A Minimal Supersymmetric Cosmological Model

Size: px
Start display at page:

Download "A Minimal Supersymmetric Cosmological Model"

Transcription

1 A Minimal Supersymmetric Cosmological Model Ewan Stewart KAIST COSMO/CosPA 2010 University of Tokyo 29 September 2010 EDS, M Kawasaki, T Yanagida D Jeong, K Kadota, W-I Park, EDS G N Felder, H Kim, W-I Park, EDS R Easther, J T Giblin, E A Lim, W-I Park, EDS S Kim, W-I Park, EDS hep-ph/ hep-ph/ hep-ph/ arxiv: arxiv:

2 Standard model of cosmology (density) 1/4 m Pl inflation density perturbations gravitational waves? t Pl GeV ν R decay matter/antimatter? s 10 3 GeV 100 kev electroweak transition neutralino freeze out QCD transition nucleosynthesis matter/antimatter? neutralino dark matter? axion dark matter? light elements s 10 min 10 K atom formation galaxy formation vacuum energy dominates microwave background galaxies acceleration yr time

3 Moduli and gravitinos Moduli are cosmologically dangerous. Nucleosynthesis constrains n s to 10 15

4 Moduli and gravitinos Moduli are cosmologically dangerous. Nucleosynthesis constrains In the early universe n s to H 2 (Ψ Ψ 1 ) 2

5 Moduli and gravitinos Moduli are cosmologically dangerous. Nucleosynthesis constrains In the early universe n s to H 2 (Ψ Ψ 1 ) 2 m 2 susy (Ψ Ψ 0 ) 2 M Pl

6 Moduli and gravitinos Moduli are cosmologically dangerous. Nucleosynthesis constrains In the early universe n s to n s 107 m 2 susy (Ψ Ψ 0 ) 2 M Pl

7 Moduli and gravitinos Moduli are cosmologically dangerous. Nucleosynthesis constrains In the early universe n s to n s 107 m 2 susy (Ψ Ψ 0 ) 2 M Pl Moduli generated: H m susy

8 Moduli and gravitinos Moduli are cosmologically dangerous. Nucleosynthesis constrains In the early universe n s to n s 107 m 2 susy (Ψ Ψ 0 ) 2 M Pl Moduli generated: H m susy slow-roll inflation: H m inflaton m susy

9 Moduli and gravitinos Moduli are cosmologically dangerous. Nucleosynthesis constrains In the early universe n s to n s 107 m 2 susy (Ψ Ψ 0 ) 2 M Pl Moduli generated: H m susy after slow-roll inflation: H m inflaton m susy

10 Standard model of cosmology (density) 1/4 m Pl inflation density perturbations gravitational waves? t Pl GeV ν R decay matter/antimatter? s 10 3 GeV 100 kev electroweak transition neutralino freeze out QCD transition nucleosynthesis matter/antimatter? neutralino dark matter? axion dark matter? light elements s 10 min 10 K atom formation galaxy formation vacuum energy dominates microwave background galaxies acceleration yr time

11 Standard model of cosmology (density) 1/4 m Pl inflation density perturbations gravitational waves? t Pl GeV ν R decay moduli, gravitinos,... matter/antimatter? disaster s 10 3 GeV 100 kev electroweak transition neutralino freeze out QCD transition nucleosynthesis matter/antimatter? neutralino dark matter? axion dark matter? light elements s 10 min 10 K atom formation galaxy formation vacuum energy dominates microwave background galaxies acceleration yr time

12 Minimal Supersymmetric Standard Model W = λ u QH u ū + λ d QH d d + λe LH d ē + µh u H d

13 Minimal Supersymmetric Standard Model W = λ u QH u ū + λ d QH d d + λe LH d ē + µh u H d But µ? neutrino masses? strong CP?

14 Minimal Supersymmetric Cosmological Model W = λ u QH u ū + λ d QH d d + λe LH d ē λ ν (LH u ) 2 +λ µ φ 2 H u H d +λ χ φχ χ

15 Minimal Supersymmetric Cosmological Model MSSM W = λ u QH u ū + λ d QH d d + λe LH d ē λ ν (LH u ) 2 +λ µ φ 2 H u H d +λ χ φχ χ

16 Minimal Supersymmetric Cosmological Model MSSM neutrino masses W = λ u QH u ū + λ d QH d d + λe LH d ē λ ν (LH u ) 2 +λ µ φ 2 H u H d +λ χ φχ χ

17 Minimal Supersymmetric Cosmological Model MSSM neutrino masses MSSM µ-term W = λ u QH u ū + λ d QH d d + λe LH d ē λ ν (LH u ) 2 +λ µ φ 2 H u H d +λ χ φχ χ µ = λ µ φ 2 0

18 Minimal Supersymmetric Cosmological Model MSSM neutrino masses MSSM µ-term drives m 2 φ < 0 W = λ u QH u ū + λ d QH d d + λe LH d ē λ ν (LH u ) 2 +λ µ φ 2 H u H d +λ χ φχ χ µ = λ µ φ 2 0 V 0 V φ 0 φ

19 Minimal Supersymmetric Cosmological Model MSSM neutrino masses MSSM µ-term drives m 2 φ < 0 W = λ u QH u ū + λ d QH d d + λe LH d ē λ ν (LH u ) 2 +λ µ φ 2 H u H d +λ χ φχ χ µ = λ µ φ 2 0 axion V 0 V φ 0 φ

20 Thermal inflation V V 0 RADIATION DOMINATION φ 0 φ

21 Thermal inflation V V 0 THERMAL INFLATION φ 0 φ

22 Thermal inflation V V 0 THERMAL INFLATION φ 0 φ

23 Thermal inflation V V 0 first order phase transition φ 0 φ

24 Thermal inflation V V 0 potential energy converted to particles φ 0 φ

25 Thermal inflation V V 0 MATTER DOMINATION φ 0 φ

26 Key properties of thermal inflation For φ to GeV

27 Key properties of thermal inflation For Large dilution φ to GeV = pre-existing moduli sufficiently diluted

28 Key properties of thermal inflation For Large dilution φ to GeV = pre-existing moduli sufficiently diluted Short duration N 10 = primordial perturbations from slow-roll inflation preserved on large scales

29 Key properties of thermal inflation For Large dilution φ to GeV = pre-existing moduli sufficiently diluted Short duration N 10 = primordial perturbations from slow-roll inflation preserved on large scales Low energy scale V 1/ to 10 7 GeV = moduli regenerated with sufficiently small abundance

