The Power of Ultrasonic Characterisation for Completely Assessing the Elastic Properties of Materials

Size: px
Start display at page:

Download "The Power of Ultrasonic Characterisation for Completely Assessing the Elastic Properties of Materials"

Transcription

1 11th European Conference on Non-Destructive Testing (ECNDT 214), October 6-1, 214, Prague, Czech Republic The Power of Ultrasonic Characterisation for Completely Assessing the Elastic Properties of Materials Jean-Marie MORVAN 1 1 CANOE, Cheminnov ENSCBP, 16 avenue Pey Berland, 6 Pessac - France Phone: ; morvan@plateforme-canoe.fr Abstract From a single ultrasonic test, it is possible to provide materials developers and structures engineers every data on the elasticity of the material and thus limit the mechanical tests to selected samples only. However, despite the existence of an European standard, this method remains unknown. Moreover, the ultrasonic characterization is the only method that can fully monitor residual mechanical properties after damage or fatigue, or if it is used simultaneously with a standard tensile test, to survey the variation of the mechanical properties of the sample and thus provide real constitutive laws and data for FE simulations. The purpose of this contribution is to explain the fundamentals of the method, illustrate it with some results and compare them with standard mechanical tests. Keywords: Ultrasonic characterization, anisotropy, damage, stiffness tensor 1. Introduction With the continuous demand from internal or external customers to reduce the costs of composite materials while the numbers of reinforcements both in materials and directions increase, the problem arises of limiting the number of mechanical tests to be performed, especially at the critical stages of development and qualification. The aim of this paper is to show how, for more than twenty years now, it has been possible with ultrasonic characterisation to provide data on the elastic properties of materials and their variation when the samples are damaged whether by mechanical tests or environmental ageing. The first chapter of this paper will briefly discuss the limitations and drawbacks of conventional mechanical tests. Then, the ultrasonic characterisation will be explained. The last part of this paper will show some chosen results obtained with this method. 2. Limitations of the conventional mechanical tests Standard mechanical tests (traction, flexion) are pretty easy to perform properly on isotropic materials and even if the number of samples is commonly five as set by standards, the cost remains low. Nevertheless, when non linear behaviours are studied, difficulties start to arise. Of course, standards and internal procedures are helpful for explaining how to measure elastic properties with such data as secant or tangent moduli but it involves introducing tailored moduli compared to the intrinsic elastic modulus and sometimes tracing a simple slope can become more difficult than though at first sight, figure 1. Difficulties are increasing when damage deactivation phenomena are involved, hysteresis loops with different slopes, etc For example, composite materials such as ceramic matrix composites exhibit, during cycle tests, damage deactivation phenomena with an opening/closing of the cracks created under tensile loading which is very different from plasticity hence conventional tests can mislead the understanding of the strain mechanisms of these materials.

2 Figure 1. Determining elastic modulus difficulties. Nowadays, the widespread of composite materials in every industrial sector is intensifying, and, with it, the use of anisotropic materials. This makes the number of tests to grow because the numbers of independent elastic properties increase with the lack of material symmetry. For example when an isotropic material is studied, only two independent elastic constants are necessary for modelling its behaviour but with an orthorhombic material, no less than nine independent constant are needed if an accurate and complete constitutive law has to be written. Equation 1 shows the general form of the stiffness tensor C IJ in the case of a material with three planes of symmetry :! C IJ = " C 11 C 12 C 1 C 22 C 2 C C 44 Sym. C 55 C 66 $ % (1) The number of tests will increase accordingly and with it the cost of characterisation (testing but also manufacturing and cutting samples especially off axis ones). From a simple plate of the material, some samples will have to be cut at various angles (most commonly, 9 and 45 ), tensile and flexural tests have to be prepared, One must also keep in mind that some moduli are very difficult to measure : Young Modulus in the thickness direction, in-plane shear modulus. Ultrasonic characterization of the elastic properties and strain partition under load.1 Ultrasonic characterization The main principles of ultrasonic evaluation have been given by Roux [1] for the elastic coefficients evaluation of homogeneous anisotropic materials. In order to identify the nine elastic constants C ij which fully describe the elastic behaviour of an orthotropic material, the

