf O u i h R Figure 4.9 A projectile launched over a flat surface from the origin at t i 5 0 with an initial velocity x

33 Height of a Projectile tely om- How can we find the maximum height that a projectile reaches? Find the height when v y = 0. - he re c tile t i 5 oriolf O y vi u i h R v y 0 Figure 4.9 A projectile launched over a flat surface from the origin at t i 5 0 with an initial velocity x v 2 f,y = v 2 i,y 2g y 0 = v 2 y,i 2gh h = v 2 y,i 2g In the diagram, v y,i = v i sin θ. h = v 2 i sin 2 θ 2g

34 Time of Flight of a Projectile ion are time completely of flight time The t as time the com- from launch to when projectile hits the ground. How can we find the time of flight of a projectile? arabolic path y ty and accelera- ) nowhere (b) the v y 0 at what point are to each other? v tile l case of projectile the origin at t i 5 O i u i rns to the same horifootballs, Assuming and that golf it is over launched a flat surface from the from ground the origin and lands on the Figure 4.9 A projectile launched. ground at the sameat height... t i 5 0 with an initial velocity h R x

35 Time of Flight of a Projectile Use symmetry! A parabola is always symmetric about a line through it s vertex.

36 Time of Flight of a Projectile Use symmetry! A parabola is always symmetric about a line through it s vertex. 1 That means the time to go up and return to the ground are the same. Find the time to reach the v y = 0 point, ( t half ) then multiply by two.

37 Time of Flight of a Projectile Use symmetry! A parabola is always symmetric about a line through it s vertex. 1 That means the time to go up and return to the ground are the same. Find the time to reach the v y = 0 point, ( t half ) then multiply by two. 2 Or, notice that just before striking the ground, v y,f = v y,i.

38 Time of Flight of a Projectile Use symmetry! A parabola is always symmetric about a line through it s vertex. 1 That means the time to go up and return to the ground are the same. Find the time to reach the v y = 0 point, ( t half ) then multiply by two. 2 Or, notice that just before striking the ground, v y,f = v y,i. 3 Or, notice that just when striking the ground, y = 0.

39 Time of Flight of a Projectile 1. Use symmetry! A parabola is always symmetric about a line through it s vertex. 1 That means the time to go up and return to the ground are the same. Find the time to reach the v y = 0 point, ( t half ) then multiply by two. 2 Or, notice that just before striking the ground, v y,f = v y,i. v y,f = v y,i + a y t 0 = v i sin θ gt half t half = v i sin θ g t flight = 2v i sin θ g

40 Time of Flight of a Projectile 1. Use symmetry! A parabola is always symmetric about a line through it s vertex. 1 That means the time to go up and return to the ground are the same. Find the time to reach the v y = 0 point, ( t half ) then multiply by two. 2 Or, notice that just before striking the ground, v y,f = v y,i. v y,f = v y,i + a y t 0 = v i sin θ gt half t half = v i sin θ g 2. v y,f = v y,i + a y t v i sin θ = v i sin θ gt t = 2v i sin θ g t flight = 2v i sin θ g t flight = 2v i sin θ g

41 Time of Flight of a Projectile 3 Or, notice that just when striking the ground, y = 0. y = v y,i t a y t 2 0 = v i sin θt 1 2 gt2 Now cancel a factor of t. Warning! This will remove one solution to this equation in t. What is it?