30 Gravitational waves Ω GW DECIGO INFLATION PREHEATING PRIMORDIAL INFLATION f Hz

31 Gravitational waves 10 5 Ω GW DECIGO PRIMORDIAL INFLATION THERMAL INFLATION INFLATION PREHEATING f Hz

32 Baryogenesis Key assumption mlh 2 u = 1 ( m 2 2 L + mh 2 ) u < 0

33 Baryogenesis Key assumption m 2 LH u = 1 2 ( m 2 L + m 2 H u ) < 0 Implies a dangerous non-mssm vacuum with LH u (10 9 GeV) 2 and λ d QL d + λ e LLē = µlh u eliminating the µ-term contribution to LH u s mass squared. V our vacuum deeper vacuum 0 LH u, QL d, LLē

34 Reduction W = λ u QH u ū + λ d QH d d + λe LH d ē λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ

35 Reduction W = λ u QH u ū + λ d QH d d + λe LH d ē λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ ( L = l e/ 2 ) ( 0, H u = ū = ( ) (, Q = h u ), H d = d/ ) ( hd 0 φ = φ, χ = 0, χ = 0 ), ē = ( e/ 2 ), d = ( d/ )

36 Potential V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 m 2 φ φ 2 [ A νλ ν l 2 hu A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u λ dd λ ee 2 + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d g 2 ( h u 2 h d 2 l d e 2 ) 2

37 Potential drives thermal inflation V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 m 2 φ φ 2 [ A νλ ν l 2 hu A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u λ dd λ ee 2 + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d g 2 ( h u 2 h d 2 l d e 2 ) 2

38 Potential drives thermal inflation lh u rolls away V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 m 2 φ φ 2 [ A νλ ν l 2 hu A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u λ dd λ ee 2 + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d g 2 ( h u 2 h d 2 l d e 2 ) 2

39 Potential drives thermal inflation lh u rolls away V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 m 2 φ φ 2 [ A νλ ν l 2 hu A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u λ dd λ ee 2 lh u stabilized with fixed phase + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d g 2 ( h u 2 h d 2 l d e 2 ) 2

40 Potential drives thermal inflation lh u rolls away φ rolls away V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 m 2 φ φ 2 [ A νλ ν l 2 hu A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u λ dd λ ee 2 lh u stabilized with fixed phase + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d g 2 ( h u 2 h d 2 l d e 2 ) 2

41 Potential drives thermal inflation lh u rolls away φ rolls away V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 m 2 φ φ 2 [ A νλ ν l 2 hu A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u λ dd λ ee 2 lh u stabilized with fixed phase + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d g 2 ( h u 2 h d 2 l d e 2 ) 2 h d forced out

42 Potential drives thermal inflation lh u rolls away φ rolls away V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 m 2 φ φ 2 [ A νλ ν l 2 hu A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u λ dd λ ee 2 lh u stabilized with fixed phase + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d g 2 ( h u 2 h d 2 l d e 2 ) 2 d and e held at origin h d forced out

43 Potential drives thermal inflation lh u rolls away φ rolls away V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 m 2 φ φ 2 [ A νλ ν l 2 hu A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u λ dd λ ee 2 lh u stabilized with fixed phase + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d g 2 ( h u 2 h d 2 l d e 2 ) 2 d and e held at origin lh u returns with rotation h d forced out

44 Potential drives thermal inflation lh u rolls away φ rolls away φ stabilized m 2 φ (φ 0) = α φ m 2 φ (0) V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 + m 2 φ(φ) φ 2 [ A νλ ν l 2 hu A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u λ dd λ ee 2 lh u stabilized with fixed phase + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d g 2 ( h u 2 h d 2 l d e 2 ) 2 d and e held at origin lh u returns with rotation h d forced out

45 Baryogenesis MODULI DOMINATION φ = 0 h u h d = 0 lh u = 0 THERMAL INFLATION FLATON DOMINATION RADIATION DOMINATION φ > 0 φ φ 0 φ preheats φ decays h d > 0 d = e = 0 lh u > 0 brought back into origin with rotation n L < 0 nucleosynthesis preheating and thermal friction N L conserved l, h u, h d decay T > T EW n L n B dilution n B /s 10 10

46 Numerical simulation n L /n AD mt

47 Baryon asymmetry n B s n L n AD T d n AD n φ m φ (φ 0 )

48 Baryon asymmetry Using n B s n L n AD T d n AD n φ m φ (φ 0 ) n φ m φ (φ 0 ) φ 2 0, m 2 φ(φ 0 ) α φ m 2 φ(0), n AD m LHu l 2 0 l GeV (10 2 ev m ν ) (mlhu TeV ) gives ( ) ( ) 2 GeV µ T d 1 GeV TeV φ 0 n B s ( nl /n AD 10 2 ) ( ) 3 ( GeV 10 2 ev φ 0 m ν ) ( µ TeV ) 2 ( 10 1 α φ ) ( mlhu m φ (0) ) 2

49 Baryon asymmetry Using n B s n L n AD T d n AD n φ m φ (φ 0 ) n φ m φ (φ 0 ) φ 2 0, m 2 φ(φ 0 ) α φ m 2 φ(0), n AD m LHu l 2 0 l GeV (10 2 ev m ν ) (mlhu TeV ) gives ( ) ( ) 2 GeV µ T d 1 GeV TeV φ 0 n B s ( nl /n AD 10 2 ) ( ) 3 ( GeV 10 2 ev φ 0 m ν ) ( µ TeV ) 2 ( 10 1 α φ ) ( mlhu m φ (0) ) 2 which suggests φ GeV

50 Dark matter candidates Peccei-Quinn symmetry W = λ u QH u ū +λ d QH d d +λe LH d ē λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ

51 Dark matter candidates Peccei-Quinn symmetry DFSZ axion W = λ u QH u ū +λ d QH d d +λe LH d ē λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ

52 Dark matter candidates Peccei-Quinn symmetry DFSZ axion KSVZ axion W = λ u QH u ū +λ d QH d d +λe LH d ē λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ

53 Dark matter candidates Peccei-Quinn symmetry DFSZ axion KSVZ axion W = λ u QH u ū +λ d QH d d +λe LH d ē λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ Axion m a Λ2 QCD 2 φ0 where f a = f a N ( ) GeV ev f a