3 wave propagation velocities are collected in the two accessible principal planes (planes (1, 2) and (1, ), figure 2) and in a non principal plane (plane (1, 45 ) described by the bisectrix of axis 2 and, figure 2). The identification in plane (1, 2) allows to measure four elastic constants : C 11, C 22, C 66 and C 12 and three others are obtained in plane (1, ) : C, C 55 and C 1. The two remaining coefficients C 2 and C 44 are identified by propagation in the non principal plane (1, 45 ). However, when the material exhibits a tetragonal symmetry, Plane (1, 45 ) becomes a principal plane and it becomes impossible to measure independently these two stiffnesses [2]. The value of the in-plane shear modulus is then obtained from the phase velocity of a shear wave generated with a pair of contact transverse transducers. This value is used together with Plane (1, 45 ) data to simplify and to improve optimisation. The confidence interval associated to each identified constant is then estimated by a statistical analysis []. The ultrasonic device, figure 2, consists in an immersion tank associated to a tensile machine. It allows to study the complete stiffness tensor variation under load thus it is possible to know which coefficients are affected during a damage process. Figure 2. Sample instrumented for ultrasonic characterisation Wave speed measurements are performed by using ultrasonic pulses which are refracted through the sample immersed in water. The measurement of the phase velocity of the pulses is done by a signal processing method using Hilbert transform [4]. The characterization of anisotropic materials using an ultrasonic method gives access to the purely elastic part of their behaviour. The complete determination of the stiffness tensor of a composite presenting an orthorhombic symmetry allows, by simply inverting the tensor, to pass on to a description in terms of compliances which authorized a reconstruction of the elastic hardening curve. When people working with ultrasounds speak about stiffnesses, most of the time, other people argue that engineering constants are more commonly use for writing constitutive laws. Hopefully, relationships exist between stiffness tensor and engineering constants [5]. The accuracy and the reliability of determination of the complete stiffness tensor of a composite presenting an orthorhombic symmetry allows, by simply inverting the tensor, a description in terms of compliances which is necessary to write the results in engineering constant form :

4 S IJ = C IJ 1 (2) E i = 1 S ii () ν ij = S ij S ii (4) G ij = 1 S ijij (5) Where S IJ is the compliance tensor, E i, the Young modulus in direction i, ν ij, the Poisson ratio between directions i and j and G ij, the Coulomb modulus between directions i and j. From these relationships, it is clear that if the material is anisotropic, the engineering constant can only be obtained once the complete upper part of the stiffness tensor has been evaluated..2 Strain partition In order to study accurately the damage evolution in composites, the experimental device that couples an ultrasonic immersion tank to a tensile machine has been enhanced with the use of an extensometer [6] that record the total macroscopic strain. As the complete stiffness tensor is measured, the description in terms of compliances is known by simply inverting the tensor and the elastic strain value along the tensile axis is calculated by using the generalized Hooke's law : elastic = S σ (6) where elastic is the elastic axial strain along tensile direction and σ is the stress along tensile direction. The total strain total measured with the extensometer is therefore written as being the sum of the elastic strain elastic assessed from ultrasonic measurements and of an inelastic strain inelastic which mainly finds its origin in damage of the material : total = elastic + inelastic (7) This allows not only to know what is the real ratio of elastic strain of the material beyond damage threshold but also to verify the accuracy of the ultrasonic characterisation. The strain can be calculated at every step of ultrasonic characterisation.

5 4. Chosen results In order to illustrate what kind of otherwise unobtainable results can be reached with the method described, this chapter will present some example of past works. 4.1 Accuracy of the strain partition This first illustration was obtained with a quite simple material : an high impact resistance PMMA with 25% core shells in which very little damage occurs. The sample was supplied by GRL (now part of Arkema group). It was submitted to tensile stress in direction. Figure shows the variation of quasi longitudinal (QL) and quasi transversal (QT) waves velocities in Plane (1, ) at zero stress and at nearly failure stress. Whatever the velocity considered, it hardly varies showing that little damage occurs. () 1.8 MPa 5.5 MPa.6 Mode QT.4 Mode QL Figure. Slowness variation in propagation plane (1,) at MPa and 5.5 MPa Figure 4 shows the result the strain partition. One can see that the elastic slope issued from ultrasonic measurement fits very well the elastic slope that can be drawn from the extensometer data before plasticity and crazes appear leading to inelastic strain. (1) MPa 4 5 anélastique élastique total ,2,4,6,8 1 1,2 1,4 Figure 4. Comparison between total strain measured with an extensometer and elastic! strain calculated from data obtained by ultrasonic characterisation %