42 Time of Flight of a Projectile 3 Or, notice that just when striking the ground, y = 0. y = v y,i t a y t 2 0 = v i sin θt 1 2 gt2 Now cancel a factor of t. Warning! This will remove one solution to this equation in t. What is it? 1 2 gt = v i sin θ t flight = 2v i sin θ g

43 such as 75 and 15. Of course, the maximum height and time of flight for one of these values of u i are different from the maximum height and time of flight for the complementary value. Time of Flight of a Projectile Quick Quiz Rank the launch angles for the five paths in the figure with respect to time of flight from the shortest time of flight respect to time of flight from the shortest time of flight to the longest. to the longest. (Assume the magnitude v i remains the same.) Q uick Quiz 4.3 Rank the launch angles for the five paths in Figure 4.10 with y (m) A 15, 30, 45, 60, 75 B 45, 30, 60, 15, 75 C 15, 75, 30, 60, 45 D 75, 60, 45, 30, Page 86, erway & Jewett 15 v i 50 m/s Complementary values of the initial angle u i result in the same value of R x (m)

44 such as 75 and 15. Of course, the maximum height and time of flight for one of these values of u i are different from the maximum height and time of flight for the complementary value. Time of Flight of a Projectile Quick Quiz Rank the launch angles for the five paths in the figure with respect to time of flight from the shortest time of flight respect to time of flight from the shortest time of flight to the longest. to the longest. (Assume the magnitude v i remains the same.) Q uick Quiz 4.3 Rank the launch angles for the five paths in Figure 4.10 with y (m) A 15, 30, 45, 60, 75 B 45, 30, 60, 15, 75 C 15, 75, 30, 60, 45 D 75, 60, 45, 30, 15 1 Page 86, erway & Jewett v i 50 m/s Complementary values of the initial angle u i result in the same value of R x (m)

45 ummary projectile motion height, range of a projectile trajectory equation for a projectile Collected Homework! due Friday, Oct 6. (Uncollected) Homework erway & Jewett, Ch 4 Work through example 4.5 (ki Jumper) on page 90. Understand it. Ch 4, onward from page 102. Probs: 7, 11, 15, 21, 29, 37, 39 Read Ch 1-4, if you haven t already.

2D Motion Projectile Motion

2D Motion Projectile Motion 2D Motion Projectile Motion Lana heridan De Anza College Oct 3, 2017 Last time vectors vector operations 2 dimensional motion Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors.

More information

Introduction to Mechanics Projectiles Time of Flight

Introduction to Mechanics Projectiles Time of Flight Introduction to Mechanics Projectiles Time of Flight Lana Sheridan De Anza College Oct 24, 2017 Last time height of a projectile Warm Up Question # 57, page 107 Child 1 throws a snowball horizontally from

More information

Introduction to Mechanics Time of Flight Range of a Projectile Trajectory Equation

Introduction to Mechanics Time of Flight Range of a Projectile Trajectory Equation Introduction to Mechanics Time of Flight Range of a Projectile Trajectory Equation Lana Sheridan De Anza College Feb 12, 2018 Last time projectiles launched horizontally projectiles launched at an angle

More information

Introduction to Mechanics Projectiles

Introduction to Mechanics Projectiles Introduction to Mechanics Projectiles Lana heridan De Anza College Feb 6, 2018 Last time relative motion examples Overview another relative motion example motion with constant acceleration projectiles

More information

Motion in Two Dimensions. 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3.

Motion in Two Dimensions. 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3. Motion in Two Dimensions 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3.Projectile Motion The position of an object is described by its position

More information

Kinematics Varying Accelerations (1D) Vectors (2D)

Kinematics Varying Accelerations (1D) Vectors (2D) Kinematics Varying Accelerations (1D) Vectors (2D) Lana heridan De Anza College ept 29, 2017 Last time kinematic equations using kinematic equations Overview falling objects and g varying acceleration

More information

When we throw a ball :

When we throw a ball : PROJECTILE MOTION When we throw a ball : There is a constant velocity horizontal motion And there is an accelerated vertical motion These components act independently of each other PROJECTILE MOTION A

More information

Chapter 4. Motion in Two Dimensions. Position and Displacement. General Motion Ideas. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions. Position and Displacement. General Motion Ideas. Motion in Two Dimensions Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Using + or signs is not always sufficient to fully describe motion in more than one dimension Vectors can be used to more fully describe motion