54 Dark matter candidates Peccei-Quinn symmetry DFSZ axion KSVZ axion W = λ u QH u ū +λ d QH d d +λe LH d ē λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ Axion m a Λ2 QCD 2 φ0 where f a = f a N ( ) GeV ev f a Axino mã = 1 16π 2 λ 2 χa χ χ 1 to 10 GeV

55 Dark matter genesis thermal inflation

56 Dark matter genesis thermal inflation first order phase transition flaton = saxino matter domination

57 Dark matter genesis thermal inflation first order phase transition flaton = saxino matter domination decay radiation domination

58 Dark matter genesis thermal inflation first order phase transition decay flaton = saxino matter domination decay axinos radiation domination

59 Dark matter genesis thermal inflation first order phase transition axinos decay NLSP decay flaton = saxino matter domination decay radiation domination

60 Dark matter genesis thermal inflation first order phase transition decay flaton = saxino matter domination decay axinos NLSP decay radiation domination QCD phase transition axions

61 Dark matter genesis thermal inflation first order phase transition decay flaton = saxino matter domination decay axinos NLSP decay radiation domination QCD phase transition axions

62 Dark matter abundance Axion Axino

63 Dark matter abundance Axion Misalignment Axino ( f a Ω a GeV ) 1.2

64 Dark matter abundance Axion Misalignment ( f a Ω a GeV ) 1.2 Axino Flaton decay ( αã ) 2 ( mã ) ( ) 2 ( ) GeV 1 GeV Ωã GeV φ 0 T d

65 Dark matter abundance Axion Misalignment ( f a Ω a GeV ) 1.2 Axino Flaton decay ( αã ) 2 ( mã ) ( ) 2 ( ) GeV 1 GeV Ωã GeV Thermal NLSP decay ( mã ) ( GeV Ωã 10 1 GeV φ 0 ) 2 φ 0 T d

66 Dark matter abundance Flaton decays late Axion Misalignment ( µ T d 1 GeV TeV ( f a Ω a GeV ) 1.2 ) 2 ( ) GeV Axino Flaton decay ( αã ) 2 ( mã ) ( ) 2 ( ) GeV 1 GeV Ωã GeV Thermal NLSP decay ( mã ) ( GeV Ωã 10 1 GeV φ 0 ) 2 φ 0 φ 0 T d

67 Dark matter abundance Flaton decays late ( µ T d 1 GeV TeV ) 2 ( ) GeV φ 0 Axion Misalignment ( ) 1.2 f a Ω a GeV 1 for T d 1 GeV ( ) 2 Td for T d 1 GeV 1 GeV Axino Flaton decay ( αã ) 2 ( mã ) ( ) 2 ( ) GeV 1 GeV Ωã GeV Thermal NLSP decay ( mã ) ( GeV Ωã 10 1 GeV φ 0 ) 2 φ 0 T d

68 Dark matter abundance Flaton decays late ( µ T d 1 GeV TeV ) 2 ( ) GeV φ 0 Axion Misalignment ( ) 1.2 f a Ω a GeV 1 for T d 1 GeV ( ) 2 Td for T d 1 GeV 1 GeV Axino Flaton decay ( αã ) 2 ( mã ) ( ) 2 ( ) GeV 1 GeV Ωã GeV φ 0 T d Thermal NLSP decay ( mã ) ( ) 2 GeV Ωã 10 1 GeV φ 0 1 for T d m N ( ) 7 7 7Td for T d m N 7 m N

69 Dark matter composition Ω f a = GeV mã = 1 GeV axions 10 1 flaton axinos NLSP axinos µ GeV

70 Axino LHC signal NLSPs produced by the LHC decay to axinos plus Standard Model particles LHC NLSP axino SM

71 Axino LHC signal NLSPs produced by the LHC decay to axinos plus Standard Model particles LHC NLSP 1 km axino SM with a decay length ( 1 16πφ GeV Γ N ã mn 3 1 km m N and well constrained parameters φ GeV mã 1 GeV ) 3 ( φ GeV ) 2

72 Simple model MSSM neutrino masses MSSM µ-term drives m 2 φ < 0 W = λ u QH u ū + λ d QH d d + λe LH d ē λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ axion

73 Simple model MSSM neutrino masses MSSM µ-term drives m 2 φ < 0 W = λ u QH u ū + λ d QH d d + λe LH d ē λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ axion thermal inflation

74 Simple model MSSM neutrino masses MSSM µ-term drives m 2 φ < 0 W = λ u QH u ū + λ d QH d d + λe LH d ē λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ baryogenesis axion thermal inflation

75 Simple model MSSM neutrino masses MSSM µ-term drives m 2 φ < 0 W = λ u QH u ū + λ d QH d d + λe LH d ē λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ baryogenesis axion/axino dark matter thermal inflation

76 Rich cosmology (density) 1/4 m Pl inflation density perturbations gravitational waves? t Pl GeV ν R decay moduli, gravitinos,... matter/antimatter? disaster s 10 3 GeV 100 kev electroweak transition neutralino freeze out QCD transition nucleosynthesis matter/antimatter? neutralino dark matter? axion dark matter? light elements s 10 min 10 K atom formation galaxy formation vacuum energy dominates microwave background galaxies acceleration yr time

77 Rich cosmology (density) 1/4 m Pl inflation density perturbations gravitational waves? t Pl GeV ν R decay moduli, gravitinos,... matter/antimatter? disaster s 10 3 GeV 100 kev thermal inflation LH u 0 φ decay QCD transition nucleosynthesis gravitational waves? matter/antimatter axino dark matter axion dark matter light elements s 10 min 10 K atom formation galaxy formation vacuum energy dominates microwave background galaxies acceleration yr time

78 A Minimal Supersymmetric Cosmological Model Introduction Standard model of cosmology Moduli and gravitinos A Minimal Supersymmetric Cosmological Model MSSM MSCM Thermal inflation Baryogenesis Dark matter Summary Simple model Rich cosmology

Inflation from a SUSY Axion Model

Inflation from a SUSY Axion Model Inflation from a SUSY Axion Model Masahiro Kawasaki (ICRR, Univ of Tokyo) with Naoya Kitajima (ICRR, Univ of Tokyo) Kazunori Nakayama (Univ of Tokyo) Based on papers MK, Kitajima, Nakayama, PRD 82, 123531

