Energy Cascade in Turbulent Flows: Quantifying Effects of Reynolds Number and Local and Nonlocal Interactions

Size: px
Start display at page:

Download "Energy Cascade in Turbulent Flows: Quantifying Effects of Reynolds Number and Local and Nonlocal Interactions"

Transcription

1 Energy Cascade in Turbulent Flows: Quantifying Effects of Reynolds Number and Local and Nonlocal Interactions J.A. Domaradzi University of Southern California D. Carati and B. Teaca Universite Libre Bruxelles Supported by ULB Council of International Relations

2 Classical result -5/3 Kolmogoroff 1941 theory: assumption of local energy cascade & dimensional analysis Local energy flux implies no influence of the energy containing range and no influence of the dissipation range on the inertial range eddies E() depends only on and the energy transfer rate Π = ε E ( ) = CKε 2/3 5/3

3 Incompressible turbulence inetic energy vorticity

4 Energy and transfer spectra forcing 10 1 Energy Spectrum E Transfer Spectrum T

5 Basic Quantities 2 1 ui ν u 2 i = p u j ui t xj ρ xi xj Spectral description 1 u() = d x u(x) e 3 (2 π ) Energy spectrum 2 S ( ) 3 ix 1 E ( ) = u() 2 Nonlinear term 3 u i(p) u j(-p) d p

6 Triad structure of nonlinear interactions Et (, ) t ν Et (, ) = Tt (, ) T ( ) u ( ) upu ( ) ( pdp ) Triad decomposition of T() T ( ) = T ( pq, ) = p q= p p P ( p) allows to assess role of all interacting scales on energy transfer p -p

7 Function T( p,q) 0.5 x 10 3 Symmetrized Transfer Spectra for interacting bands (16) 0 T( p,q) Local energy transfer through nonlocal interactions

8 Questions and Controversies T( p,q) consistent with local transfer and nonlocal interactions because of strong dependence on the energy containing range (JAD & Rogallo, Yeung & Brasseur, Ohitani & Kida, Alexais, Mininni & Pouquet) Is this an artefact of using bands defined by sharp spectral filters (Waleffe, Eyin)? Will smooth bands change the picture? No! (JAD & Carati) Does T( p,q) have a physical interpretation or should only its integrals be used to assess scale dependence of nonlinear interactions? (Zhou & Rogallo, Zhou, Eyin)? Energy flux: 0 0 p+ q= ' Π ( ) = T ( ') d ' T ( ' p, q) dpdqd ' SGS transfer: T ( ) = T( ) T( ), < SGS c c c

9 Interpretation of observed behavior of transfer function T( p,q) Banded energy spectra (tanh filter) E

10 Interpretation: energy production and redistribution T ( pq, ) ( ui ) u + ( ui ) u p q q p T α,α u Interactions between bands 3 and u x 1 3 u U u u u 3 1 u x, ' redistribution production 0.1 band 3 advective band 1 advective

11 Analyzes of integrals of T( p,q) 512^3 DNS data; 13 bands (sharp and smooth). Analysis for c=32 and 90. Banded energy spectra (tanh filter) 7 E

12 c 0 Energy flux: p+ q= T ( p, q) ddpdq T( p,q) summed over p and q such that ½< q/p <2 gives local component. T( p,q) summed over p and q such that ½>q/p >2 gives nonlocal component local/nonlocal decomposition of flux across 7 band Energy range 1 local nonlocal interacting band ir1 + total c Total mostly local Energy containing range always provides a large nonlocal contribution that is canceled by other interactions leaving the total flux dominated by local interactions local/nonlocal decomposition of flux across 10 band Observed cancellations consistent with theoretical predictions of Waleffe (1991) and Eyin (2005) and numerical results of Zhou (1993) local nonlocal interacting band ir1 + total c

13 Subgrid-scale (SGS) energy flux Et (, ) t + ν = 2 2 Et (, ) Tt (, ) 10 1 < E ( c ) Energy Spectrum E 10 5 E < ( c) + t c = + ( ) ( ) 2 < < < 2 ν E( c) T( c) T T c At least one interacting scale has >c T SGS ( ) c

14 0.1 local/nonlocal decomposition of SGS flux across band 7 0 SGS energy transfer excludes self-interactions of scales below c, accounting for cancellation effects in the energy flux nonlocal contributions are of the same sign local nonlocal interacting band ir1 + total c total local/ nonlocal 0.4 local/nonlocal decomposition of SGS flux across band Asymptotic locality despite total dominated by nonlocal interactions total nonlocal 0.8 local c nonlocal interacting band ir1 + total

15 Kraichnan infrared and ultraviolet locality functions Π ( c ) Π ( c ) Π ( ) c =ir Infrared part of total flux due to scales <ir c Ultraviolet part of total flux due to scales >uv =uv Classical results for the inertial range spectrum (Kraichnan, Eyin); 4/3 slope observed in LES (Zhou)). Π( c) c c 4/3 c Π( c ) c 4/3

16 10 1 Kraichnan locality function (ultraviolet) Π( cut ) cut / Banded energy spectra (tanh filter) E

17 10 1 Kraichnan locality function (infrared) Π( cut ) / cut Asymptotic infrared nonlocality stronger than the theoretical prediction: scales less than ½ c contribute 50-70% of the total flux, i.e., such nonlocal interactions dominate reconciles numerical conclusion using the locality factor /c=2 with the theoretical prediction. 1/2

18 10 1 Kraichnan locality function (ultraviolet) 0.4 Π( cut ) 0.01 cut / 1/2 Asymptotic ultraviolet nonlocality weaer than the theoretical prediction: scales greater than 2 c contribute 1-40% of the total flux, i.e., the local interactions with <2c dominate.