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

2D Kinematics Relative Motion Circular Motion

2D Kinematics Relative Motion Circular Motion 2D Kinematics Relative Motion Circular Motion Lana heridan De Anza College Oct 5, 2017 Last Time range of a projectile trajectory equation projectile example began relative motion Overview relative motion

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Oct 30, 2017 Last time relative motion review projectiles and relative motion Relative Motion and Projectiles A science

More information

Introduction to Mechanics Range of a Projectile Trajectory Equation More Examples

Introduction to Mechanics Range of a Projectile Trajectory Equation More Examples Introduction to Mechanics Range of a Projectile Trajectory Equation More Examples Lana Sheridan De Anza College Oct 25, 2017 Last time max height of a projectile time-of-flight of a projectile range of

More information

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail. Will treat projectile motion and uniform circular

More information

Kinematics Kinematic Equations and Falling Objects

Kinematics Kinematic Equations and Falling Objects Kinematics Kinematic Equations and Falling Objects Lana Sheridan De Anza College Sept 28, 2017 Last time kinematic quantities relating graphs Overview derivation of kinematics equations using kinematics

More information

Kinematics Kinematic Equations and Falling Objects

Kinematics Kinematic Equations and Falling Objects Kinematics Kinematic Equations and Falling Objects Lana Sheridan De Anza College Sept 28, 2017 Last time kinematic quantities relating graphs Overview derivation of kinematics equations using kinematics

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Feb 14, 2018 Last time relative motion review projectiles and relative motion Relative Motion and Projectiles A science

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Motion in Two Dimensions

Motion in Two Dimensions P U Z Z L E R This airplane is used by NASA for astronaut training. When it flies along a certain curved path, anything inside the plane that is not strapped down begins to float. What causes this strange

More information

Introduction to Mechanics Motion in 2 Dimensions

Introduction to Mechanics Motion in 2 Dimensions Introduction to Mechanics Motion in 2 Dimensions Lana heridan De Anza College Oct 17, 2017 Last time vectors and trig Overview wrap up vectors introduction to motion in 2 dimensions constant velocity in

More information

Introduction to Mechanics Motion in 2 Dimensions

Introduction to Mechanics Motion in 2 Dimensions Introduction to Mechanics Motion in 2 Dimensions Lana heridan De Anza College Jan 31, 2018 Last time vectors and trig Overview introduction to motion in 2 dimensions constant velocity in 2 dimensions relative

More information

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney Chapter 4 Motion in Two Dimensions With modifications by Pinkney Kinematics in Two Dimensions covers: the vector nature of position, velocity and acceleration in greater detail projectile motion a special

More information

2D Kinematics Relative Motion Circular Motion

2D Kinematics Relative Motion Circular Motion 2D Kinematics Relative Motion Circular Motion Lana heridan De Anza College Oct 5, 2017 Last Time range of a projectile trajectory equation projectile example began relative motion Overview relative motion

More information

Kinematics Motion in 1-Dimension

Kinematics Motion in 1-Dimension Kinematics Motion in 1-Dimension Lana Sheridan De Anza College Jan 15, 219 Last time how to solve problems 1-D kinematics Overview 1-D kinematics quantities of motion graphs of kinematic quantities vs

More information

Rotation Angular Momentum

Rotation Angular Momentum Rotation Angular Momentum Lana Sheridan De Anza College Nov 28, 2017 Last time rolling motion Overview Definition of angular momentum relation to Newton s 2nd law angular impulse angular momentum of rigid

More information

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D PHY 1114: Physics I Lecture 5: Motion in D Fall 01 Kenny L. Tapp Quick Question 1 A child throws a ball vertically upward at the school playground. Which one of the following quantities is (are) equal

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Conceptual Physics Motion and Graphs Free Fall Using Vectors

Conceptual Physics Motion and Graphs Free Fall Using Vectors Conceptual Physics Motion and Graphs Free Fall Using Vectors Lana heridan De Anza College July 6, 2017 Last time Units More about size and scale Motion of objects Inertia Quantities of motion Overview