6 4.2 Measurement of the D effects of damage D SiC-SiC under tensile loading The investigated material was a woven ceramic-ceramic composite made by SEP (now Herakles) [7]. Under tensile stress, this composite exhibits a non linear behaviour related to the matrix microcracking because the matrix has a lower failure strain than the fibres. The SiC clothes are balanced weaves, so directions 2 and are symmetrically equivalent, and the composite presents a tetragonal symmetry with six independent stiffnesses. The 2D SiC-SiC specimen was submitted to tensile stress in the direction which is parallel to one of the bundle direction. The slowness curves at various loads are gathered in figure 5. (2) MPa 12 MPa 8 MPa MPa () MPa 12 MPa 8 MPa MPa (45 ) MPa 12 MPa 8 MPa MPa.2 Q.S..1 Q.L. (1) Q.S..1 Q.L. (1) Q.S. 2 Q.S. 1.1 Q.L. (1) Figure 5. Slowness curves at various stress levels for a 2D SiC-SiC (1 m/s) C C C C C C C C C Figure 6. Variations of the stiffness tensor coefficients (GPa) of a 2D SiC-SiC sample and their 9 % relative confidence interval versus applied stress in direction

7 Figure 6 shows the variations of the variation of the stiffness tensor coefficients of the sample and their 9 % relative confidence interval versus applied stress in direction. It is obvious that the greatest variation occurs on C with a nearly 6% drop. The stiffness along the tensile direction exhibit a three zones behaviour : linear before the damage threshold which occurs around 8 MPa and then two decrease zones : one with a great slope when matrix microcracking occurs at the bundle scale and one with a slighter slope after around 12 MPa when microcracking occurs at the fibre scale inside the bundles. The complete stiffness tensor being known, the elastic axial strain associated to the tensile stress can be calculated for every stress step as a function of the S variation. This strain, together with the total strain measured with an extensometer, and the resulting inelastic strain are plotted on figure 7. The dots represent the steps of ultrasonic characterisation. The non linearity of elasticity is clearly highlighted after the damage threshold but if the inter-bundles cracking greatly affects the non linearity, the intra-bundles one seems to be more moderate. The particular kinetic of the test allows to see that an important part of the inelastic strains is generated by fibre matrix sliding. Stress elastic bundle sliding Δ 5 Strain (%) Figure 7. Strain partition under load of a 2D SiC-SiC D C-SiC under cyclic loading The non-linear mechanical behaviour of a 2D C-SiC ceramic matrix composite was investigated under cyclic loading [8]. The sample has a tetragonal symmetry and was submitted to tensile stress in the direction parallel to one of the bundle direction. The sample was supplied by SEP (now Herakles). Figure 8 shows the stress strain curve obtained with the extensometer. No linear elasticity domain can be identified, thus measuring the Young Modulus in a conventional manner is a problem and this material exhibits a strange behaviour with loading-unloading cycles similar to elastoplastic materials which is a nonsense for such case of brittle material. The ultrasonic characterisation has been of great help for understanding the damage mechanism of this material. After a similar test to the one described before, compliance S has been calculated. Figure 9 shows its variation during the cycles. The variation is non linear but compliance at a given stress point has the same given value either when loading or unloading. This shows that no further damage occurs during a given cycle. elastic + fibre sliding total

