HEAT TRANSFER. PHI Learning PfcO too1. Principles and Applications BINAY K. DUTTA. Delhi Kolkata. West Bengal Pollution Control Board


 Justina Brown
 11 months ago
 Views:
Transcription
1 HEAT TRANSFER Principles and Applications BINAY K. DUTTA West Bengal Pollution Control Board Kolkata PHI Learning PfcO too1 Delhi
2 Contents Preface Notations ix xiii 1. Introduction Modes of Heat Transfer Conduction Convection Radiation Heat Transfer Equipment Systems of Measurement, Units and Dimensions English Engineering System The International System (SI) of Units (The Systeme Internationale (SI) de Unites) Examples of Unit Conversion 6 2. Steady State Conduction in One Dimension The Basic Law of Heat Conduction Fourier's Law Thermal Conductivity Steady State Conduction of Heat through a Composite Solid Steady State Heat Conduction through a Variable Area The Cylinder The Sphere Steady State Heat Conduction in Bodies with Heat Sources The Plane Wall The Cylinder The Sphere Average Temperature of a Solid Application of Conduction Calculation 40 Short Questions 42 Problems 44 References and Further Reading Heat Transfer Coefficient Convective Heat Transfer and the Concept of Heat Transfer Coefficient Overall Heat Transfer Coefficient Heat Transfer between Fluids Separated by Heat Transfer between Fluids Separated by a Cylindrical Wall 59 a Plane Wall 57 iii
3 iv CONTENTS 3.3 Heat Transfer from Extended Surfaces The Fins Thermal Contact Resistance Critical Insulation Thickness Economic (or Optimum) Insulation Thickness 85 Short Questions 89 Problems 90 References and Further Reading Forced Convection Forced Convection in Systems of Simple Geometries Flow over a Flat Plate Thermal Boundary Layer Flow across a Cylinder Dimensional Analysis Statement of Buckingham Pi Theorem Dimensionless Groups in Convective Heat Transfer to a Fluid Flowing through a Circular Pipe Dimensionless Groups in Heat Transfer Experimental Determination of the Heat Transfer Coefficient Correlations for the Heat Transfer Coefficient Internal Flows Laminar Flow through a Circular Pipe Turbulent Flow through a Circular Pipe Flow through a Noncircular Duct Correlations for the Heat Transfer Coefficient External Flows Flow over a Flat Plate Flow across a Cylinder Flow past a Sphese Flow across a Bank of Tubes Heat Transfer Coefficient in a Packed and a Fluidized Bed Heat Transfer with a Variable Driving Force Cocurrent and Countercurrent Operations Momentum and Heat Transfer Analogies 136 Short Questions 142 Problems 143 References and Further Reading Free Convection Qualitative Description of Free Convection Flows Heat Transfer Correlations for Free Convection Free Convection from a Flat Surface Free Convection from a Cylinder Free Convection from a Sphere Free Convection in an Enclosure Combined Free and Forced Convection 162 Short Questions 164 Problems 165 References and Further Reading 169
4 CONTENTS V 6. Boiling and Condensation The Boiling Phenomenon Hysteresis in the Boiling Curve The Mechanism of Nucleate Boiling Correlations for Pool Boiling Heat Transfer Nucleate Boiling Critical Heat Flux Stable Film Boiling Forced Convection Boiling The Condensation Phenomenon Film Condensation on a Vertical Surface Turbulent Film Condensation Condensation Outside a Horizontal Tube or a Tube Bank Condensation Inside a Horizontal Tube Effect of Noncondensable Gases Dropwise Condensation 202 Short Questions 202 Problems 203 References and Further Reading Radiation Heat Transfer Basic Concepts of Radiation from a Surface Blackbody Radiation Planck's Law Wein's Displacement Law The StefanBoltzmann Law Kirchhoff s Law Gray Body Radiation Intensity of a Blackbody Spectral Emissive Power of a Blackbody over a Hemisphere Radiative Heat Exchange between Surfaces The View Factor View Factor Algebra Rate of Radiation Exchange between Blackbodies Exchange of Radiation between Diffuse Gray Surfaces Radiation Exchange in a Gray Enclosure Radiation Exchange in a Twosurface Gray Enclosure Emissivity Factor A Gray Enclosure with Reradiating Surfaces Use of the Network Diagram to Calculate Radiation Exchange Radiation Shield Radiation Combined with Conduction and Convection Absorption and Emission in a Gaseous Medium The Absorptivity and Emissivity of a Gas Radiation Exchange between a Nonluminous Gas and Black Surface of Enclosing Walls Greenhouse Effect 267 Short Questions 268 Problems 269 References and Further Reading 274