More information

MOTION IN TWO OR THREE DIMENSIONS

MOTION IN TWO OR THREE DIMENSIONS MOTION IN TWO OR THREE DIMENSIONS 3 Sections Covered 3.1 : Position & velocity vectors 3.2 : The acceleration vector 3.3 : Projectile motion 3.4 : Motion in a circle 3.5 : Relative velocity 3.1 Position

More information

Motion in Two or Three Dimensions

Motion in Two or Three Dimensions Chapter 3 Motion in Two or Three Dimensions PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 3 To use vectors

More information

CHAPTER 3 MOTION IN TWO AND THREE DIMENSIONS

CHAPTER 3 MOTION IN TWO AND THREE DIMENSIONS CHAPTER 3 MOTION IN TWO AND THREE DIMENSIONS General properties of vectors displacement vector position and velocity vectors acceleration vector equations of motion in 2- and 3-dimensions Projectile motion

More information

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 2 One-Dimensional Kinematics Units of Chapter 2 Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications

More information

Dynamics Laws of Motion More About Forces

Dynamics Laws of Motion More About Forces Dynamics Laws of Motion More About Forces Lana heridan De Anza College Oct 10, 2017 Overview Newton s first and second laws Warm Up: Newton s econd Law Implications Question. If an object is not accelerating,

More information

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2 Physics C -D Kinematics Name: AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors Specify

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Projectile Motion An object may move in both the x and y directions simultaneously. This form of two-dimensional motion we will deal with is called projectile motion.

More information

Problem: Projectile (CM-1998)

Problem: Projectile (CM-1998) Physics C -D Kinematics Name: ANSWER KEY AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors

More information

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS Projectile Motion Chin- Sung Lin Introduction to Projectile Motion q What is Projectile Motion? q Trajectory of a Projectile q Calculation of Projectile Motion Introduction to Projectile Motion q What

More information

2-D Vector Equations have the same form as 1-D Kinematics. f i i

2-D Vector Equations have the same form as 1-D Kinematics. f i i 2-D Vector Equations have the same form as 1-D Kinematics v = v + at f i 1 r = r + v t+ at f i i 2 2 2-D Vector Equations have the same form as 1-D Kinematics v = viˆ+ v ˆj f x y = ( v + ati ) ˆ+ ( v +

More information

Extended or Composite Systems Systems of Many Particles Deformation

Extended or Composite Systems Systems of Many Particles Deformation Extended or Composite Systems Systems of Many Particles Deformation Lana Sheridan De Anza College Nov 15, 2017 Overview last center of mass example systems of many particles deforming systems Continuous

More information

Chapter 4 Two-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 4 Two-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 4 Two-Dimensional Kinematics Units of Chapter 4 Motion in Two Dimensions Projectile Motion: Basic Equations Zero Launch Angle General Launch Angle Projectile Motion: Key Characteristics 4-1 Motion

More information

Kinematics: Circular Motion Mechanics: Forces

Kinematics: Circular Motion Mechanics: Forces Kinematics: Circular Motion Mechanics: Forces Lana heridan De Anza College Oct 11, 2018 Last time projectile trajectory equation projectile examples projectile motion and relative motion Overview circular

More information

Energy Energy and Friction

Energy Energy and Friction Energy Energy and Friction Lana heridan De Anza College Oct 31, 2017 Last time energy conservation isolated and nonisolated systems Overview Isolated system example Kinetic friction and energy Practice

More information

Energy Potential Energy and Force Conservation Laws Isolated and Nonisolated Systems

Energy Potential Energy and Force Conservation Laws Isolated and Nonisolated Systems Energy Potential Energy and Force Conservation Laws Isolated and Nonisolated ystems Lana heridan De Anza College Oct 27, 2017 Last time gravitational and spring potential energies conservative and nonconservative