8 5 25 Stress (1.GPa) Total Strain (%) Figure 8. Stress Strain curve of a 2D C-SiC S Stress Figure 9. Variations for each cycle performed of the compliance along the tensile with its 9 % relative confidence interval versus applied stress in direction Figure 1 shows what happen during the cycles from the strain point of view. The elastic strain has been calculated with compliance obtained from ultrasonic measurements. Surprisingly the linear variation that occurs from the macroscopic point of view of the extensometer is the sum of two non linear mechanism : a non linear elastic one, that can only be highlighted by ultrasonic wave propagation, and another non linear inelastic strain mechanism finding its origin in the opening closing of the transverse microcracks created by increasing load. So considering as it is usually done that the permanent strain is the inelastic part of the strain is a mistake. Ultrasonic characterisation is the only mean of avoiding it. Stress inelastic elastic total 5 Strain (%) Figure 1. Figure 7. Strain partition under load of a 2D C-SiC of the last cycle performed

9 5. Conclusion The aim of this paper was to briefly explain the basics and advantages of ultrasonic characterisation. This method is described more precisely in European standard EN14186 [9]. Of course, the method still have some drawbacks such as the necessity of immersing the sample in a fluid, the duration of the ultrasonic test, usually an average of minutes for recording the data in the three planes, which increase greatly the duration of the test when strain partition under load is needed and the necessity to be skilled with the evaluation procedure. Nevertheless, the method allows for most materials the measurement of the complete stiffness tensor at every stress step and only one sample is needed. When one is developing new materials, mechanical tests can only be limited to measurement of ultimate stress and strain. Moreover, the strain recorded will validate the accuracy of ultrasonic characterisation on the elastic part of the curve. The knowledge of the complete stiffness tensor, or engineering constants tensor whatever the description chosen, diminishes the risk of misunderstanding the strain mechanisms and leads to accurate constitutive laws and will enhance FEA predictions. On the analytic models side, the use of these data has been used so far for crack patterns and characteristic lengths identification, crack densities variations or interfacial sliding stress measurement [1]. Acknowledgments The author would like to express gratitude to Pr. Stéphane Baste from I2M laboratory in Bordeaux, France, for pleasant joint research, and COFREND, the French Confederation for the Non-Destructive Testing, for sponsoring part of this communication. References 1. J. Roux, "Elastic wave propagation in anisotropic materials," IEEE 199 Ultrasonics Symposium, Honolulu, Dec. 1991, pp , B. Hosten, "Stiffness matrix invariants to validate the characterization of compositematerials with ultrasonic methods", Ultrasonics,, n 6, pp 65-71, B. Audoin, S. Baste S and B. Castagnede, "Estimation de l intervalle de confiance des constantes d élasticité identifiées à partir des vitesses de propagation ultrasonores", CR. Acad Sci Paris; t.12:679 86, B. Audoin and J. Roux, "An innovative application of the Hilbert transform to time delay estimation of overlapped ultrasonic echoes", Ultrasonics, 4, pp 25, SW Tsaï, Composites Design, Think Composites S. Baste and J-M. Morvan, "Under load strain partition of a ceramic matrix composite using an ultrasonic method", Exp Mech 6;6: pp , J.-M.Morvan and S. Baste, "Effects of two-scale transverse crack systems on the nonlinear behaviour of a 2D SiC-SiC composite", Materials Science and Engineering, A25:21-24, J.-M. Morvan and S. Baste, "Effects of The Opening/Closure of Microcracks on the Non-Linear Behavior of a 2D C-SiC Composite under Cyclic Loading", International Journal of Damage Mechanics, vol. 7 no. 4, pp 81-42, October EN 14186, "Advanced technical ceramics - Mechanical properties of ceramic composites at room temperature - Determination of elastic properties by an ultrasonic technique", J.-M.Morvan and S. Baste, "Evaluation of the Interfacial Sliding Stress of Ceramic Matrix Composites Under Tensile Loading", Review of Progress in Quantitative

10 Nondestructive Evaluation, pp , 1998.

In Situ Ultrasonic NDT of Fracture and Fatigue in Composites

In Situ Ultrasonic NDT of Fracture and Fatigue in Composites ECNDT 26 - Mo.2.6.5 In Situ Ultrasonic NDT of Fracture and Fatigue in Composites I. SOLODOV, K. PFLEIDERER, and G. BUSSE Institute for Polymer Testing and Polymer Science (IKP), Non-destructive Testing