5 CONTENTS Heat Exchangers Construction of a ShellandTube Heat Exchanger The Shell The Tubes The Tube Sheets The Bonnet and the Channel The Pass Partition Plate Nozzles Baffles Tie Rods and Baffle Spacers Flanges and Gaskets Expansion Joint Process Design Considerations Fouling of a Heat Exchanger The Dirt Factor or Fouling Factor Log Mean Temperature Difference Correction Factor Temperature Distribution in Multipass Exchangers and Temperature Cross The Caloric Temperature Individual and Overall Heat Transfer Coefficients Pressure Drop Calculation Doublepipe Heat Exchanger Design Procedure Energy Balance and Heat Duty Calculation The Design Procedure ShellandTube Heat Exchanger Design Procedure The Effectiveness NTU'Method of Heat Exchanger Analysis Other Types of ShellandTube Exchangers Floatinghead Exchangers Heat Exchanger with a Ubundle Reboilers and Condensers The RODbaffle Exchanger Aircooled Exchangers Classification of ShellandTube Exchangers Materials of Construction Cleaning of Heat Exchangers Heat Transfer in an Agitated Vessel Heating and Cooling Arrangements Thermal Design of an Agitated Vessel Correlations for Individual Coefficients Compact Heat Exchangers Plate Heat Exchangers Spiralplate and Spiraltube Heat Exchangers Other Common Heat Exchange Devices Pipe Tracing Steam Jacketing Electrical Heating Steam Tracing Heat Transfer Fluids 353 Short Questions 354 Problems 356 References and Further Reading 358
6 CONTENTS vii 9. Evaporation and Evaporators Types of Evaporators Their Construction and Operation Naturalcirculation Evaporators Forcedcirculation Evaporators Fallingfilm Evaporators Climbing or Risingfilm Evaporator Agitated Thinfilm Evaporators The Plate Evaporator Evaporator Auxiliaries Vacuum Devices Steam Traps Entrainment Separators Principles of Evaporation and Evaporators Single and Multipleeffect Evaporators Capacity and Economy Boiling Point Elevation (BPE) Temperature Driving Force Heat Transfer Coefficient Enthalpy of a Solution Singleeffect Evaporator Calculation Multipleeffect Evaporators Classification Based on the Mode of Feed Supply Comparison between the Forward and Backward Feed Modes Effect of Boiling Point Elevation in a Multipleeffect Evaporator Multipleeffect Evaporator Calculations Evaporator Selection Vapour Recompression 411 Short Questions 415 Problems 418 References and Further Reading Unsteady State and Multidimensional Heat Conduction Mathematical Formulation and Initial and Boundary Conditions Techniques of Analytical Solution Types of Boundary Conditions Determination of the Average Temperature of a Solid Numerical Calculation of Unsteady State Heat Conduction Unsteady or Steady State Heat Conduction in a Multidimensional Solid The Graetz Problem Similarity Solution Numerical Solution of Heat Conduction Problems 460 Short Questions 461 Problems 461 References and Further Reading 464
7 viii CONTENTS 11. Boundary Layer Heat Transfer The Equation of Continuity The Equation of Motion Boundary Layer Flow over a Flat Plate Differential Equations for Laminar Boundary Layer Flow Solution of the Boundary Layer Equations Boundary Layer Thickness and Drag Coefficient The Momentum Integral Equation Forced Convection Heat Transfer in Laminar Boundary Layer Flow over a Flat Plate Boundary Layer Temperature Equation The Energy Integral Equation Application to Free Convection Heat Transfer Heat Transfer in Turbulent Boundary Layer Flow Mean and Fluctuating Quantities The Concept of Eddy Viscosity The Prandtl MixingLength Theory The Prandtl Analogy The von Kantian Analogy 508 Short Questions 509 Problems 510 References and Further Reading 511 Answers to Selected Problems 513 liidix 521
PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS
PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS Jaime Benitez iwiley INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface Nomenclature xiii xv 1. FUNDAMENTALS OF MASS TRANSFER 1
More informationHEAT TRANSFER. Mechanisms of Heat Transfer: (1) Conduction
HEAT TRANSFER Mechanisms of Heat Transfer: (1) Conduction where Q is the amount of heat, Btu, transferred in time t, h k is the thermal conductivity, Btu/[h ft 2 ( o F/ft)] A is the area of heat transfer
More informationHEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION
HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION 11 Fourier s Law of Heat Conduction, General Conduction Equation Based on Cartesian Coordinates, Heat Transfer Through a Wall, Composite Wall
More informationHeat Transfer with Phase Change
CM3110 Transport I Part II: Heat Transfer Heat Transfer with Phase Change Evaporators and Condensers Professor Faith Morrison Department of Chemical Engineering Michigan Technological University 1 Heat
More informationPHYSICAL MECHANISM OF CONVECTION
Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter
More informationChapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.