More information

Moduli Problem, Thermal Inflation and Baryogenesis

Moduli Problem, Thermal Inflation and Baryogenesis Finnish-Japanese Workshop on Particle Physics 2007 Moduli Problem, Thermal Inflation and Baryogenesis Masahiro Kawasaki Institute for Cosmic Ray Research University of Tokyo Cosmological Moduli Problem

More information

Supersymmetry in Cosmology

Supersymmetry in Cosmology Supersymmetry in Cosmology Raghavan Rangarajan Ahmedabad University raghavan@ahduni.edu.in OUTLINE THE GRAVITINO PROBLEM SUSY FLAT DIRECTIONS AND THEIR COSMOLOGIAL IMPLICATIONS SUSY DARK MATTER SUMMARY

More information

Making Dark Matter. Manuel Drees. Bonn University & Bethe Center for Theoretical Physics. Making Dark Matter p. 1/35

Making Dark Matter. Manuel Drees. Bonn University & Bethe Center for Theoretical Physics. Making Dark Matter p. 1/35 Making Dark Matter Manuel Drees Bonn University & Bethe Center for Theoretical Physics Making Dark Matter p. 1/35 Contents 1 Introduction: The need for DM Making Dark Matter p. 2/35 Contents 1 Introduction:

More information

Gravitino LSP as Dark Matter in the Constrained MSSM

Gravitino LSP as Dark Matter in the Constrained MSSM Gravitino LSP as Dark Matter in the Constrained MSSM Ki Young Choi The Dark Side of the Universe, Madrid, 20-24 June 2006 Astro-Particle Theory and Cosmology Group The University of Sheffield, UK In collaboration

More information

Astroparticle Physics and the LC

Astroparticle Physics and the LC Astroparticle Physics and the LC Manuel Drees Bonn University Astroparticle Physics p. 1/32 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/32 Contents 1) Introduction:

More information

Axino Phenomenology in the Kim-Nilles mechanism

Axino Phenomenology in the Kim-Nilles mechanism CP3, SDU, Odense, 11 Aug. 2014 Axino Phenomenology in the Kim-Nilles mechanism Eung Jin Chun Outline Introduction to strong CP problem & axion. KSVZ & DFSZ axion models. Supersymmetric axion models and

More information

Axion Cold Dark Matter with High Scale Inflation. Eung Jin Chun

Axion Cold Dark Matter with High Scale Inflation. Eung Jin Chun Axion Cold Dark Matter with High Scale Inflation Eung Jin Chun Outline The Strong CP problem & the axion solution. Astro and cosmological properties of the axion. BICEP2 implications on the axion CDM.

More information

Dark Matter and Dark Energy components chapter 7

Dark Matter and Dark Energy components chapter 7 Dark Matter and Dark Energy components chapter 7 Lecture 3 See also Dark Matter awareness week December 2010 http://www.sissa.it/ap/dmg/index.html The early universe chapters 5 to 8 Particle Astrophysics,

More information

Revisiting gravitino dark matter in thermal leptogenesis

Revisiting gravitino dark matter in thermal leptogenesis Revisiting gravitino dark matter in thermal leptogenesis Motoo Suzuki Institute for Cosmic Ray Research (ICRR) The University of Tokyo arxiv:1609.06834 JHEP1702(2017)063 In collaboration with Masahiro

More information

Cosmological Relaxation of the Electroweak Scale

Cosmological Relaxation of the Electroweak Scale the Relaxion Cosmological Relaxation of the Electroweak Scale with P. Graham and D. E. Kaplan arxiv: 1504.07551 The Hierarchy Problem The Higgs mass in the standard model is sensitive to the ultraviolet.

More information

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean?

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean? Origin of the Universe - 2 ASTR 2120 Sarazin What does it all mean? Fundamental Questions in Cosmology 1. Why did the Big Bang occur? 2. Why is the Universe old? 3. Why is the Universe made of matter?

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology Subir Sarkar CERN Summer training Programme, 22-28 July 2008 Seeing the edge of the Universe: From speculation to science Constructing the Universe: The history of the Universe:

More information

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Raghavan Rangarajan Physical Research Laboratory Ahmedabad with N. Sahu, A. Sarkar, N. Mahajan OUTLINE THE MATTER-ANTIMATTER ASYMMETRY

More information

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis Big Bang Nucleosynthesis George Gamow (1904-1968) 5 t dec ~10 yr T dec 0.26 ev Neutrons-protons inter-converting processes At the equilibrium: Equilibrium holds until 0 t ~14 Gyr Freeze-out temperature

More information

Astroparticle Physics at Colliders

Astroparticle Physics at Colliders Astroparticle Physics at Colliders Manuel Drees Bonn University Astroparticle Physics p. 1/29 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/29 Contents 1) Introduction:

More information

3.5 kev X-ray line and Supersymmetry

3.5 kev X-ray line and Supersymmetry Miami-2014, Fort Lauderdale, Florida Bartol Research Institute Department Physics and Astronomy University of Delaware, USA in collaboration with Bhaskar Dutta, Rizwan Khalid and Qaisar Shafi, JHEP 1411,

More information

Dark Matter in Particle Physics

Dark Matter in Particle Physics High Energy Theory Group, Northwestern University July, 2006 Outline Framework - General Relativity and Particle Physics Observed Universe and Inference Dark Energy, (DM) DM DM Direct Detection DM at Colliders

More information

Asymmetric Sneutrino Dark Matter

Asymmetric Sneutrino Dark Matter Asymmetric Sneutrino Dark Matter Stephen West Oxford University Asymmetric Sneutrino Dark Matter and the Ω b /Ω dm Puzzle; hep-ph/0410114, PLB, Dan Hooper, John March- Russell, and SW from earlier work,

More information

Triple unification of inflation, dark matter and dark energy

Triple unification of inflation, dark matter and dark energy Triple unification of inflation, dark matter and dark energy May 9, 2008 Leonard Susskind, The Anthropic Landscape of String Theory (2003) A. Liddle, A. Ureña-López, Inflation, dark matter and dark energy

More information

Dynamics of the Peccei-Quinn Scale

Dynamics of the Peccei-Quinn Scale Talk at International Workshop on Particle Physics and Cosmology, Norman, Oklahoma 2009 Department of Physics University of California, Santa Cruz Work with L. Carpenter, G. Festuccia and L. Ubaldi. May,