19 Reynolds number dependence forcing Energy Spectra E ^(-5/3) constraint Re = 10 5 Re=

20 10 1 Kraichnan locality function (infrared) DNS Π( cut ) Kraichnan locality 10function 1 (infrared) 10 1 / cut Constrained inertial range simulation Π( cut ) / cut

21 10 1 Kraichnan locality function (ultraviolet) DNS Π( cut ) Π( cut ) Kraichnan locality 10function 1 (ultraviolet) 10 1 cut / Constrained inertial range simulation / cut

22 10 1 Kraichnan locality function (ultraviolet) DNS 0.4 Π( cut ) 0.02 / cut 1/2 Energy Spectra E

23 Π( cut ) 10 1 Kraichnan locality function (ultraviolet) Constrained inertial range simulation cut / Energy Spectra E

24 10 1 Kraichnan locality function (infrared) Energy Spectra Π( cut ) / cut E 10 1 Kraichnan locality function (ultraviolet) Π( cut ) cut /

25 Truncated N-S dynamics (spectral space) E() Large physical scales (on coarse mesh): computed by N-S eqns. Estimated scales (on fine mesh): Artificial energy accumulation due to absence of (natural or eddy) viscosity. Unresolved scales c 2 c Filter small-scales at fixed interval and replenish using estimation model TNS=Sequence of DNS runs with periodic processing of high modes

26 Decaying High Reynolds Number Turbulence Energy spectrum of TNS with VEP compared with C-L and original TNS model Energy decay: TNS with VEP compared with C-L and original TNS model

27 High Reynolds number LES

28 Conclusions Integrated quantities obtained from T( p,q) (energy transfer, energy flux, SGS energy transfer) exhibit asymptotic infrared and ultraviolet locality In DNS data infrared nonlocality for /c<1/2 is stronger than the theoretical prediction, i.e., the numerical results can be interpreted as being infrared nonlocal for the locality parameter s=2 Ultraviolet nonlocality for /c>2 is weaer than the theoretical prediction, i.e., the numerical results can be interpreted as strongly ultraviolet local for the locality parameter s=2 Numerical data constrained by the inertial range spectrum show clear trend toward the theoretical ^(4/3) result

29 Conclusions The locality results imply that a range of subgrid scales adjacent to the resolved range dominates dynamics of the resolved eddies These subgrid scales can be estimated in terms of the resolved scales (estimation model) Dynamics of the resolved eddies is approximated by Truncated Navier-Stoes equations for resolved and estimated scales The method consists of a sequence of underresolved DNS and a periodic processing of the solution Approach successful in LES of high Reynolds number turbulence of different flows

Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers

Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers P.D. Mininni NCAR, Boulder, Colorado, USA, and Departamento de Física, Facultad de Cs. Exactas

More information

Modification of Turbulent Helical/Non-Helical Flows. with Small-Scale Energy Input

Modification of Turbulent Helical/Non-Helical Flows. with Small-Scale Energy Input Modification of Turbulent Helical/Non-Helical Flows with Small-Scale Energy Input Yuji Suzui* and Yasutaa Nagano** *Department of Mechanical Engineering, the University of Toyo, Hongo, Bunyo-u, Toyo 3-86,

More information

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

An Introduction to Theories of Turbulence. James Glimm Stony Brook University An Introduction to Theories of Turbulence James Glimm Stony Brook University Topics not included (recent papers/theses, open for discussion during this visit) 1. Turbulent combustion 2. Turbulent mixing

More information

Energy spectrum in the dissipation range of fluid turbulence

Energy spectrum in the dissipation range of fluid turbulence J. Plasma Physics (1997), vol. 57, part 1, pp. 195 201 Copyright 1997 Cambridge University Press 195 Energy spectrum in the dissipation range of fluid turbulence D. O. MARTI NEZ,,, S. CHEN,, G. D. DOOLEN,

More information

Energy Transfer and Triadic Interactions in Compressible Turbulence

Energy Transfer and Triadic Interactions in Compressible Turbulence NASA/CR-97-0649 ICASE Report No. 97-6 Energy Transfer and Triadic Interactions in Compressible Turbulence F. Bataille INSA, Centre for Thermique de Lyon, France Ye Zhou ICASE Jean-Pierre Bertoglio Laboratoire

More information

Nonequilibrium Dynamics in Astrophysics and Material Science YITP, Kyoto

Nonequilibrium Dynamics in Astrophysics and Material Science YITP, Kyoto Nonequilibrium Dynamics in Astrophysics and Material Science 2011-11-02 @ YITP, Kyoto Multi-scale coherent structures and their role in the Richardson cascade of turbulence Susumu Goto (Okayama Univ.)