More information

CHARACTERIZATION AND DAMAGE EVOLUTION OF S.M.C COMPOSITES MATERIALS BY ULTRASONIC METHOD

CHARACTERIZATION AND DAMAGE EVOLUTION OF S.M.C COMPOSITES MATERIALS BY ULTRASONIC METHOD CHARACTERIZATION AND DAMAGE EVOLUTION OF S.M.C COMPOSITES MATERIALS BY ULTRASONIC METHOD M. SAYARI, D.BAPTISTE, M. BOCQUET AND J.FITOUSSI Laboratoire de Microstructure et Mécanique des Matériaux, URA CNRS

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA TABLE OF CONTENTS 1. INTRODUCTION TO COMPOSITE MATERIALS 1.1 Introduction... 1.2 Classification... 1.2.1

More information

Multiscale analyses of the behaviour and damage of composite materials

Multiscale analyses of the behaviour and damage of composite materials Multiscale analyses of the behaviour and damage of composite materials Presented by Didier BAPTISTE ENSAM, LIM, UMR CNRS 8006 151 boulevard de l hôpital l 75013 PARIS, France Research works from: K.Derrien,

More information

DETERMINATION OF ELASTIC PROPERTIES BY AN ULTRASONIC TECHNIQUE

DETERMINATION OF ELASTIC PROPERTIES BY AN ULTRASONIC TECHNIQUE DETERMINATION OF ELASTIC PROPERTIES BY AN ULTRASONIC TECHNIQUE S. Baste Université Bordeaux 1, Laboratoire de Mécanique Physique, CNRS UPRES A 5469 351, Cours de la Libération, 33405-TALENCE Cedex, France

More information

A New Ultrasonic Immersion Technique to Retrieve Anisotropic Stiffness Matrix for Dispersion Curves Algorithms

A New Ultrasonic Immersion Technique to Retrieve Anisotropic Stiffness Matrix for Dispersion Curves Algorithms A New Ultrasonic Immersion Technique to Retrieve Anisotropic Stiffness Matrix for Dispersion Curves Algorithms DARUN BARAZANCHY 1, WILLIAM ROTH 2 and VICTOR GIURGIUTIU 3 ABSTRACT Dispersion curve algorithms

More information

Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. F Talence, France Le Cheylard, France

Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. F Talence, France Le Cheylard, France 20 th International Conference on Composite Materials Copenhagen, 19-24th July 2015 Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. Thierry Lorriot 1, Jalal El Yagoubi

More information

Module-4. Mechanical Properties of Metals

Module-4. Mechanical Properties of Metals Module-4 Mechanical Properties of Metals Contents ) Elastic deformation and Plastic deformation ) Interpretation of tensile stress-strain curves 3) Yielding under multi-axial stress, Yield criteria, Macroscopic

More information

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina Module III - Macro-mechanics of Lamina Lecture 23 Macro-Mechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the

More information

Composite models 30 and 131: Ply types 0 and 8 calibration

Composite models 30 and 131: Ply types 0 and 8 calibration Model calibration Composite Bi-Phase models 30 and 3 for elastic, damage and failure PAM-CRASH material model 30 is for solid and 3 for multi-layered shell elements. Within these models different ply types

More information

Laboratory 4 Bending Test of Materials

Laboratory 4 Bending Test of Materials Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective

More information

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

STANDARD SAMPLE. Reduced section  Diameter. Diameter. 2 Gauge length. Radius MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen

More information

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical

More information

6th NDT in Progress Lamb waves in an anisotropic plate of a single crystal silicon wafer

6th NDT in Progress Lamb waves in an anisotropic plate of a single crystal silicon wafer 6th NDT in Progress 2011 International Workshop of NDT Experts, Prague, 10-12 Oct 2011 Lamb waves in an anisotropic plate of a single crystal silicon wafer Young-Kyu PARK 1, Young H. KIM 1 1 Applied Acoustics

More information

Plane Strain Test for Metal Sheet Characterization

Plane Strain Test for Metal Sheet Characterization Plane Strain Test for Metal Sheet Characterization Paulo Flores 1, Felix Bonnet 2 and Anne-Marie Habraken 3 1 DIM, University of Concepción, Edmundo Larenas 270, Concepción, Chile 2 ENS - Cachan, Avenue