More information

Thermal Dark Matter Below an MeV

Thermal Dark Matter Below an MeV Thermal Dark Matter Below an MeV ASHER BERLIN TeVPA, Ohio State University August 9, 2017 Collaboration with Nikita Blinov, arxiv: 1706.07046 Dark Matter Mass dwarf galaxies MACHO 10-31 GeV 10 58 GeV Dark

More information

Naturalizing SUSY with the relaxion and the inflaton

Naturalizing SUSY with the relaxion and the inflaton Naturalizing SUSY with the relaxion and the inflaton Tony Gherghetta KEK Theory Meeting on Particle Physics Phenomenology, (KEK-PH 2018) KEK, Japan, February 15, 2018 [Jason Evans, TG, Natsumi Nagata,

More information

Big Bang Nucleosynthesis and Particle Physics

Big Bang Nucleosynthesis and Particle Physics New Generation Quantum Theory -Particle Physics, Cosmology and Chemistry- Kyoto University Mar.7-9 2016 Big Bang Nucleosynthesis and Particle Physics Masahiro Kawasaki (ICRR & Kavli IPMU, University of

More information

Particle Interpretation of Dark Matter and Energy

Particle Interpretation of Dark Matter and Energy Particle Interpretation of Dark Matter and Energy Hans Peter Nilles Physikalisches Institut Universität Bonn representing aspects of the projects A1, C2 and C4 Particle Interpretation of DM and DE, Heidelberg

More information

Making Neutrinos Massive with an Axion in Supersymmetry

Making Neutrinos Massive with an Axion in Supersymmetry UCRHEP-T300 February 2001 arxiv:hep-ph/0102008v1 1 Feb 2001 Making Neutrinos Massive with an Axion in Supersymmetry Ernest Ma Physics Department, University of California, Riverside, California 92521 Abstract

More information

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Kai Schmitz Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Based on arxiv:1008.2355 [hep-ph] and arxiv:1104.2750 [hep-ph].

More information

Theory Group. Masahiro Kawasaki

Theory Group. Masahiro Kawasaki Theory Group Masahiro Kawasaki Current members of theory group Staffs Masahiro Kawasaki (2004~) cosmology Masahiro Ibe (2011~) particle physics Postdoctoral Fellows Shuichiro Yokoyama Shohei Sugiyama Daisuke

More information

Mixed axion/lsp dark matter: a new paradigm

Mixed axion/lsp dark matter: a new paradigm Mixed axion/lsp dark matter: a new paradigm Howard Baer University of Oklahoma OUTLINE SUSY WIMPs: miracle or not? strong CP problem and PQWW solution the PQMSSM mixed axion/axino CDM mixed axion/neutralino

More information

The Dark Matter Puzzle and a Supersymmetric Solution. Andrew Box UH Physics

The Dark Matter Puzzle and a Supersymmetric Solution. Andrew Box UH Physics The Dark Matter Puzzle and a Supersymmetric Solution Andrew Box UH Physics Outline What is the Dark Matter (DM) problem? How can we solve it? What is Supersymmetry (SUSY)? One possible SUSY solution How

More information

Modular Cosmology, Thermal Inflation, Baryogenesis and Predictions for Particle Accelerators

Modular Cosmology, Thermal Inflation, Baryogenesis and Predictions for Particle Accelerators KAIST-TH/004-07 UCB-PTH-04/18 Modular Cosmology, Thermal Inflation, Baryogenesis and Predictions for Particle Accelerators arxiv:hep-ph/0406136v3 Jul 004 Donghui Jeong 1, Kenji Kadota, Wan-Il Park 1 and

More information

The Linear Collider and the Preposterous Universe

The Linear Collider and the Preposterous Universe The Linear Collider and the Preposterous Universe Sean Carroll, University of Chicago 5% Ordinary Matter 25% Dark Matter 70% Dark Energy Why do these components dominate our universe? Would an Apollonian

More information

Dark matter, Neutrino masses in MSSM after sattelite experiments

Dark matter, Neutrino masses in MSSM after sattelite experiments Dark matter, Neutrino masses in MSSM after sattelite experiments Ts. Enkhbat (NTU) 2 nd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry Based on: arxiv: 1002.3631 B.

More information

Moduli-induced axion problem

Moduli-induced axion problem Moduli-induced axion problem Kazunori Nakayama (University of Tokyo) T.Higaki, KN, F.Takahashi, JHEP1307,005 (2013) [1304.7987] SUSY2013 @ ICTP, Trieste, Italy (2013/8/26) What we have shown : Kahler

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

The first one second of the early universe and physics beyond the Standard Model

The first one second of the early universe and physics beyond the Standard Model The first one second of the early universe and physics beyond the Standard Model Koichi Hamaguchi (University of Tokyo) @ Colloquium at Yonsei University, November 9th, 2016. Credit: X-ray: NASA/CXC/CfA/M.Markevitch

More information

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter Brussels 20/4/12 Relating the Baryon Asymmetry to WIMP Miracle Dark Matter PRD 84 (2011) 103514 (arxiv:1108.4653) + PRD 83 (2011) 083509 (arxiv:1009.3227) John McDonald, LMS Consortium for Fundamental

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 12 Nov. 18, 2015 Today Big Bang Nucleosynthesis and Neutrinos Particle Physics & the Early Universe Standard Model of Particle

More information

Flaxion. a minimal extension to solve puzzles in the standard EW 2018, Mar. 13, 2018

Flaxion. a minimal extension to solve puzzles in the standard EW 2018, Mar. 13, 2018 Flaxion a minimal extension to solve puzzles in the standard model Koichi Hamaguchi (University of Tokyo) @Moriond EW 2018, Mar. 13, 2018 Based on Y. Ema, KH, T. Moroi, K. Nakayama, arxiv:1612.05492 [JHEP

More information

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism Kalliopi Petraki University of Melbourne (in collaboration with: R. Volkas, N. Bell, I. Shoemaker) COSMO

More information

Inflation, Gravity Waves, and Dark Matter. Qaisar Shafi

Inflation, Gravity Waves, and Dark Matter. Qaisar Shafi Inflation, Gravity Waves, and Dark Matter Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware Feb 2015 University of Virginia Charlottesville, VA Units ћ =