More information

Gyrokinetic Large Eddy Simulations

Gyrokinetic Large Eddy Simulations Gyrokinetic Large Eddy Simulations A. Bañón Navarro 1, P. Morel 1, M. Albrecht-Marc 1, D. Carati 1, F. Merz 2, T. Görler 2, and F. Jenko 2 1 Laboratoire de Physique Statistique et des Plasmas Université

More information

Modelling of turbulent flows: RANS and LES

Modelling of turbulent flows: RANS and LES Modelling of turbulent flows: RANS and LES Turbulenzmodelle in der Strömungsmechanik: RANS und LES Markus Uhlmann Institut für Hydromechanik Karlsruher Institut für Technologie www.ifh.kit.edu SS 2012

More information

Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence

Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence Alexandros Alexakis,* Pablo D. Mininni, and Annick Pouquet National Center for Atmospheric Research, P.O. Box 3000, Boulder,

More information

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical Outline Geurts Book Department of Fluid Mechanics, Budapest University of Technology and Economics Spring 2013 Outline Outline Geurts Book 1 Geurts Book Origin This lecture is strongly based on the book:

More information

Institute for Computer Applications in Science and Engineering. NASA Langley Research Center, Hampton, VA 23681, USA. Jean-Pierre Bertoglio

Institute for Computer Applications in Science and Engineering. NASA Langley Research Center, Hampton, VA 23681, USA. Jean-Pierre Bertoglio Radiative energy transfer in compressible turbulence Francoise Bataille y and Ye hou y Institute for Computer Applications in Science and Engineering NASA Langley Research Center, Hampton, VA 68, USA Jean-Pierre

More information

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan 耶鲁 - 南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation

More information

Turbulence: Basic Physics and Engineering Modeling

Turbulence: Basic Physics and Engineering Modeling DEPARTMENT OF ENERGETICS Turbulence: Basic Physics and Engineering Modeling Numerical Heat Transfer Pietro Asinari, PhD Spring 2007, TOP UIC Program: The Master of Science Degree of the University of Illinois

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013647 TITLE: A Dynamic Procedure for Calculating the Turbulent Kinetic Energy DISTRIBUTION: Approved for public release, distribution

More information

On the decay of two-dimensional homogeneous turbulence

On the decay of two-dimensional homogeneous turbulence On the decay of two-dimensional homogeneous turbulence J. R. Chasnov a) The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Received 19 June 1996; accepted 3 September

More information

Lecture 14. Turbulent Combustion. We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing.

Lecture 14. Turbulent Combustion. We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing. Lecture 14 Turbulent Combustion 1 We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing. In a fluid flow, turbulence is characterized by fluctuations of

More information

Local shell-to-shell energy transfer via nonlocal interactions in fluid turbulence

Local shell-to-shell energy transfer via nonlocal interactions in fluid turbulence PRAMANA c Indian Academy of Sciences Vol. 65, No. 2 journal of August 2005 physics pp. 297 310 Local shell-to-shell energy transfer via nonlocal interactions in fluid turbulence MAHENDRA K VERMA 1, ARVIND

More information

Cascade Phenomenology in Turbulence: Navier-Stokes and MHD

Cascade Phenomenology in Turbulence: Navier-Stokes and MHD Cascade Phenomenology in Turbulence: Navier-Stoes and MHD WeiHan Hsiao a a Department of Physics, The University of Chicago E-mail: weihanhsiao@uchicago.edu ABSTRACT: This is the note prepared for the

More information

Database analysis of errors in large-eddy simulation

Database analysis of errors in large-eddy simulation PHYSICS OF FLUIDS VOLUME 15, NUMBER 9 SEPTEMBER 2003 Johan Meyers a) Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300, B3001 Leuven, Belgium Bernard J. Geurts b)

More information

Before we consider two canonical turbulent flows we need a general description of turbulence.

Before we consider two canonical turbulent flows we need a general description of turbulence. Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent

More information

Ensemble averaged dynamic modeling. By D. Carati 1,A.Wray 2 AND W. Cabot 3

Ensemble averaged dynamic modeling. By D. Carati 1,A.Wray 2 AND W. Cabot 3 Center for Turbulence Research Proceedings of the Summer Program 1996 237 Ensemble averaged dynamic modeling By D. Carati 1,A.Wray 2 AND W. Cabot 3 The possibility of using the information from simultaneous

More information

Numerical simulations of homogeneous turbulence using Lagrangian-averaged Navier-Stokes equations

Numerical simulations of homogeneous turbulence using Lagrangian-averaged Navier-Stokes equations Center for Turbulence Research Proceedings of the Summer Program 2000 271 Numerical simulations of homogeneous turbulence using Lagrangian-averaged Navier-Stoes equations By Kamran Mohseni, Steve Sholler,

More information

Energy transfer in compressible MHD turbulence

Energy transfer in compressible MHD turbulence Energy transfer in compressible MHD turbulence Philipp Grete Michigan State University in collaboration with Brian O Shea, Kris Beckwith, Wolfram Schmidt and Andrew Christlieb MIPSE Seminar University

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

Multiscale Computation of Isotropic Homogeneous Turbulent Flow

Multiscale Computation of Isotropic Homogeneous Turbulent Flow Multiscale Computation of Isotropic Homogeneous Turbulent Flow Tom Hou, Danping Yang, and Hongyu Ran Abstract. In this article we perform a systematic multi-scale analysis and computation for incompressible

More information

An evaluation of a conservative fourth order DNS code in turbulent channel flow

An evaluation of a conservative fourth order DNS code in turbulent channel flow Center for Turbulence Research Annual Research Briefs 2 2 An evaluation of a conservative fourth order DNS code in turbulent channel flow By Jessica Gullbrand. Motivation and objectives Direct numerical