More information

Hardened Concrete. Lecture No. 16

Hardened Concrete. Lecture No. 16 Hardened Concrete Lecture No. 16 Fatigue strength of concrete Modulus of elasticity, Creep Shrinkage of concrete Stress-Strain Plot of Concrete At stress below 30% of ultimate strength, the transition

More information

Calculation of Damage-dependent Directional Failure Indices from the Tsai-Wu Static Failure Criterion

Calculation of Damage-dependent Directional Failure Indices from the Tsai-Wu Static Failure Criterion Van Paepegem, W. and Degrieck, J. (3. alculation of Damage-dependent Directional Failure Indices from the sai-wu Static Failure riterion. omposites Science and echnology, 63(, 35-3. alculation of Damage-dependent

More information

Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics

Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics Dr. A. Johnson DLR Dr. A. K. Pickett ESI GmbH EURO-PAM 99 Impact and Crash Modelling of Composite Structures: A Challenge

More information

Mechanical properties 1 Elastic behaviour of materials

Mechanical properties 1 Elastic behaviour of materials MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical

More information

Computational Analysis for Composites

Computational Analysis for Composites Computational Analysis for Composites Professor Johann Sienz and Dr. Tony Murmu Swansea University July, 011 The topics covered include: OUTLINE Overview of composites and their applications Micromechanics

More information

Exercise: concepts from chapter 8

Exercise: concepts from chapter 8 Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic

More information

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction and classes of properties Case studies showing selection of the right material for the job Deformation of material under the action of a

More information

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS 1 MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS Version 2011-01-14 Stress tensor Definition of traction vector (1) Cauchy theorem (2) Equilibrium (3) Invariants (4) (5) (6) or, written in terms of principal

More information

LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS

LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS XXII. LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS Introduction The lamination theory for the elastic stiffness of fiber composite materials is the backbone of the entire field, it holds

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Mechanical modelling of SiC/SiC composites and design criteria

Mechanical modelling of SiC/SiC composites and design criteria Mechanical modelling of SiC/SiC composites and design criteria F. Bernachy CEA, DEN/DMN/SRMA/LC2M, Gif-sur-Yvette, France L. Gélébart CEA, DEN/DMN/SRMA/LC2M, Gif-sur-Yvette, France J. Crépin Centre des

More information

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour Tensile-Test Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress - true strain (flow curve) mechanical properties: - Resilience - Ductility - Toughness - Hardness A standard

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

MODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE

MODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE MODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE Jean Paul Charles, Christian Hochard,3, Pierre Antoine Aubourg,3 Eurocopter, 375 Marignane cedex, France Unimeca, 6 rue J. Curie, 3453

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

Discrete Element Modelling of a Reinforced Concrete Structure

Discrete Element Modelling of a Reinforced Concrete Structure Discrete Element Modelling of a Reinforced Concrete Structure S. Hentz, L. Daudeville, F.-V. Donzé Laboratoire Sols, Solides, Structures, Domaine Universitaire, BP 38041 Grenoble Cedex 9 France sebastian.hentz@inpg.fr

More information

Coupling of plasticity and damage in glass fibre reinforced polymer composites

Coupling of plasticity and damage in glass fibre reinforced polymer composites EPJ Web of Conferences 6, 48 1) DOI: 1.151/epjconf/1648 c Owned by the authors, published by EDP Sciences, 1 Coupling of plasticity and damage in glass fibre reinforced polymer composites R. Kvale Joki

More information

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations W. Van Paepegem *, I. De Baere and J. Degrieck Ghent

More information

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Isotropic Elastic Models: Invariant vs Principal Formulations

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Isotropic Elastic Models: Invariant vs Principal Formulations MODELING OF CONCRETE MATERIALS AND STRUCTURES Kaspar Willam University of Colorado at Boulder Class Meeting #2: Nonlinear Elastic Models Isotropic Elastic Models: Invariant vs Principal Formulations Elastic

More information

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS Ever J. Barbero Department of Mechanical and Aerospace Engineering West Virginia University USA CRC Press Taylor &.Francis Group Boca Raton London New York