More information

The Matter-Antimatter Asymmetry and New Interactions

The Matter-Antimatter Asymmetry and New Interactions The Matter-Antimatter Asymmetry and New Interactions The baryon (matter) asymmetry The Sakharov conditions Possible mechanisms A new very weak interaction Recent Reviews M. Trodden, Electroweak baryogenesis,

More information

A biased review of Leptogenesis. Lotfi Boubekeur ICTP

A biased review of Leptogenesis. Lotfi Boubekeur ICTP A biased review of Leptogenesis Lotfi Boubekeur ICTP Baryogenesis: Basics Observation Our Universe is baryon asymmetric. n B s n b n b s 10 11 BAU is measured in CMB and BBN. Perfect agreement with each

More information

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1 DARK MATTER Martti Raidal NICPB & University of Helsinki 28.05.2010 Tvärminne summer school 1 Energy budget of the Universe 73,4% - Dark Energy WMAP fits to the ΛCDM model Distant supernova 23% - Dark

More information

A Domino Theory of Flavor

A Domino Theory of Flavor A Domino Theory of Flavor Peter Graham Stanford with Surjeet Rajendran arxiv:0906.4657 Outline 1. General Domino Framework 2. Yukawa Predictions 3. Experimental Signatures General Domino Framework Inspiration

More information

Mirror World and Improved Naturalness

Mirror World and Improved Naturalness Mirror World and Improved Naturalness Thomas Grégoire Boston University Based on hep-ph/0509242 R. Barbieri, T.G., L. Hall Mirror Worlds Motivations Originally introduced to restore parity Dark Matter

More information

Beyond the WIMP Alternative dark matter candidates. Riccardo Catena. Chalmers University

Beyond the WIMP Alternative dark matter candidates. Riccardo Catena. Chalmers University Beyond the WIMP Alternative dark matter candidates Riccardo Catena Chalmers University April 3, 2017 Outline WIMPs and the thermal production mechanism Generalized WIMPs Other candidates / production mechanisms

More information

Naturalizing Supersymmetry with the Relaxion

Naturalizing Supersymmetry with the Relaxion Naturalizing Supersymmetry with the Relaxion Tony Gherghetta University of Minnesota Beyond the Standard Model OIST Workshop, Okinawa, Japan, March 4, 2016 Jason Evans, TG, Natsumi Nagata, Zach Thomas

More information

Physics 133: Extragalactic Astronomy and Cosmology. Week 8

Physics 133: Extragalactic Astronomy and Cosmology. Week 8 Physics 133: Extragalactic Astronomy and Cosmology Week 8 Outline for Week 8 Primordial Nucleosynthesis Successes of the standard Big Bang model Olbers paradox/age of the Universe Hubble s law CMB Chemical/Physical

More information

Neutrino Physics: Lecture 12

Neutrino Physics: Lecture 12 Neutrino Physics: Lecture 12 Sterile neutrinos Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research Apr 5, 2010 Outline 1 Short baseline experiments and LSND anomaly 2 Adding

More information

Models of New Physics for Dark Matter

Models of New Physics for Dark Matter Models of New Physics for Dark Matter Carlos Muñoz instituto de física teórica ift-uam/csic departamento de física teórica dft-uam 1 PPC 2010, Torino, July 12-16 Crucial Moment for SUSY in next few years:

More information

Particle Cosmology. V.A. Rubakov. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Moscow State University

Particle Cosmology. V.A. Rubakov. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Moscow State University Particle Cosmology V.A. Rubakov Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Moscow State University Topics Basics of Hot Big Bang cosmology Dark matter: WIMPs Axions Warm

More information

SuperWeakly Interacting Massive Particle Dark Matter

SuperWeakly Interacting Massive Particle Dark Matter SuperWeakly Interacting Massive Particle Dark Matter Fumihiro Takayama Institute for High Energy Phenomenology, Cornell University @Chicago(12 th December 2005) Dark matter is one of the best evidence

More information

Project Paper May 13, A Selection of Dark Matter Candidates

Project Paper May 13, A Selection of Dark Matter Candidates A688R Holly Sheets Project Paper May 13, 2008 A Selection of Dark Matter Candidates Dark matter was first introduced as a solution to the unexpected shape of our galactic rotation curve; instead of showing

More information

Cosmology II: The thermal history of the Universe

Cosmology II: The thermal history of the Universe .. Cosmology II: The thermal history of the Universe Ruth Durrer Département de Physique Théorique et CAP Université de Genève Suisse August 6, 2014 Ruth Durrer (Université de Genève) Cosmology II August

More information

Leptogenesis with Composite Neutrinos

Leptogenesis with Composite Neutrinos Leptogenesis with Composite Neutrinos Based on arxiv:0811.0871 In collaboration with Yuval Grossman Cornell University Friday Lunch Talk Yuhsin Tsai, Cornell University/CIHEP Leptogenesis with Composite

More information

Overview of Dark Matter models. Kai Schmidt-Hoberg

Overview of Dark Matter models. Kai Schmidt-Hoberg Overview of Dark Matter models. Kai Schmidt-Hoberg Evidence for dark matter. Compelling evidence for dark matter on all astrophysical scales: Galactic scales: Rotation curves of Galaxies Kai Schmidt-Hoberg

More information

Supersymmetry and Dark Matter

Supersymmetry and Dark Matter Supersymmetry and Dark Matter 1/ 52 Supersymmetry and Dark Matter A. B. Lahanas University of Athens Nuclear and Particle Physics Section Athens - Greece Supersymmetry and Dark Matter 2/ 52 Outline 1 Introduction

More information

Inverse See-saw in Supersymmetry

Inverse See-saw in Supersymmetry Inverse See-saw in Supersymmetry Kai Wang IPMU, the University of Tokyo Cornell Particle Theory Seminar September 15, 2010 hep-ph/10xx.xxxx with Seong-Chan Park See-saw is perhaps the most elegant mechanism

More information

A Supersymmetric Two-Field Relaxion Model

A Supersymmetric Two-Field Relaxion Model A Supersymmetric Two-Field Relaxion Model Natsumi Nagata Univ. of Minnesota Phenomenology 2016 May. 10, 2016 University of Pi

More information

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University Baryon-Dark Matter Coincidence Bhaskar Dutta Texas A&M University Based on work in Collaboration with Rouzbeh Allahverdi and Kuver Sinha Phys.Rev. D83 (2011) 083502, Phys.Rev. D82 (2010) 035004 Miami 2011