More information

Spectral modeling of turbulent flows and the role of helicity

Spectral modeling of turbulent flows and the role of helicity Spectral modeling of turbulent flows and the role of helicity J. Baerenzung, H. Politano, and Y. Ponty Laboratoire Cassiopée, UMR 6202, Observatoire de la Côte d Azur, B.P. 4229, 06304 Nice Cedex 4, France

More information

Characteristics of Linearly-Forced Scalar Mixing in Homogeneous, Isotropic Turbulence

Characteristics of Linearly-Forced Scalar Mixing in Homogeneous, Isotropic Turbulence Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, July 9-13, 2012 ICCFD7-1103 Characteristics of Linearly-Forced Scalar Mixing in Homogeneous, Isotropic Turbulence

More information

FLOW-NORDITA Spring School on Turbulent Boundary Layers1

FLOW-NORDITA Spring School on Turbulent Boundary Layers1 Jonathan F. Morrison, Ati Sharma Department of Aeronautics Imperial College, London & Beverley J. McKeon Graduate Aeronautical Laboratories, California Institute Technology FLOW-NORDITA Spring School on

More information

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling Turbulence Modeling Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark 1 Outline

More information

Natalia Tronko S.V.Nazarenko S. Galtier

Natalia Tronko S.V.Nazarenko S. Galtier IPP Garching, ESF Exploratory Workshop Natalia Tronko University of York, York Plasma Institute In collaboration with S.V.Nazarenko University of Warwick S. Galtier University of Paris XI Outline Motivations:

More information

LES ANALYSIS ON CYLINDER CASCADE FLOW BASED ON ENERGY RATIO COEFFICIENT

LES ANALYSIS ON CYLINDER CASCADE FLOW BASED ON ENERGY RATIO COEFFICIENT 2th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics ANALYSIS ON CYLINDER CASCADE FLOW BASED ON ENERGY RATIO COEFFICIENT Wang T.*, Gao S.F., Liu Y.W., Lu Z.H. and Hu H.P. *Author

More information

MULTISCALE ANALYSIS IN LAGRANGIAN FORMULATION FOR THE 2-D INCOMPRESSIBLE EULER EQUATION. Thomas Y. Hou. Danping Yang. Hongyu Ran

MULTISCALE ANALYSIS IN LAGRANGIAN FORMULATION FOR THE 2-D INCOMPRESSIBLE EULER EQUATION. Thomas Y. Hou. Danping Yang. Hongyu Ran DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Volume 13, Number 5, December 2005 pp. 1153 1186 MULTISCALE ANALYSIS IN LAGRANGIAN FORMULATION FOR THE 2-D INCOMPRESSIBLE EULER

More information

A priori testing of subgrid-scale. models for the velocity-pressure. and vorticity-velocity formulations

A priori testing of subgrid-scale. models for the velocity-pressure. and vorticity-velocity formulations Center for Turbulence Research Proceedings of the Summer Program 1996 309 A priori testing of subgrid-scale models for the velocity-pressure and vorticity-velocity formulations By G. S. Winckelmans 1,

More information

Regularization modeling of turbulent mixing; sweeping the scales

Regularization modeling of turbulent mixing; sweeping the scales Regularization modeling of turbulent mixing; sweeping the scales Bernard J. Geurts Multiscale Modeling and Simulation (Twente) Anisotropic Turbulence (Eindhoven) D 2 HFest, July 22-28, 2007 Turbulence

More information

Navier-Stokes equations

Navier-Stokes equations 1 Navier-Stokes equations Introduction to spectral methods for the CSC Lunchbytes Seminar Series. Incompressible, hydrodynamic turbulence is described completely by the Navier-Stokes equations where t

More information

Rica Mae Enriquez*, Robert L. Street, Francis L. Ludwig Stanford University, Stanford, CA. 0 = u x A u i. ij,lass. c 2 ( P ij. = A k. P = A ij.

Rica Mae Enriquez*, Robert L. Street, Francis L. Ludwig Stanford University, Stanford, CA. 0 = u x A u i. ij,lass. c 2 ( P ij. = A k. P = A ij. P1.45 ASSESSMENT OF A COUPLED MOMENTUM AND PASSIVE SCALAR FLUX SUBGRID- SCALE TURBULENCE MODEL FOR LARGE-EDDY SIMULATION OF FLOW IN THE PLANETARY BOUNDARY LAYER Rica Mae Enriquez*, Robert L. Street, Francis

More information

LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS

LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS The 6th ASME-JSME Thermal Engineering Joint Conference March 6-, 3 TED-AJ3-3 LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS Akihiko Mitsuishi, Yosuke Hasegawa,

More information

arxiv:physics/ v1 8 Sep 2005

arxiv:physics/ v1 8 Sep 2005 On the inverse cascade of magnetic helicity Alexandros Alexakis, Pablo Mininni, and Annick Pouquet National Center for Atmospheric Research (Dated: September 12, 2005) arxiv:physics/0509069 v1 8 Sep 2005

More information

Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows

Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows Remark 7.1. Turbulent flows. The usually used model for turbulent incompressible flows are the incompressible Navier Stokes equations

More information

Analysis of the Kolmogorov equation for filtered wall-turbulent flows

Analysis of the Kolmogorov equation for filtered wall-turbulent flows J. Fluid Mech. (211), vol. 676, pp. 376 395. c Cambridge University Press 211 doi:1.117/s2211211565 Analysis of the Kolmogorov equation for filtered wall-turbulent flows A. CIMARELLI AND E. DE ANGELIS