More information

DESIGN OF LAMINATES FOR IN-PLANE LOADING

DESIGN OF LAMINATES FOR IN-PLANE LOADING DESIGN OF LAMINATES FOR IN-PLANOADING G. VERCHERY ISMANS 44 avenue F.A. Bartholdi, 72000 Le Mans, France Georges.Verchery@m4x.org SUMMARY This work relates to the design of laminated structures primarily

More information

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression FAILURE CRITERIA OF ROCK AND ROCK MASSES Contents 5.1 Failure in rocks 5.1.1 Hydrostatic compression 5.1.2 Deviatoric compression 5.1.3 Effect of confining pressure 5.2 Failure modes in rocks 5.3 Complete

More information

NUMERICAL SIMULATION OF CONCRETE EXPOSED TO HIGH TEMPERATURE DAMAGE AND EXPLOSIVE SPALLING

NUMERICAL SIMULATION OF CONCRETE EXPOSED TO HIGH TEMPERATURE DAMAGE AND EXPLOSIVE SPALLING NUMERICAL SIMULATION OF CONCRETE EXPOSED TO HIGH TEMPERATURE DAMAGE AND EXPLOSIVE SPALLING Prof. Joško Ožbolt 1 Josipa Bošnjak 1, Goran Periškić 1, Akanshu Sharma 2 1 Institute of Construction Materials,

More information

Constitutive models: Incremental plasticity Drücker s postulate

Constitutive models: Incremental plasticity Drücker s postulate Constitutive models: Incremental plasticity Drücker s postulate if consistency condition associated plastic law, associated plasticity - plastic flow law associated with the limit (loading) surface Prager

More information

Enhancing Prediction Accuracy In Sift Theory

Enhancing Prediction Accuracy In Sift Theory 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Enhancing Prediction Accuracy In Sift Theory J. Wang 1 *, W. K. Chiu 1 Defence Science and Technology Organisation, Fishermans Bend, Australia, Department

More information

Mechanical analysis of timber connection using 3D finite element model

Mechanical analysis of timber connection using 3D finite element model Mechanical analysis of timber connection using 3D finite element model Bohan XU Ph.D Student Civil Engineering Laboratory (CUST) Clermont-Ferrand, France Mustapha TAAZOUNT Dr-Ing Civil Engineering Laboratory

More information

Measurement of acousto-elastic effect by using surface acoustic wave

Measurement of acousto-elastic effect by using surface acoustic wave Measurement of acousto-elastic effect by using surface acoustic wave Y. D. Shim¹, J. H. Jun¹, S. M. Kim¹, J. You², C. H. Lim², H. C. Hyun² and K. -Y. Jhang¹ 1 School of Mechanical Engineering, Hanyang

More information

Tensile Stress Acoustic Constants of Unidirectional Graphite/Epoxy Composites

Tensile Stress Acoustic Constants of Unidirectional Graphite/Epoxy Composites Tensile Stress Acoustic Constants of Unidirectional Graphite/Epoxy Composites Journal of Reinforced Plastics and Composites, Vol. 9 (March, 1990) pp. 127-133 W. H. PROSSER NASA Langley Research Center

More information

Theory at a Glance (for IES, GATE, PSU)

Theory at a Glance (for IES, GATE, PSU) 1. Stress and Strain Theory at a Glance (for IES, GATE, PSU) 1.1 Stress () When a material is subjected to an external force, a resisting force is set up within the component. The internal resistance force

More information

Chapter 2: Elasticity

Chapter 2: Elasticity OHP 1 Mechanical Properties of Materials Chapter 2: lasticity Prof. Wenjea J. Tseng ( 曾文甲 ) Department of Materials ngineering National Chung Hsing University wenjea@dragon.nchu.edu.tw Reference: W.F.

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

This is the accepted version of a paper presented at 2014 IEEE Electrical Insulation Conference (EIC).