Chapter 10: Boiling and Condensation 1 1 Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Objectives When you finish studying this chapter, you should be able to: Differentiate between evaporation
More informationUniversity School of Chemical Technology
University School of Chemical Technology Guru Gobind Singh Indraprastha University Syllabus of Examination B.Tech/M.Tech Dual Degree (Chemical Engineering) (4 th Semester) (w.e.f. August 2004 Batch) Page
More informationThermodynamics is concerned with the amount of heat transfer as a system undergoes a process from one equilibrium state to another.
ecture 1, 2, 3, 4, 5: Heat transfer: Introduction to Heat Transfer Heat transfer is that science which predicts the rate of energy transfer taking place between material bodies as a result of temperature
More informationAMRITA VISHWA VIDYAPEETHAM DEPARTMENT OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE. PhD Entrance Examination  Syllabus
AMRITA VISHWA VIDYAPEETHAM DEPARTMENT OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE PhD Entrance Examination  Syllabus The research being carried out in the department of Chemical Engineering & Materials
More informationMODULE 3: MASS TRANSFER COEFFICIENTS
MODULE 3: MASS TRANSFER COEFFICIENTS LECTURE NO. 4 3.4.3 Correlation of mass transfer coefficients for single cylinder Bedingfield and Drew (1950) studied the sublimation from a solid cylinder into air
More informationME662 CONVECTIVE HEAT AND MASS TRANSFER
ME66 CONVECTIVE HEAT AND MASS TRANSFER A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai  400076 India LECTURE INTRODUCTION () March 7, 00 / 7 LECTURE INTRODUCTION
More informationHEAT CONDUCTION USING GREEN S FUNCTIONS
HEAT CONDUCTION USING GREEN S FUNCTIONS Preface to the first edition Preface to the second edition Author Biographies Nomenclature TABLE OF CONTENTS FOR SECOND EDITION December 2009 Page viii x xii xiii
More informationLevel 7 Post Graduate Diploma in Engineering Heat and mass transfer
9210221 Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 0 You should have the following for this examination one answer book non programmable calculator pen, pencil, drawing instruments
More informationHEAT AND MASS TRANSFER. Subject Code : 10ME63 IA Marks : 25 Hours/Week : 04 Exam Hours : 03 Total Hours : 52 Exam Marks : 100
HEAT AND MASS TRANSFER Subject Code : 10ME63 IA Marks : 25 Hours/Week : 04 Exam Hours : 03 Total Hours : 52 Exam Marks : 100 PART A UNIT  1 Introductory Concepts and Definitions: Modes of heat transfer:
More informationTutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k)
Tutorial 1 1. Explain in detail the mechanism of forced convection. Show by dimensional analysis (Rayleigh method) that data for forced convection may be correlated by an equation of the form Nu = φ (Re,
More informationTHERMAL DESIGN OF FALLING FILM EVAPORATOR
YMCA Institute of Engineering, Faridabad, Haryana.., Dec 910, 006. THERMAL DESIGN OF FALLING FILM EVAPORATOR Ashik Patel 1, Manish purohit, C. R. Sonawane 3 1, Department of Mechanical Engineering Students,
More informationME 476 Solar Energy UNIT TWO THERMAL RADIATION
ME 476 Solar Energy UNIT TWO THERMAL RADIATION Unit Outline 2 Electromagnetic radiation Thermal radiation Blackbody radiation Radiation emitted from a real surface Irradiance Kirchhoff s Law Diffuse and
More informationChapter 3 NATURAL CONVECTION
Fundamentals of ThermalFluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGrawHill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGrawHill Companies,
More informationUNIVERSITY OF NAIROBI
UNIVERSITY OF NAIROBI SCHOOL OF ENGINEERING DEPARTMENT OF ENVIRONMENTAL & BIOSYSTEMS ENGINEERING FEB 423 Heat and Mass Transfer (60 hrs) LECTURE: PRACTICALS: LECTURE THEATRE Friday 9:00 am to 1:00 pm
More informationThermal Analysis. with SolidWorks Simulation 2013 SDC. Paul M. Kurowski. Better Textbooks. Lower Prices.