More information

Hot Big Bang model: early Universe and history of matter

Hot Big Bang model: early Universe and history of matter Hot Big Bang model: early Universe and history of matter nitial soup with elementary particles and radiation in thermal equilibrium. adiation dominated era (recall energy density grows faster than matter

More information

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis David McKeen and AEN, arxiv:1512.05359 Akshay Ghalsasi, David McKeen, AEN., arxiv:1508.05392 (Thursday: Kyle Aitken, David

More information

Electroweak Baryogenesis in Non-Standard Cosmology

Electroweak Baryogenesis in Non-Standard Cosmology Electroweak Baryogenesis in Non-Standard Cosmology Universität Bielefeld... KOSMOLOGIETAG 12... Related to works in colloboration with M. Carena, A. Delgado, A. De Simone, M. Quirós, A. Riotto, N. Sahu,

More information

Axion in Large Extra Dimensions

Axion in Large Extra Dimensions Axion in Large Extra Dimensions Talk at ASK2011 Sanghyeon Chang Konkuk Univ. April 11, 2011 Sanghyeon Chang (Konkuk Univ.) Axion in Large Extra Dimensions April 11, 2011 1 / 27 Table of Contents 1 Introduction

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

New Models. Savas Dimopoulos. with. Nima Arkani-Hamed

New Models. Savas Dimopoulos. with. Nima Arkani-Hamed New Models Savas Dimopoulos with Nima Arkani-Hamed Small numbers and hierarchy problems 10 18 GeV M PL Gauge Hierarchy Problem 10 3 GeV M W 10 12 GeV ρ 1 4 vac Cosmological Constant Problem Program of

More information

Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar

Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar Michele Frigerio Laboratoire Charles Coulomb, CNRS & UM2, Montpellier MF & Carlos E. Yaguna, arxiv:1409.0659 [hep-ph] GDR neutrino

More information

Dark Radiation and Inflationary Freedom

Dark Radiation and Inflationary Freedom Dark Radiation and Inflationary Freedom Based on [SG et al., JCAP 1504 (2015) 023] [Di Valentino et al., PRD 91 (2015) 123505] Stefano Gariazzo University of Torino, INFN of Torino http://personalpages.to.infn.it/~gariazzo/

More information

COSMOLOGY AND GRAVITATIONAL WAVES. Chiara Caprini (APC)

COSMOLOGY AND GRAVITATIONAL WAVES. Chiara Caprini (APC) COSMOLOGY AND GRAVITATIONAL WAVES Chiara Caprini (APC) the direct detection of GW by the LIGO interferometers has opened a new era in Astronomy - we now have a new messenger bringing complementary informations

More information

Primordial Black Holes. Primordial black holes are hypothetical black holes that formed under conditions

Primordial Black Holes. Primordial black holes are hypothetical black holes that formed under conditions Josh Goldstein ASTR688 May 18, 2008 Primordial Black Holes Primordial black holes are hypothetical black holes that formed under conditions of extreme density in the very early universe. Studying primordial

More information

Indirect signatures of. Gravitino Dark Matter p.1/33

Indirect signatures of. Gravitino Dark Matter p.1/33 Indirect signatures of Gravitino Dark Matter Alejandro Ibarra DESY In collaboration with W. Buchmüller, L. Covi, K. Hamaguchi and T. Yanagida (JHEP 0703:037, 2007) G. Bertone, W. Buchmüller, L. Covi (JCAP11(2007)003)

More information

Dark Matter WIMP and SuperWIMP

Dark Matter WIMP and SuperWIMP Dark Matter WIMP and SuperWIMP Shufang Su U. of Arizona S. Su Dark Matters Outline Dark matter evidence New physics and dark matter WIMP candidates: neutralino LSP in MSSM direct/indirect DM searches,

More information

Hierarchy Problems in String Theory: An Overview of the Large Volume Scenario

Hierarchy Problems in String Theory: An Overview of the Large Volume Scenario Hierarchy Problems in String Theory: An Overview of the Large Volume Scenario Joseph P. Conlon (Cavendish Laboratory & DAMTP, Cambridge) Stockholm, February 2008 Hierarchy Problems in String Theory: An

More information

L Breaking: (Dark) Matter & Gravitational Waves

L Breaking: (Dark) Matter & Gravitational Waves Cosmological B L Breaking: (Dark) Matter & Gravitational Waves Wilfried Buchmüller DESY, Hamburg with Valerie Domcke, Kai Schmitz & Kohei Kamada 202.6679; 203.0285, 2.45, 305.3392 GGI, Florence, June 203

More information

QCD axions with high scale inflation

QCD axions with high scale inflation QCD axions with high scale inflation Kiwoon Choi (COSMO 2014, Chicago) The IBS Center for Theoretical Physics of the Universe Outline * Introduction * Cosmological constraints on the QCD axion Before BICEP2

More information

Inflaton decay in supergravity and the new gravitino problem

Inflaton decay in supergravity and the new gravitino problem Inflaton decay in supergravity and the new gravitino problem 10. December 2007 @ICRR, University of Tokyo Fuminobu Takahashi (Institute for the Physics and Mathematics of the Universe) Collaborators: Endo,

More information

Vacuum Energy and. Cosmological constant puzzle:

Vacuum Energy and. Cosmological constant puzzle: Vacuum Energy and the cosmological constant puzzle Steven Bass Cosmological constant puzzle: (arxiv:1503.05483 [hep-ph], MPLA in press) Accelerating Universe: believed to be driven by energy of nothing

More information

Dark Matter II. Marco Cirelli. (CNRS IPhT Saclay) December th TRR Winter School - Passo del Tonale. Reviews on Dark Matter: NewDark

Dark Matter II. Marco Cirelli. (CNRS IPhT Saclay) December th TRR Winter School - Passo del Tonale. Reviews on Dark Matter: NewDark 10-14 December 2012 6 th TRR Winter School - Passo del Tonale Dark Matter II Marco Cirelli (CNRS IPhT Saclay) in collaboration with: A.Strumia (Pisa) N.Fornengo (Torino) M.Tamburini (Pisa) R.Franceschini

More information

Realistic Inflation Models

Realistic Inflation Models Realistic Inflation Models Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware Fort Lauderdale, Florida December 19, 2009 1 /51 Outline Introduction Standard