More information

2D Kinematics: Nonuniform Circular Motion Dynamics: Forces

2D Kinematics: Nonuniform Circular Motion Dynamics: Forces 2D Kinematics: Nonuniform Circular Motion Dynamics: Forces Lana heridan De Anza College Oct 6, 2017 Last Time relative motion uniform circular motion Overview nonuniform circular motion Introduce forces

More information

Dynamics Energy and Work

Dynamics Energy and Work Dynamics Energy and Work Lana Sheridan De Anza College Oct 24, 2017 Last Time resistive forces: Drag Equation Drag Equation, One more point What if the object is not dropped from rest? (See Ch 6, prob

More information

Introduction to Mechanics Kinematics Equations

Introduction to Mechanics Kinematics Equations Introduction to Mechanics Kinematics Equations Lana Sheridan De Anza College Jan, 018 Last time more practice with graphs introduced the kinematics equations Overview rest of the kinematics equations derivations

More information

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12.1-12.2) Today s Objectives: Students will be able to find the kinematic quantities (position, displacement, velocity, and acceleration)

More information

Kinematics Motion in 1-Dimension

Kinematics Motion in 1-Dimension Kinematics Motion in 1-Dimension Lana Sheridan De Anza College Jan 16, 2018 Last time unit conversions (non-si units) order of magnitude calculations how to solve problems Overview 1-D kinematics quantities

More information

Announcement. Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday

Announcement. Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday Going over HW3.05 Announcement Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday As the red ball rolls off the edge, a green ball is dropped from rest from the same height at the same

More information

Feb 6, 2013 PHYSICS I Lecture 5

Feb 6, 2013 PHYSICS I Lecture 5 95.141 Feb 6, 213 PHYSICS I Lecture 5 Course website: faculty.uml.edu/pchowdhury/95.141/ www.masteringphysics.com Course: UML95141SPRING213 Lecture Capture h"p://echo36.uml.edu/chowdhury213/physics1spring.html

More information

Static Equilibrium. Lana Sheridan. Dec 5, De Anza College

Static Equilibrium. Lana Sheridan. Dec 5, De Anza College tatic Equilibrium Lana heridan De Anza College Dec 5, 2016 Last time simple harmonic motion Overview Introducing static equilibrium center of gravity tatic Equilibrium: ystem in Equilibrium Knowing that

More information

Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN

Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN EMU Physics Department Motion along a straight line q Motion q Position and displacement q Average velocity and average speed q Instantaneous velocity and

More information

Chapter 3: Kinematics in Two Dimensions

Chapter 3: Kinematics in Two Dimensions Chapter 3: Kinematics in Two Dimensions Vectors and Scalars A scalar is a number with units. It can be positive, negative, or zero. Time: 100 s Distance and speed are scalars, although they cannot be negative

More information

Conceptual Physics Energy Sources Collisions

Conceptual Physics Energy Sources Collisions Conceptual Physics Energy ources Collisions Lana heridan De Anza College July 7, 2015 Last time energy and work kinetic energy potential energy conservation of energy energy transfer simple machines efficiency

More information

Lecture4- Projectile Motion Chapter 4

Lecture4- Projectile Motion Chapter 4 1 / 32 Lecture4- Projectile Motion Chapter 4 Instructor: Prof. Noronha-Hostler Course Administrator: Prof. Roy Montalvo PHY-123 ANALYTICAL PHYSICS IA Phys- 123 Sep. 28 th, 2018 2 / 32 Objectives Vector

More information

Rotational Motion Rotational Kinematics

Rotational Motion Rotational Kinematics Rotational Motion Rotational Kinematics Lana Sheridan De Anza College Nov 16, 2017 Last time 3D center of mass example systems of many particles deforming systems Overview rotation relating rotational

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

University of Alabama Department of Physics and Astronomy. PH 105 LeClair Summer Problem Set 3 Solutions