Thermal Analysis with SolidWorks Simulation 2013 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites to
More informationEXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER
THERMAL SCIENCE: Year 2014, Vol. 18, No. 4, pp. 13551360 1355 EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER by Rangasamy RAJAVEL Department of Mechanical Engineering, AMET University,
More informationKeywords: Spiral plate heat exchanger, Heat transfer, Nusselt number
EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER Dr.RAJAVEL RANGASAMY Professor and Head, Department of Mechanical Engineering Velammal Engineering College,Chennai 66,India Email:rajavelmech@gmail.com
More informationINSTRUCTOR: PM DR MAZLAN ABDUL WAHID
SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM DR MAZLAN ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons DR
More informationPHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.
PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion
More informationAnalytical Design of Isolations for Cryogenic Tankers
, July 35, 2013, London, U.K. Analytical Design of Isolations for Cryogenic Tankers R. Miralbes, D. Valladares, L. Castejon, J. Abad, J.L. Santolaya, Member, IAENG Abstract In this paper it is presented
More informationThermal Field in a NMR Cryostat. Annunziata D Orazio Agostini Chiara Simone Fiacco
Thermal Field in a NMR Cryostat Annunziata D Orazio Agostini Chiara Simone Fiacco Overall Objective of Research Program The main objective of the present work was to study the thermal field inside the
More informationLecture 30 Review of Fluid Flow and Heat Transfer
Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in
More informationChapter 2 Mass Transfer Coefficient
Chapter 2 Mass Transfer Coefficient 2.1 Introduction The analysis reported in the previous chapter allows to describe the concentration profile and the mass fluxes of components in a mixture by solving
More informationChapter 8 COOLING AND HEAT TRANSFER. 8.1 Importance of thermal analysis. 8.2 Heat transfer modes
Chapter 8 COOLING AND HEAT TRANSFER 8.1 Importance of thermal analysis During the operation of an electrical machine, heat is generated due to power losses in electric and magnetic circuits and mechanical
More informationUniversity School of Chemical Technology
University School of Chemical Technology Guru Gobind Singh Indraprastha University Syllabus of Examination B.Tech/M.Tech Dual Degree (Chemical Engineering) (5 th Semester) (w.e.f. August 2004 Batch) Page
More informationMathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube
Mathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube Jayant Deshmukh Department of Mechanical Engineering Sagar Institute of Research and Technology, Bhopal, M.P., India D.K. Mudaiya
More informationLaw of Heat Transfer
Law of Heat Transfer The Fundamental Laws which are used in broad area of applications are: 1. The law of conversion of mass 2. Newton s second law of motion 3. First and second laws of thermodynamics
More informationDEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Mass Transfer Lab
DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore Mass Transfer Lab Introduction Separation equipments account for a major part of the capital investment in process industry.