More information

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY Jonathan Feng University of California, Irvine 28-29 July 2005 PiTP, IAS, Princeton 28-29 July 05 Feng 1 Graphic: N. Graf OVERVIEW This Program anticipates

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

SM*A*S*H. Standard Model * Axion * See-saw * Hidden PQ scalar inflation. Andreas Ringwald (DESY)

SM*A*S*H. Standard Model * Axion * See-saw * Hidden PQ scalar inflation. Andreas Ringwald (DESY) SM*A*S*H Standard Model * Axion * See-saw * Hidden PQ scalar inflation Andreas Ringwald (DESY) From the Vacuum to the Universe Kitzbühel, Austria 26 June 1 July 2016 [Guillermo Ballesteros, Javier Redondo,

More information

Mixed Wino-Axion DM in String Theory and the 130 GeV γ-line signal

Mixed Wino-Axion DM in String Theory and the 130 GeV γ-line signal Mixed Wino-Axion DM in String Theory and the 130 GeV γ-line signal Piyush Kumar June 27 th, 2012 String Phenomenology Conference Isaac Newton Institute, Cambridge Based on: 1205.5789 (Acharya, Kane, P.K.,

More information

Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15

Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15 Electroweak baryogenesis in the MSSM C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, 2005 1/15 Electroweak baryogenesis in the MSSM The basics of EWBG in the MSSM Where do

More information

The Supersymmetric Axion and Cosmology

The Supersymmetric Axion and Cosmology The Supersymmetric Axion and Cosmology arxiv:hep-ph/0307252v3 31 Jul 2003 A. Yu. Anisimov Institute of Theoretical and Experimental Physics, Moscow Abstract In this lecture 1 we review several cosmological

More information

Supersymmetric dark matter with low reheating temperature of the Universe

Supersymmetric dark matter with low reheating temperature of the Universe Supersymmetric dark matter with low reheating temperature of the Universe Sebastian Trojanowski National Center for Nuclear Research, Warsaw COSMO 204 Chicago, August 29, 204 L. Roszkowski, ST, K. Turzyński

More information

Standard Model Thermodynamics: Effect on Gravitational Wave and Dark Matter

Standard Model Thermodynamics: Effect on Gravitational Wave and Dark Matter Standard Model Thermodynamics: Effect on Gravitational Wave and Dark Matter Satoshi Shirai (Kavli IPMU) based on Ken'ichi Saikawa and SS, 1803.01038 Remnant of Early Universe The present Universe is made

More information

Effects of Reheating on Leptogenesis

Effects of Reheating on Leptogenesis Effects of Reheating on Leptogenesis Florian Hahn-Woernle Max-Planck-Institut für Physik München 2. Kosmologietag Florian Hahn-Woernle (MPI-München) Effects of Reheating on Leptogenesis Kosmologietag 2007

More information

Leptogenesis via the Relaxation of Higgs and other Scalar Fields

Leptogenesis via the Relaxation of Higgs and other Scalar Fields Leptogenesis via the Relaxation of Higgs and other Scalar Fields Louis Yang Department of Physics and Astronomy University of California, Los Angeles PACIFIC 2016 September 13th, 2016 Collaborators: Alex

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information

Cosmology at Colliders: Possible LHC searches for RPV baryogenesis

Cosmology at Colliders: Possible LHC searches for RPV baryogenesis Cosmology at Colliders: Possible LHC searches for RPV baryogenesis Haipeng An Perimeter Ins;tute In collaboration with Yue Zhang arxiv:1310.2608 Mo;va;ons We are made of baryons and we have been living

More information

Gravitino Dark Matter p.1/42. with broken R-parity

Gravitino Dark Matter p.1/42. with broken R-parity Gravitino Dark Matter with broken R-parity In collaboration with Alejandro Ibarra DESY W. Buchmüller, L. Covi, K. Hamaguchi and T. Yanagida (JHEP 0703:037, 2007) G. Bertone, W. Buchmüller, L. Covi (JCAP11(2007)003)

More information

Intermediate scale supersymmetric inflation, matter and dark energy

Intermediate scale supersymmetric inflation, matter and dark energy Intermediate scale supersymmetric inflation, matter and dark energy G L Kane 1 and S F King 2 1 Randall Physics Laboratory, University of Michigan, Ann Arbor, MI 48109-1120, USA 2 Department of Physics

More information

RECENT PROGRESS IN SUSY DARK MATTER

RECENT PROGRESS IN SUSY DARK MATTER RECENT PROGRESS IN SUSY DARK MATTER Jonathan Feng University of California, Irvine 12 April 2006 Texas A&M Mitchell Symposium 12 Apr 06 Graphic: Feng N. Graf 1 Supersymmetric dark matter has been around

More information

Dark Radiation from Particle Decay

Dark Radiation from Particle Decay Dark Radiation from Particle Decay Jörn Kersten University of Hamburg Based on Jasper Hasenkamp, JK, JCAP 08 (2013), 024 [arxiv:1212.4160] Jörn Kersten (Uni Hamburg) Dark Radiation from Particle Decay

More information

Naturalness and mixed axion-higgsino dark matter

Naturalness and mixed axion-higgsino dark matter Naturalness and mixed axion-higgsino dark matter Howard Baer University of Oklahoma UCLA DM meeting, Feb. 18, 2016 ADMX What is the connection? LZ The naturalness issue: Naturalness= no large unnatural

More information

Beyond the SM: SUSY. Marina Cobal University of Udine

Beyond the SM: SUSY. Marina Cobal University of Udine Beyond the SM: SUSY Marina Cobal University of Udine Why the SM is not enough The gauge hierarchy problem Characteristic energy of the SM: M W ~100 GeV Characteristic energy scale of gravity: M P ~ 10

More information

Dark Matter from Non-Standard Cosmology

Dark Matter from Non-Standard Cosmology Dark Matter from Non-Standard Cosmology Bhaskar Dutta Texas A&M University Miami 2016 December 16, 2016 1 Some Outstanding Issues Questions 1. Dark Matter content ( is 27%) 2. Electroweak Scale 3. Baryon

More information

Baryogenesis in Higher Dimension Operators. Koji Ishiwata

Baryogenesis in Higher Dimension Operators. Koji Ishiwata Baryogenesis in Higher Dimension Operators Koji Ishiwata Caltech In collaboration with Clifford Cheung (Caltech) Based on arxiv:1304.0468 BLV2013 Heidelberg, April 9, 2013 1. Introduction The origin of

More information