University of Alabama Department of Physics and Astronomy. PH 105 LeClair Summer Problem Set 3 Solutions University of Alabama Department of Physics and Astronomy PH 105 LeClair Summer 2012 Instructions: Problem Set 3 Solutions 1. Answer all questions below. All questions have equal weight. 2. Show your work

More information

Linear Momentum Center of Mass

Linear Momentum Center of Mass Linear Momentum Center of Mass Lana Sheridan De Anza College Nov 14, 2017 Last time the ballistic pendulum 2D collisions center of mass finding the center of mass Overview center of mass examples center

More information

Kinematics in Two Dimensions; Vectors

Kinematics in Two Dimensions; Vectors Kinematics in Two Dimensions; Vectors Vectors & Scalars!! Scalars They are specified only by a number and units and have no direction associated with them, such as time, mass, and temperature.!! Vectors

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

KINEMATICS OF A PARTICLE. Prepared by Engr. John Paul Timola

KINEMATICS OF A PARTICLE. Prepared by Engr. John Paul Timola KINEMATICS OF A PARTICLE Prepared by Engr. John Paul Timola Particle has a mass but negligible size and shape. bodies of finite size, such as rockets, projectiles, or vehicles. objects can be considered

More information

Conceptual Physics Projectiles Motion of Planets

Conceptual Physics Projectiles Motion of Planets Conceptual Physics Projectiles Motion of Planets Lana Sheridan De Anza College July 13, 2015 Last time angular momentum gravity gravitational field black holes Overview projectile motion orbital motion

More information

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017 HOMEWORK MA112: ADVANCED CALCULUS, HILARY 2017 (1) A particle moves along a curve in R with position function given by r(t) = (e t, t 2 + 1, t). Find the velocity v(t), the acceleration a(t), the speed

More information

3.4 Projectile Motion

3.4 Projectile Motion 3.4 Projectile Motion Projectile Motion A projectile is anything launched, shot or thrown---i.e. not self-propelled. Examples: a golf ball as it flies through the air, a kicked soccer ball, a thrown football,

More information

Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass

Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass Lana Sheridan De Anza College Nov 13, 2017 Last time inelastic collisions perfectly inelastic collisions the ballistic pendulum

More information

Free fall. Lana Sheridan. Oct 3, De Anza College

Free fall. Lana Sheridan. Oct 3, De Anza College Free fall Lana Sheridan De Anza College Oct 3, 2018 2018 Physics Nobel Prize Congratulations to Arthur Ashkin and to Gérard Mourou and Donna Strickland Last time the kinematics equations (constant acceleration)

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 4. Home Page. Title Page. Page 1 of 35.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 4. Home Page. Title Page. Page 1 of 35. Rutgers Uniersit Department of Phsics & Astronom 01:750:271 Honors Phsics I Fall 2015 Lecture 4 Page 1 of 35 4. Motion in two and three dimensions Goals: To stud position, elocit, and acceleration ectors

More information

Chapter 2 Motion Along A Straight Line

Chapter 2 Motion Along A Straight Line Chapter 2 Motion Along A Straight Line Kinematics: Description of Motion Motion in one dimension (1-D) Motion of point particles Treat larger objects as particles center of mass Chapter 2 Motion in 1-D

More information

Projectile Motion I. Projectile motion is an example of. Motion in the x direction is of motion in the y direction

Projectile Motion I. Projectile motion is an example of. Motion in the x direction is of motion in the y direction What is a projectile? Projectile Motion I A projectile is an object upon which the only force acting is gravity. There are a variety of examples of projectiles. An object dropped from rest is a projectile

More information

AP Physics Free Response Practice Kinematics ANSWERS 1982B1 2

AP Physics Free Response Practice Kinematics ANSWERS 1982B1 2 AP Physics Free Response Practice Kinematics ANSWERS 198B1 a. For the first seconds, while acceleration is constant, d = ½ at Substituting the given values d = 10 meters, t = seconds gives a = 5 m/s b.