More information11. Advanced Radiation
. Advanced adiation. Gray Surfaces The gray surface is a medium whose monochromatic emissivity ( λ does not vary with wavelength. The monochromatic emissivity is defined as the ratio of the monochromatic
More informationIntroduction to Heat and Mass Transfer. Week 5
Introduction to Heat and Mass Transfer Week 5 Critical Resistance Thermal resistances due to conduction and convection in radial systems behave differently Depending on application, we want to either maximize
More informationSummary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer
1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic
More informationInternational Journal of Multidisciplinary and Current Research
International Journal of Multidisciplinary and Current Research Research Article ISSN: 23213124 Available at: http://ijmcr.com in a TwoPhase Closed Cylindrical Thermosiphon in Conditions of Convective
More informationFORMULA SHEET. General formulas:
FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to
More informationBasic Models of Simultaneous Heat and Mass Transfer
20 Basic Models of Simultaneous Heat and Mass Transfer Keywords: Unit Models, Evaporator, Vaporizer A chemical process invariably involves energy transfer simultaneously with mass transfer. So in this
More informationENTROPY GENERATION DUE TO EXTERNAL FLUID FLOW AND HEAT TRANSFER FROM A CYLINDER BETWEEN PARALLEL PLANES
ENTROPY GENERATION UE TO EXTERNAL FLUI FLOW AN HEAT TRANSFER FROM A CYLINER BETWEEN PARALLEL PLANES Omar A. MELHEM, Ahmet Z. SAHIN*, and Bekir S. YILBAS Mechanical Engineering epartment King Fahd University
More informationReview: Conduction. Breaking News
CH EN 3453 Heat Transfer Review: Conduction Breaking News No more homework (yay!) Final project reports due today by 8:00 PM Email PDF version to report@chen3453.com Review grading rubric on Project page
More informationCLASS SCHEDULE 2013 FALL
CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties
More informationThermal Analysis with SOLIDWORKS Simulation 2015 and Flow Simulation 2015
Thermal Analysis with SOLIDWORKS Simulation 2015 and Flow Simulation 2015 Paul M. Kurowski SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit
More informationCHAPTER FOUR HEAT TRANSFER
CHAPTER FOUR HEAT TRANSFER 4.1. Determination of Overall Heat Transfer Coefficient in a Tubular Heat Exchanger 4.2. Determination of Overall Heat Transfer Coefficient in a Plate Type Heat Exchanger 4.3.
More informationOUTCOME 2  TUTORIAL 1
Unit 4: Heat Transfer and Combustion Unit code: K/60/44 QCF level: 5 Credit value: 5 OUTCOME  TUTORIAL Heat transfer coefficients Dimensional analysis: dimensionless groups; Reynolds, Nusselt, Prandtl,
More informationIterative calculation of the heat transfer coefficient
Iterative calculation of the heat transfer coefficient D.Roncati Progettazione Ottica Roncati, Ferrara  Italy Aim The plate temperature of a cooling heat sink is an important parameter that has to be
More informationModeling of Fluid Flow and Heat Transfer for Optimization of PinFin Heat Sinks
Modeling of Fluid Flow and Heat Transfer for Optimization of PinFin Heat Sinks by Waqar Ahmed Khan Athesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree
More informationMaximum Heat Transfer Density From Finned Tubes Cooled By Natural Convection
Maximum Heat Transfer Density From Finned Tubes Cooled By Natural Convection Ahmed Waheed Mustafa 1 Mays Munir Ismael 2 ALNahrain University College of Engineering Mechanical Engineering Department ahmedwah@eng.nahrainuniv.edu.iq
More informationWe know from thermodynamics that when the temperature of a liquid
cen58933_ch10.qxd 9/4/2002 12:37 PM Page 515 BOILING AND CONDENSATION CHAPTER 10 We know from thermodynamics that when the temperature of a liquid at a specified pressure is raised to the saturation temperature
More informationHeat Transfer Convection
Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection
More informationHEAT EXCHANGER. Objectives
HEAT EXCHANGER Heat exchange is an important unit operation that contributes to efficiency and safety of many processes. In this project you will evaluate performance of three different types of heat exchangers
More information1D and 3D Simulation. C. Hochenauer
Solar thermal flatplate l t collectors 1D and 3D Simulation C. Hochenauer Introduction Description of a solar thermal flatplate collector 1D Simulation  Description of the model  Simulation vs. measurement
More information1. Introduction, tensors, kinematics
1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and
More information6. Laminar and turbulent boundary layers
6. Laminar and turbulent boundary layers John Richard Thome 8 avril 2008 John Richard Thome (LTCM  SGM  EPFL) Heat transfer  Convection 8 avril 2008 1 / 34 6.1 Some introductory ideas Figure 6.1 A boundary
More informationFluid Mechanics II Viscosity and shear stresses
Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small
More informationOPTIMIZATION OF THE LONGITUDINAL FINS WITH DIFFERENT GEOMETRIES FOR INCREASING THE HEAT TRANSFER
OPTIMIZATION OF THE LONGITUDINAL FINS WITH DIFFERENT GEOMETRIES FOR INCREASING THE HEAT TRANSFER 1 M. HATAMI, 2 D.D. GANJI 1 Esfarayen University of Technology,Department of Mechanical Engineering,Esfarayen,
More informationThe Research of Heat Transfer Area for 55/19 Steam Generator
Journal of Power and Energy Engineering, 205, 3, 47422 Published Online April 205 in SciRes. http://www.scirp.org/journal/jpee http://dx.doi.org/0.4236/jpee.205.34056 The Research of Heat Transfer Area
More informationTurbulent Boundary Layers & Turbulence Models. Lecture 09
Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More informationIn Chapters 7 and 8, we considered heat transfer by forced convection,
cen58933_ch09.qxd 9/4/2002 2:25 PM Page 459 NATURAL CONVECTION CHAPTER 9 In Chapters 7 and 8, we considered heat transfer by forced convection, where a fluid was forced to move over a surface or in a tube
More informationSimplified calculation of sugar juice evaporator and examples of its optimisation
PL  Production lines  example Pavel Hoffman Ú 2182002 Simplified calculation of sugar juice evaporator and examples of its optimisation Given data: Design an evaporator with 4 effects for thin juice
More informationUNIVERSITY OF WATERLOO. ECE 309 Thermodynamics and Heat Transfer. Final Examination Spring 1997
UNIVERSITY OF WATERLOO DEPARTMENT OF ELECTRICAL ENGINEERING ECE 309 Thermodynamics and Heat Transfer Final Examination Spring 1997 M.M. Yovanovich August 5, 1997 9:00 A.M.12:00 Noon NOTE: 1. Open book
More informationShell and Tube Heat Exchange Fundamentals, Design and Case Studies
Shell and Tube Heat Exchange Fundamentals, Design and Case Studies by Kirk R. Novak, Krishnan Ramanathan, Tom Steen, and Nick Ziembo, Enerquip, LLC ABSTRACT: As companies examine their total cost of operations,
More informationConvective Heat Transfer in Parallel Plate Heat Sinks. A thesis presented to. the faculty of. In partial fulfillment
Convective Heat Transfer in Parallel Plate Heat Sinks A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirements for
More informationThe Use of Lattice Boltzmann Numerical Scheme for Contaminant Removal from a Heated Cavity in Horizontal Channel
www.cfdl.issres.net Vol. 6 (3) September 2014 The Use of Lattice Boltzmann Numerical Scheme for Contaminant Removal from a Heated Cavity in Horizontal Channel Nor Azwadi Che Sidik C and Leila Jahanshaloo
More informationExperiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar
Experiment 1 Measurement of Thermal Conductivity of a Metal (Brass) Bar Introduction: Thermal conductivity is a measure of the ability of a substance to conduct heat, determined by the rate of heat flow
More informationHow can we use Fundamental Heat Transfer to understand real devices like heat exchangers?