More information

Locality of Energy Transfer

Locality of Energy Transfer (E) Locality of Energy Transfer See T & L, Section 8.2; U. Frisch, Section 7.3 The Essence of the Matter We have seen that energy is transferred from scales >`to scales

More information

Homogeneous Turbulence Dynamics

Homogeneous Turbulence Dynamics Homogeneous Turbulence Dynamics PIERRE SAGAUT Universite Pierre et Marie Curie CLAUDE CAMBON Ecole Centrale de Lyon «Hf CAMBRIDGE Щ0 UNIVERSITY PRESS Abbreviations Used in This Book page xvi 1 Introduction

More information

arxiv: v2 [physics.flu-dyn] 11 Jan 2008

arxiv: v2 [physics.flu-dyn] 11 Jan 2008 Three regularization models of the Navier-Stoes equations arxiv:0709.0208v2 [physics.flu-dyn] 11 Jan 2008 Jonathan Pietarila Graham 1,2, Darryl D. Holm 3,4, Pablo D. Mininni 1,5, and Annic Pouquet 1 1

More information

Reliability of LES in complex applications

Reliability of LES in complex applications Reliability of LES in complex applications Bernard J. Geurts Multiscale Modeling and Simulation (Twente) Anisotropic Turbulence (Eindhoven) DESIDER Symposium Corfu, June 7-8, 27 Sample of complex flow

More information

Analysis of the gradient-diffusion hypothesis in large-eddy simulations based on transport equations

Analysis of the gradient-diffusion hypothesis in large-eddy simulations based on transport equations PHYSICS OF FLUIDS 19, 035106 2007 Analysis of the gradient-diffusion hypothesis in large-eddy simulations based on transport equations Carlos B. da Silva a and José C. F. Pereira Instituto Superior Técnico,

More information

COMMUTATION ERRORS IN PITM SIMULATION

COMMUTATION ERRORS IN PITM SIMULATION COMMUTATION ERRORS IN PITM SIMULATION B. Chaouat ONERA, 93 Châtillon, France Bruno.Chaouat@onera.fr Introduction Large eddy simulation is a promising route. This approach has been largely developed in

More information

Multiscale Computation of Isotropic Homogeneous Turbulent Flow

Multiscale Computation of Isotropic Homogeneous Turbulent Flow Multiscale Computation of Isotropic Homogeneous Turbulent Flow Tom Hou, Danping Yang, and Hongyu Ran Abstract. In this article we perform a systematic multi-scale analysis and computation for incompressible

More information

Answers to Homework #9

Answers to Homework #9 Answers to Homework #9 Problem 1: 1. We want to express the kinetic energy per unit wavelength E(k), of dimensions L 3 T 2, as a function of the local rate of energy dissipation ɛ, of dimensions L 2 T

More information

arxiv: v1 [physics.flu-dyn] 15 Dec 2018

arxiv: v1 [physics.flu-dyn] 15 Dec 2018 This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1 arxiv:1812.06294v1 [physics.flu-dyn] 15 Dec 2018 On the thermal equilibrium state of large scale flows Alexandros

More information

Dynamical modeling of sub-grid scales in 2D turbulence

Dynamical modeling of sub-grid scales in 2D turbulence Physica D 142 (2000) 231 253 Dynamical modeling of sub-grid scales in 2D turbulence Jean-Philippe Laval a,, Bérengère Dubrulle b,c, Sergey Nazarenko d,e a CEA/DAPNIA/SAp L Orme des Merisiers, 709, F-91191

More information

Computational issues and algorithm assessment for shock/turbulence interaction problems

Computational issues and algorithm assessment for shock/turbulence interaction problems University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln NASA Publications National Aeronautics and Space Administration 2007 Computational issues and algorithm assessment for shock/turbulence

More information

Three-dimensional wall filtering formulation for large-eddy simulation

Three-dimensional wall filtering formulation for large-eddy simulation Center for Turbulence Research Annual Research Briefs 6 55 Three-dimensional wall filtering formulation for large-eddy simulation By M. Shoeybi AND J. A. Templeton 1. Motivation and objectives Large-eddy

More information

A Simple Turbulence Closure Model. Atmospheric Sciences 6150

A Simple Turbulence Closure Model. Atmospheric Sciences 6150 A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: V = V + v V = U i + u i Mean velocity: V = Ui + V j + W k =(U, V, W ) U i =(U

More information

A Simple Turbulence Closure Model

A Simple Turbulence Closure Model A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: Mean velocity: Turbulent velocity: Gradient operator: Advection operator: V =

More information

TURBULENCE IN FLUIDS AND SPACE PLASMAS. Amitava Bhattacharjee Princeton Plasma Physics Laboratory, Princeton University

TURBULENCE IN FLUIDS AND SPACE PLASMAS. Amitava Bhattacharjee Princeton Plasma Physics Laboratory, Princeton University TURBULENCE IN FLUIDS AND SPACE PLASMAS Amitava Bhattacharjee Princeton Plasma Physics Laboratory, Princeton University What is Turbulence? Webster s 1913 Dictionary: The quality or state of being turbulent;

More information

Turbulence. 2. Reynolds number is an indicator for turbulence in a fluid stream

Turbulence. 2. Reynolds number is an indicator for turbulence in a fluid stream Turbulence injection of a water jet into a water tank Reynolds number EF$ 1. There is no clear definition and range of turbulence (multi-scale phenomena) 2. Reynolds number is an indicator for turbulence