More information

Chapter 3 Motion in two or three dimensions

Chapter 3 Motion in two or three dimensions Chapter 3 Motion in two or three dimensions Lecture by Dr. Hebin Li Announcements As requested by the Disability Resource Center: In this class there is a student who is a client of Disability Resource

More information

2D Kinematics: Nonuniform Circular Motion Dynamics: Laws of Motion Newton s 1st & 2nd Laws

2D Kinematics: Nonuniform Circular Motion Dynamics: Laws of Motion Newton s 1st & 2nd Laws 2D Kinematics: Nonuniform Circular Motion Dynamics: Laws of Motion Newton s 1st & 2nd Laws Lana heridan De Anza College Oct 6, 2017 Last Time relative motion uniform circular motion Overview nonuniform

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Feb 20, 2018 Last time Newton s second law mass and weight examples free-body diagrams Overview Newton s second law

More information

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space Motion in Space MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Suppose the position vector of a moving object is given by r(t) = f (t), g(t), h(t), Background

More information

Motion in a 2 and 3 dimensions Ch 4 HRW

Motion in a 2 and 3 dimensions Ch 4 HRW Motion in a and 3 dimensions Ch 4 HRW Motion in a plane D Motion in space 3D Projectile motion Position and Displacement Vectors A position vector r extends from a reference point (usually the origin O)

More information

Energy Energy and Friction

Energy Energy and Friction Energy Energy and Friction Lana Sheridan De Anza College Oct 31, 2017 Last time energy conservation isolated and nonisolated systems Overview Isolated system example Kinetic friction and energy Practice

More information

3.2 Projectile Motion

3.2 Projectile Motion Motion in 2-D: Last class we were analyzing the distance in two-dimensional motion and revisited the concept of vectors, and unit-vector notation. We had our receiver run up the field then slant Northwest.

More information

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3. Quiz No. 1: Tuesday Jan. 31 Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.20 Chapter 3 Vectors and Two-Dimensional Kinematics Properties of

More information

Energy Practice. Lana Sheridan. Nov 2, De Anza College

Energy Practice. Lana Sheridan. Nov 2, De Anza College Energy Practice Lana heridan De Anza College Nov 2, 2017 Overview Practice problems! a nonconservative force acts. Example: Block pulled across surface g along a freeway at 65 mi/h. Your car has kinetic

More information

Chapter 2. Kinematics in One Dimension. continued

Chapter 2. Kinematics in One Dimension. continued Chapter 2 Kinematics in One Dimension continued 2.6 Freely Falling Bodies Example 10 A Falling Stone A stone is dropped from the top of a tall building. After 3.00s of free fall, what is the displacement

More information

Dynamics: Laws of Motion Newton s 1st & 2nd Laws Forces Fundametally

Dynamics: Laws of Motion Newton s 1st & 2nd Laws Forces Fundametally Dynamics: Laws of Motion Newton s 1st & 2nd Laws Forces Fundametally Lana heridan De Anza College Oct 9, 2017 Last Time nonuniform circular motion Introduced forces Overview Newton s Laws! (1st & 2nd)

More information

Chapter 4. Motion in two and three dimensions

Chapter 4. Motion in two and three dimensions Chapter 4 Motion in two and three dimensions 4.2 Position and Displacement r =(x, y, z) =x î+y ĵ+z ˆk This vector is a function of time, describing the motion of the particle: r (t) =(x(t),y(t),z(t)) The

More information

Introduction to Mechanics Applying Newton s Laws Friction

Introduction to Mechanics Applying Newton s Laws Friction Introduction to Mechanics Applying Newton s Laws Friction Lana heridan De Anza College Mar 6, 2018 Last time kinds of forces and problem solving objects accelerated together the Atwood machine and variants

More information

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter One-Dimensional Kinematics Units of Chapter Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications of