Lectures 7+8 04 CM30 /30/05 CM30 Transport I Part II: Heat Transfer Applied Heat Transfer: Heat Exchanger Modeling, Sizing, and Design Professor Faith Morrison Department of Chemical Engineering Michigan
More informationThe Effect of Mass Flow Rate on the Effectiveness of Plate Heat Exchanger
The Effect of Mass Flow Rate on the of Plate Heat Exchanger Wasi ur rahman Department of Chemical Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh 222,
More informationMicro Cooling of SQUID Sensor
Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Micro Cooling of SQUID Sensor B.Ottosson *,1, Y. Jouahri 2, C. Rusu 1 and P. Enoksson 3 1 Imego AB, SE400 14 Gothenburg, Sweden, 2 Mechanical
More informationPHYSICAL VAPOR DEPOSITION OF THIN FILMS
PHYSICAL VAPOR DEPOSITION OF THIN FILMS JOHN E. MAHAN Colorado State University A WileyInterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS
More informationRadiation Effect on MHD Casson Fluid Flow over a PowerLaw Stretching Sheet with Chemical Reaction
Radiation Effect on MHD Casson Fluid Flow over a PowerLaw Stretching Sheet with Chemical Reaction Motahar Reza, Rajni Chahal, Neha Sharma Abstract This article addresses the boundary layer flow and heat
More informationCENG 501 Examination Problem: Estimation of Viscosity with a Falling  Cylinder Viscometer
CENG 501 Examination Problem: Estimation of Viscosity with a Falling  Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic
More informationFriction Factors and Drag Coefficients
Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the
More information23 1 TYPES OF HEAT EXCHANGERS
cen5426_ch23.qxd /26/04 9:42 AM Page 032 032 FUNDAMENTALS OF THERMALFLUID SCIENCES 23 TYPES OF HEAT EXCHANGERS Different heat transfer applications require different types of hardware different configurations
More informationIndoGerman Winter Academy
IndoGerman Winter Academy  2007 Radiation in NonParticipating and Participating Media Tutor Prof. S. C. Mishra Technology Guwahati Chemical Engineering Technology Guwahati 1 Outline Importance of thermal
More informationA Numerical Study of Forced Convection Heat Transfer for Staggered Tube Banks in CrossFlow
A Numerical Study of Forced Convection Heat Transfer for Staggered Tube Banks in CrossFlow T. A. Tahseen 1, M. Ishak 1,2 and M. M. Rahman 1,2 1 Faculty of Mechanical Engineering, University Malaysia Pahang
More informationLecture Outlines Chapter 16. Physics, 3 rd Edition James S. Walker
Lecture Outlines Chapter 16 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in
More informationNatural Convection from Horizontal Rectangular Fin Arrays within Perforated Chassis
Proceedings of the 2 nd International Conference on Fluid Flow, Heat and Mass Transfer Ottawa, Ontario, Canada, April 30 May 1, 2015 Paper No. 146 Natural Convection from Horizontal Rectangular Fin Arrays
More informationMME Heat and Mass Transfer COURSE PARTICULARS
MME 504  Heat and Mass Transfer COURSE PARTICULARS Course Code: MME 504 Course Title: Heat and Mass Transfer No. of Units: 3 Course Duration: Two hours of theory and One hour of Tutorial per week for
More informationM14/4/PHYSI/HPM/ENG/TZ1/XX. Physics Higher level Paper 1. Wednesday 7 May 2014 (morning) 1 hour INSTRUCTIONS TO CANDIDATES
M14/4/PHYSI/HPM/ENG/TZ1/XX 14657 Physics Higher level Paper 1 Wednesday 7 May 14 (morning) 1 hour INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer all the
More informationVortex Induced Vibrations
Vortex Induced Vibrations By: Abhiroop Jayanthi Indian Institute of Technology, Delhi Some Questions! What is VIV? What are the details of a steady approach flow past a stationary cylinder? How and why
More informationEffective Heat Transfer Enhancement in Finned Tube Heat Exchanger with Different Fin Profiles
International Journal of Engineering Research (ISSN : 23196890) Volume No.2, Issue No.2, pp : 8387 01 April 2013 Effective Heat Transfer Enhancement in Finned Tube Heat Exchanger with Different Fin Profiles
More informationExperimental Study of Heat Transfer Analysis in Vertical Rod Bundle of Sub Channel with a Hexagonal on Small Modular Reactor
International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Experimental Study of Heat Transfer Analysis in Vertical Rod Bundle of Sub Channel with a Hexagonal on Small Modular Reactor Syawaluddin
More informationAP Physics C. Gauss s Law. Free Response Problems
AP Physics Gauss s Law Free Response Problems 1. A flat sheet of glass of area 0.4 m 2 is placed in a uniform electric field E = 500 N/. The normal line to the sheet makes an angle θ = 60 ẘith the electric