More information

cfl Copyright by Fotini V. Katopodes 2000 All rights reserved.

cfl Copyright by Fotini V. Katopodes 2000 All rights reserved. A theory for the subfilter-scale model in large-eddy simulation Fotini V. Katopodes, Robert L. Street, Joel H. Ferziger March, 2000 Technical Report 2000-K1 Environmental Fluid Mechanics Laboratory Stanford,

More information

Max Planck Institut für Plasmaphysik

Max Planck Institut für Plasmaphysik ASDEX Upgrade Max Planck Institut für Plasmaphysik 2D Fluid Turbulence Florian Merz Seminar on Turbulence, 08.09.05 2D turbulence? strictly speaking, there are no two-dimensional flows in nature approximately

More information

ESCI 485 Air/sea Interaction Lesson 2 Turbulence Dr. DeCaria

ESCI 485 Air/sea Interaction Lesson 2 Turbulence Dr. DeCaria ESCI 485 Air/sea Interaction Lesson Turbulence Dr. DeCaria References: Air-sea Interaction: Laws and Mechanisms, Csanady An Introduction to Dynamic Meteorology ( rd edition), J.R. Holton An Introduction

More information

DNS, LES, and wall-modeled LES of separating flow over periodic hills

DNS, LES, and wall-modeled LES of separating flow over periodic hills Center for Turbulence Research Proceedings of the Summer Program 4 47 DNS, LES, and wall-modeled LES of separating flow over periodic hills By P. Balakumar, G. I. Park AND B. Pierce Separating flow in

More information

DNS of the Taylor-Green vortex at Re=1600

DNS of the Taylor-Green vortex at Re=1600 DNS of the Taylor-Green vortex at Re=1600 Koen Hillewaert, Cenaero Corentin Carton de Wiart, NASA Ames koen.hillewaert@cenaero.be, corentin.carton@cenaero.be Introduction This problem is aimed at testing

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014812 TITLE: Large-Eddy Simulation of Conductive Flows at Low Magnetic Reynolds Number DISTRIBUTION: Approved for public release,

More information

Small-Scale Statistics and Structure of Turbulence in the Light of High Resolution Direct Numerical Simulation

Small-Scale Statistics and Structure of Turbulence in the Light of High Resolution Direct Numerical Simulation 1 Small-Scale Statistics and Structure of Turbulence in the Light of High Resolution Direct Numerical Simulation Yukio Kaneda and Koji Morishita 1.1 Introduction Fully developed turbulence is a phenomenon

More information

An analysis of subgrid-scale interactions in numerically si isotropic turbulence

An analysis of subgrid-scale interactions in numerically si isotropic turbulence An analysis of subgrid-scale interactions in numerically si isotropic turbulence J. Andrzej Domaradzki and Wei Liu Department of Aerospace Engineering, University of Southern California, Los Angeles, California

More information

William J. Layton 1,5 Carolina C. Manica 2,5 Monika Neda 3,5 Leo G. Rebholz 4,5 Department of Mathematics University of Pittsburgh PA 15260

William J. Layton 1,5 Carolina C. Manica 2,5 Monika Neda 3,5 Leo G. Rebholz 4,5 Department of Mathematics University of Pittsburgh PA 15260 The joint helicity-energy cascade for homogeneous, isotropic turbulence generated by approximate deconvolution models William J. Layton 1,5 Carolina C. Manica 2,5 Monika Neda 3,5 Leo G. Rebholz 4,5 Department

More information

Turbulent energy density and its transport equation in scale space

Turbulent energy density and its transport equation in scale space PHYSICS OF FLUIDS 27, 8518 (215) Turbulent energy density and its transport equation in scale space Fujihiro Hamba a) Institute of Industrial Science, The University of Toyo, Komaba, Meguro-u, Toyo 153-855,

More information

Validation of an Entropy-Viscosity Model for Large Eddy Simulation

Validation of an Entropy-Viscosity Model for Large Eddy Simulation Validation of an Entropy-Viscosity Model for Large Eddy Simulation J.-L. Guermond, A. Larios and T. Thompson 1 Introduction A primary mainstay of difficulty when working with problems of very high Reynolds

More information

Energy and potential enstrophy flux constraints in quasi-geostrophic models

Energy and potential enstrophy flux constraints in quasi-geostrophic models Energy and potential enstrophy flux constraints in quasi-geostrophic models Eleftherios Gkioulekas University of Texas Rio Grande Valley August 25, 2017 Publications K.K. Tung and W.W. Orlando (2003a),

More information

Influence of high temperature gradient on turbulence spectra

Influence of high temperature gradient on turbulence spectra NIA CFD Conference, Hampton, August 6-8, 2012 Future Directions in CFD Research, A Modeling and Simulation Conference Influence of high temperature gradient on turbulence spectra Sylvain Serra Françoise

More information

SUBGRID MODELS FOR LARGE EDDY SIMULATION: SCALAR FLUX, SCALAR DISSIPATION AND ENERGY DISSIPATION

SUBGRID MODELS FOR LARGE EDDY SIMULATION: SCALAR FLUX, SCALAR DISSIPATION AND ENERGY DISSIPATION SUBGRID MODELS FOR LARGE EDDY SIMULATION: SCALAR FLUX, SCALAR DISSIPATION AND ENERGY DISSIPATION By Sergei G. Chumakov A dissertation submitted in partial fulfillment of the requirements for the degree