More information

MOTION OF A PROJECTILE

MOTION OF A PROJECTILE MOTION OF A PROJECTILE Today s Objectives: Students will be able to: 1. Analyze the free-flight motion of a projectile. In-Class Activities: Check Homework Reading Quiz Applications Kinematic Equations

More information

Energy Work vs Potential Energy Energy and Friction

Energy Work vs Potential Energy Energy and Friction Energy Work vs Potential Energy Energy and Friction Lana heridan De Anza College Feb 19, 2019 Last time conservation Overview work vs. potential kinetic friction and Two Views: Isolated vs Nonisolated

More information

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile.

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile. Projectile Trajectory Range Launch angle Vocabulary Preview Projectile Motion Projectile Motion An object shot through the air is called a projectile. A projectile can be a football, a bullet, or a drop

More information

Energy Work Kinetic Energy Potential Energy

Energy Work Kinetic Energy Potential Energy Energy Work Kinetic Energy Potential Energy Lana Sheridan De Anza College Oct 25, 2017 Last time energy work Overview Work as an integral Kinetic energy Work-Kinetic energy theorem Potential energy N through

More information

Vectors and 2D Kinematics. AIT AP Physics C

Vectors and 2D Kinematics. AIT AP Physics C Vectors and 2D Kinematics Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels

More information

2-D Kinematics. In general, we have the following 8 equations (4 per dimension): Notes Page 1 of 7

2-D Kinematics. In general, we have the following 8 equations (4 per dimension): Notes Page 1 of 7 2-D Kinematics The problem we run into with 1-D kinematics, is that well it s one dimensional. We will now study kinematics in two dimensions. Obviously the real world happens in three dimensions, but

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Feb 20, 2018 Last time Newton s second law mass and weight examples free-body diagrams Overview Newton s second law

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Nov 1, 2017 Last time Newton s second law mass and weight examples free-body diagrams Overview Newton s second law examples

More information

Chapter 2. One Dimensional Motion

Chapter 2. One Dimensional Motion Chapter One Dimensional Motion Motion in One Dimension Displacement, Velocity and Speed Acceleration Motion with Constant Acceleration MFMcGraw-PHY 45 Chap_0b One Dim Motion-Revised 1/16/011 Introduction

More information

Dynamics Laws of Motion Elevators, Pulleys, and Friction

Dynamics Laws of Motion Elevators, Pulleys, and Friction Dynamics Laws of Motion Elevators, Pulleys, and riction Lana heridan De Anza College Oct 12, 2017 Last time equilibrium nonequilibrium Problem solving with tensions inclines Overview Problem solving with

More information

Chapter 3: 2D Kinematics Tuesday January 20th

Chapter 3: 2D Kinematics Tuesday January 20th Chapter 3: 2D Kinematics Tuesday January 20th Chapter 3: Vectors Review: Properties of vectors Review: Unit vectors Position and displacement Velocity and acceleration vectors Relative motion Constant

More information

Laws of Motion Friction More Problem Solving

Laws of Motion Friction More Problem Solving Laws of Motion Friction More Problem olving Lana heridan De Anza College Feb 1, 2019 Last time pulleys friction Overview friction Problem solving with forces Friction friction The force caused by small-scale

More information

Lecture D2 - Curvilinear Motion. Cartesian Coordinates

Lecture D2 - Curvilinear Motion. Cartesian Coordinates J. Peraire 6.07 Dynamics Fall 2004 Version. Lecture D2 - Curvilinear Motion. Cartesian Coordinates We will start by studying the motion of a particle. We think of a particle as a body which has mass, but

More information

Planar Motion with Constant Acceleration

Planar Motion with Constant Acceleration Planar Motion with Constant Acceleration 1. If the acceleration vector of an object is perpendicular to its velocity vector, which of the following must be true? (a) The speed is changing. (b) The direction

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h 1 / 30 CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, August 21, 2012 2 / 30 INTRODUCTION

More information