More information4.2 Concepts of the Boundary Layer Theory
Advanced Heat by Amir Faghri, Yuwen Zhang, and John R. Howell 4.2 Concepts of the Boundary Layer Theory It is difficult to solve the complete viscous flow fluid around a body unless the geometry is very
More informationValidation, Optimization and Simulation of Solar Thermoelectric Generator Model
1 Validation, Optimization and Simulation of Solar Thermoelectric Generator Model By Ali Hamil Rakesh Krishnappa Harish Hadi Madkhali The Final Project of Thermoelectric I (ME 6590) College of Engineering
More informationMembrane Filtration 111 CAMBRIDGE. A Problem Solving Approach with MATLAB GREG FOLEY UNIVERSITY PRESS. Dublin City University
Membrane Filtration A Problem Solving Approach with MATLAB GREG FOLEY Dublin City University 111 CAMBRIDGE UNIVERSITY PRESS Contents Preface Abbreviations page xv xviii 1 Introduction to membrane filtration
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More informationEXAMPLE SHEET FOR TOPIC 3 AUTUMN 2013
EXAMPLE SHEET FOR TOPIC ATMN 01 Q1. se dimensional analysis to investigate how the capillary rise h of a liquid in a tube varies with tube diameter d, gravity g, fluid density ρ, surface tension σ and
More informationForced Convection: Inside Pipe HANNA ILYANI ZULHAIMI
+ Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + OUTLINE u Introduction and Dimensionless Numbers u Heat Transfer Coefficient for Laminar Flow inside a Pipe u Heat Transfer Coefficient for Turbulent
More informationTHE FIRST LAW APPLIED TO STEADY FLOW PROCESSES
Chapter 10 THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES It is not the sun to overtake the moon, nor doth the night outstrip theday.theyfloateachinanorbit. The Holy Qurān In many engineering applications,
More informationSUPERINSULATED LONGTERM HOT WATER STORAGE
SUPERINSULATED LONGTERM HOT WATER STORAGE Dr. rer. nat. T. Beikircher, Dr.Ing. F. Buttinger, M. Demharter ZAE Bayern, Dept. 1 Walther Meißner Str. 6, 85748 Garching Phone: +49/89/32944249 beikircher@muc.zaebayern.de
More informationPHYSICS 149: Lecture 26
PHYSICS 149: Lecture 26 Chapter 14: Heat 14.1 Internal Energy 14.2 Heat 14.3 Heat Capacity and Specific Heat 14.5 Phase Transitions 14.6 Thermal Conduction 14.7 Thermal Convection 14.8 Thermal Radiation
More informationLecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model.
Lecture : Global Energy Balance Global Energy Balance S/ * (1A) terrestrial radiation cooling Solar radiation warming T S Global Temperature Blackbody Radiation ocean land Layer Model energy, water, and
More informationAnalysis of Heat Transfer in Pipe with Twisted Tape Inserts
Proceedings of the 2 nd International Conference on Fluid Flow, Heat and Mass Transfer Ottawa, Ontario, Canada, April 30 May 1, 2015 Paper No. 143 Analysis of Heat Transfer in Pipe with Twisted Tape Inserts
More informationCFD Simulation on Supercritical Fluid Extraction of Black Pepper's Bioactive Compounds: Single Particle Study
Journal of Engineering Science, Vol. 10, 107 116, 2014 CFD Simulation on Supercritical Fluid Extraction of Black Pepper's Bioactive Compounds: Single Particle Study Then Siew Ping, * Freddie Panau and
More informationEXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER
EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the coefficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1
More informationWhile entry is at the discretion of the centre, candidates would normally be expected to have attained one of the following, or equivalent:
National Unit Specification: general information CODE F7HG 12 SUMMARY This Unit is designed to provide candidates with knowledge and understanding of engineering thermodynamics applied to marine heat engines.
More informationOutline. Definition and mechanism Theory of diffusion Molecular diffusion in gases Molecular diffusion in liquid Mass transfer
Diffusion 051333 Unit operation in groindustry III Department of Biotechnology, Faculty of groindustry Kasetsart University Lecturer: Kittipong Rattanaporn 1 Outline Definition and mechanism Theory of
More informationNusselt Correlation Analysis of Single Phase SteadyState Flow through a Chevron Type Plate Heat Exchanger
CENG 176B, Spring 2016 Drews, Zhang, Yang, Xu, and VazquezMena Section B01 (W/F), Team 07: DoubleO Seven Nusselt Correlation Analysis of Single Phase SteadyState Flow through a Chevron Type Plate Heat
More information