More information

DNS Study on Small Length Scale in Turbulent Flow

DNS Study on Small Length Scale in Turbulent Flow DNS Study on Small ength Scale in Turbulent Flow Yonghua Yan Jie Tang Chaoqun iu Technical Report 2014-11 http://www.uta.edu/math/preprint/ DNS Study on Small ength Scale in Turbulent Flow Yonghua Yan,

More information

Subgrid models for large-eddy simulation using unstructured grids in a stabilized finite element framework

Subgrid models for large-eddy simulation using unstructured grids in a stabilized finite element framework Journal of Turbulence Volume 7, No. 28, 2006 Subgrid models for large-eddy simulation using unstructured grids in a stabilized finite element framework V. LEVASSEUR,P.SAGAUT and M. MALLET Laboratoire de

More information

A Self-adapting Turbulence Model for Flow Simulation at any Mesh Resolution.

A Self-adapting Turbulence Model for Flow Simulation at any Mesh Resolution. A Self-adapting Turbulence Model for Flow Simulation at any Mesh Resolution. J. BLAIR PEROT and JASON GADEBUSCH Department of Mechanical Engineering University of Massachusetts Amherst, Amherst, MA 01003

More information

The Johns Hopkins Turbulence Databases (JHTDB)

The Johns Hopkins Turbulence Databases (JHTDB) The Johns Hopkins Turbulence Databases (JHTDB) HOMOGENEOUS BUOYANCY DRIVEN TURBULENCE DATA SET Data provenance: D. Livescu 1 Database Ingest and Web Services: C. Canada 1, K. Kalin 2, R. Burns 2 & IDIES

More information

Dissipative Anomalies in Singular Euler Flows. Gregory L. Eyink Applied Mathematics & Statistics The Johns Hopkins University

Dissipative Anomalies in Singular Euler Flows. Gregory L. Eyink Applied Mathematics & Statistics The Johns Hopkins University Dissipative Anomalies in Singular Euler Flows Gregory L. Eyink Applied Mathematics & Statistics The Johns Hopkins University Euler Equations: 250 Years On Aussois, France June 18-23, 2007 Energy Dissipation

More information

Energy spectrum of isotropic magnetohydrodynamic turbulence in the Lagrangian renormalized approximation

Energy spectrum of isotropic magnetohydrodynamic turbulence in the Lagrangian renormalized approximation START: 19/Jul/2006, Warwick Turbulence Symposium Energy spectrum of isotropic magnetohydrodynamic turbulence in the Lagrangian renormalized approximation Kyo Yoshida (Univ. Tsukuba) In collaboration with:

More information

The lattice Boltzmann equation (LBE) has become an alternative method for solving various fluid dynamic

The lattice Boltzmann equation (LBE) has become an alternative method for solving various fluid dynamic 36th AIAA Fluid Dynamics Conference and Exhibit 5-8 June 2006, San Francisco, California AIAA 2006-3904 Direct and Large-Eddy Simulation of Decaying and Forced Isotropic Turbulence Using Lattice Boltzmann

More information

Lecture 4: The Navier-Stokes Equations: Turbulence

Lecture 4: The Navier-Stokes Equations: Turbulence Lecture 4: The Navier-Stokes Equations: Turbulence September 23, 2015 1 Goal In this Lecture, we shall present the main ideas behind the simulation of fluid turbulence. We firts discuss the case of the

More information

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé CMCS/IACS Ecole Polytechnique Federale de Lausanne Erik.Burman@epfl.ch Méthodes Numériques

More information

Mixing Models for Large-Eddy Simulation of Nonpremixed Turbulent Combustion

Mixing Models for Large-Eddy Simulation of Nonpremixed Turbulent Combustion S. M. debruynkops Lecturer J. J. Riley Professor Department of Mechanical Engineering, University of Washington, Box 35600, Seattle, WA 98195-600 Mixing Models for Large-Eddy Simulation of Nonpremixed

More information

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray Center for Turbulence Research Annual Research Briefs 1997 113 Anisotropic grid-based formulas for subgrid-scale models By G.-H. Cottet 1 AND A. A. Wray 1. Motivations and objectives Anisotropic subgrid-scale

More information

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr): AdOc 4060/5060 Spring 2013 Chris Jenkins Eddy viscosity Turbulence (video 1hr): http://cosee.umaine.edu/programs/webinars/turbulence/?cfid=8452711&cftoken=36780601 Part B Surface wind stress Wind stress

More information

Statistical studies of turbulent flows: self-similarity, intermittency, and structure visualization

Statistical studies of turbulent flows: self-similarity, intermittency, and structure visualization Statistical studies of turbulent flows: self-similarity, intermittency, and structure visualization P.D. Mininni Departamento de Física, FCEyN, UBA and CONICET, Argentina and National Center for Atmospheric

More information

The Role of Splatting Effect in High Schmidt Number Turbulent Mass Transfer Across an Air-Water Interface

The Role of Splatting Effect in High Schmidt Number Turbulent Mass Transfer Across an Air-Water Interface Turbulence, Heat and Mass Transfer 4 K. Hanjalic, Y. Nagano and M. Tummers (Editors) 3 Begell House, Inc. The Role of Splatting Effect in High Schmidt Number Turbulent Mass Transfer Across an Air-Water

More information

model and its application to channel ow By K. B. Shah AND J. H. Ferziger

model and its application to channel ow By K. B. Shah AND J. H. Ferziger Center for Turbulence Research Annual Research Briefs 1995 73 A new non-eddy viscosity subgrid-scale model and its application to channel ow 1. Motivation and objectives By K. B. Shah AND J. H. Ferziger

More information

Velocity Fluctuations in a Particle-Laden Turbulent Flow over a Backward-Facing Step

Velocity Fluctuations in a Particle-Laden Turbulent Flow over a Backward-Facing Step Copyright c 2004 Tech Science Press CMC, vol.1, no.3, pp.275-288, 2004 Velocity Fluctuations in a Particle-Laden Turbulent Flow over a Backward-Facing Step B. Wang 1, H.Q. Zhang 1, C.K. Chan 2 and X.L.

More information

Turbulence (January 7, 2005)

Turbulence (January 7, 2005) http://www.tfd.chalmers.se/gr-kurs/mtf071 70 Turbulence (January 7, 2005) The literature for this lecture (denoted by LD) and the following on turbulence models is: L. Davidson. An Introduction to Turbulence

More information

A simple subgrid-scale model for astrophysical turbulence

A simple subgrid-scale model for astrophysical turbulence CfCA User Meeting NAOJ, 29-30 November 2016 A simple subgrid-scale model for astrophysical turbulence Nobumitsu Yokoi Institute of Industrial Science (IIS), Univ. of Tokyo Collaborators Axel Brandenburg

More information

Lecture 2. Turbulent Flow

Lecture 2. Turbulent Flow Lecture 2. Turbulent Flow Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of this turbulent water jet. If L is the size of the largest eddies, only very small

More information

A Pressure-Correction Scheme for Rotational Navier-Stokes Equations and Its Application to Rotating Turbulent Flows

A Pressure-Correction Scheme for Rotational Navier-Stokes Equations and Its Application to Rotating Turbulent Flows Commun. Comput. Phys. doi: 10.4208/cicp.301109.040310s Vol. 9, No. 3, pp. 740-755 March 2011 A Pressure-Correction Scheme for Rotational Navier-Stoes Equations and Its Application to Rotating Turbulent

More information

A Low Reynolds Number Variant of Partially-Averaged Navier-Stokes Model for Turbulence

A Low Reynolds Number Variant of Partially-Averaged Navier-Stokes Model for Turbulence Int. J. Heat Fluid Flow, Vol., pp. 65-669 (), doi:.6/j.ijheatfluidflow... A Low Reynolds Number Variant of Partially-Averaged Navier-Stokes Model for Turbulence J.M. Ma,, S.-H. Peng,, L. Davidson, and

More information

On 2 d incompressible Euler equations with partial damping.

On 2 d incompressible Euler equations with partial damping. On 2 d incompressible Euler equations with partial damping. Wenqing Hu 1. (Joint work with Tarek Elgindi 2 and Vladimir Šverák 3.) 1. Department of Mathematics and Statistics, Missouri S&T. 2. Department

More information

CVS filtering to study turbulent mixing

CVS filtering to study turbulent mixing CVS filtering to study turbulent mixing Marie Farge, LMD-CNRS, ENS, Paris Kai Schneider, CMI, Université de Provence, Marseille Carsten Beta, LMD-CNRS, ENS, Paris Jori Ruppert-Felsot, LMD-CNRS, ENS, Paris

More information

A NOVEL VLES MODEL FOR TURBULENT FLOW SIMULATIONS

A NOVEL VLES MODEL FOR TURBULENT FLOW SIMULATIONS June 30 - July 3, 2015 Melbourne, Australia 9 7B-4 A NOVEL VLES MODEL FOR TURBULENT FLOW SIMULATIONS C.-Y. Chang, S. Jakirlić, B. Krumbein and C. Tropea Institute of Fluid Mechanics and Aerodynamics /

More information

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size L Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size 0.01L or smaller are subject to substantial viscous

More information

arxiv: v1 [physics.flu-dyn] 6 Sep 2018

arxiv: v1 [physics.flu-dyn] 6 Sep 2018 Spectral energy cascade and decay in nonlinear acoustic waves arxiv:1809.00v1 [physics.flu-dyn] 6 Sep 018 Pratee Gupta and Carlo Scalo School of Mechanical Engineering, Purdue University, West Lafayette,

More information

Application of Compact Schemes to Large Eddy Simulation of Turbulent Jets

Application of Compact Schemes to Large Eddy Simulation of Turbulent Jets Journal of Scientific Computing, Vol. 21, No. 3, December 2004 ( 2004) Application of Compact Schemes to Large Eddy Simulation of Turbulent Jets Ali Uzun, 1 Gregory A. Blaisdell, 2 and Anastasios S. Lyrintzis

More information

Spectral reduction for two-dimensional turbulence. Abstract

Spectral reduction for two-dimensional turbulence. Abstract Spectral reduction for two-dimensional turbulence John C. Bowman B. A. Shadwick P. J. Morrison Institute for Fusion Studies, The University of Texas, Austin, TX 78712 (October 9, 1997) Abstract A new method

More information

Hybrid LES RANS Method Based on an Explicit Algebraic Reynolds Stress Model

Hybrid LES RANS Method Based on an Explicit Algebraic Reynolds Stress Model Hybrid RANS Method Based on an Explicit Algebraic Reynolds Stress Model Benoit Jaffrézic, Michael Breuer and Antonio Delgado Institute of Fluid Mechanics, LSTM University of Nürnberg bjaffrez/breuer@lstm.uni-erlangen.de

More information