This is the accepted version of a paper presented at 2014 IEEE Electrical Insulation Conference (EIC). http://www.diva-portal.org Postprint This is the accepted version of a paper presented at 2014 IEEE Electrical Insulation Conference (EIC). Citation for the original published paper: Girlanda, O., Tjahjanto,

More information

Transactions on Modelling and Simulation vol 10, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 10, 1995 WIT Press,  ISSN X Parameters controlling the numerical simulation validity of damageable composite toughness testing S. Yotte, C. Currit, E. Lacoste, J.M. Quenisset Laboratoire de Genie Meanique - IUT 'A\ Domaine Universitaire,

More information

A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE

A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE Daxu Zhang and D. R. Hayhurst School of Mechanical, Aerospace and Civil Engineering,

More information

Fatigue Damage Development in a Steel Based MMC

Fatigue Damage Development in a Steel Based MMC Fatigue Damage Development in a Steel Based MMC V. Tvergaard 1,T.O/ rts Pedersen 1 Abstract: The development of fatigue damage in a toolsteel metal matrix discontinuously reinforced with TiC particulates

More information

Structural behaviour of traditional mortise-and-tenon timber joints

Structural behaviour of traditional mortise-and-tenon timber joints Structural behaviour of traditional mortise-and-tenon timber joints Artur O. Feio 1, Paulo B. Lourenço 2 and José S. Machado 3 1 CCR Construtora S.A., Portugal University Lusíada, Portugal 2 University

More information

Prediction of Elastic Constants on 3D Four-directional Braided

Prediction of Elastic Constants on 3D Four-directional Braided Prediction of Elastic Constants on 3D Four-directional Braided Composites Prediction of Elastic Constants on 3D Four-directional Braided Composites Liang Dao Zhou 1,2,* and Zhuo Zhuang 1 1 School of Aerospace,

More information

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala Abstract: FRP laminated composites have been extensively used in Aerospace and allied industries

More information

An integrated approach to the design of high performance carbon fibre reinforced risers - from micro to macro - scale

An integrated approach to the design of high performance carbon fibre reinforced risers - from micro to macro - scale An integrated approach to the design of high performance carbon fibre reinforced risers - from micro to macro - scale Angelos Mintzas 1, Steve Hatton 1, Sarinova Simandjuntak 2, Andrew Little 2, Zhongyi

More information

ME 207 Material Science I

ME 207 Material Science I ME 207 Material Science I Chapter 3 Properties in Tension and Compression Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction

More information

IDENTIFICATION OF THE ELASTIC PROPERTIES ON COMPOSITE MATERIALS AS A FUNCTION OF TEMPERATURE

IDENTIFICATION OF THE ELASTIC PROPERTIES ON COMPOSITE MATERIALS AS A FUNCTION OF TEMPERATURE IDENTIFICATION OF THE ELASTIC PROPERTIES ON COMPOSITE MATERIALS AS A FUNCTION OF TEMPERATURE Hugo Sol, hugos@vub.ac.be Massimo Bottiglieri, Massimo.Bottiglieri@vub.ac.be Department Mechanics of Materials

More information

A Constitutive Model for DYNEEMA UD composites

A Constitutive Model for DYNEEMA UD composites A Constitutive Model for DYNEEMA UD composites L Iannucci 1, D J Pope 2, M Dalzell 2 1 Imperial College, Department of Aeronautics London, SW7 2AZ l.iannucci@imperial.ac.uk 2 Dstl, Porton Down, Salisbury,

More information

6298 Stress induced azimuthally anisotropic reservoir - AVO modeling

6298 Stress induced azimuthally anisotropic reservoir - AVO modeling 6298 Stress induced azimuthally anisotropic reservoir - AVO modeling M. Brajanovski* (Curtin University of Technology), B. Gurevich (Curtin University of Technology), D. Nadri (CSIRO) & M. Urosevic (Curtin

More information

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical

More information

EFFECT OF THERMAL FATIGUE ON INTRALAMINAR CRACKING IN LAMINATES LOADED IN TENSION

EFFECT OF THERMAL FATIGUE ON INTRALAMINAR CRACKING IN LAMINATES LOADED IN TENSION EFFECT OF THERMAL FATIGUE ON INTRALAMINAR CRACKING IN LAMINATES LOADED IN TENSION J.Varna and R.Joffe Dept of Applied Physics and Mechanical Engineering Lulea University of Technology, SE 97187, Lulea,

More information

3D Finite Element analysis of stud anchors with large head and embedment depth

3D Finite Element analysis of stud anchors with large head and embedment depth 3D Finite Element analysis of stud anchors with large head and embedment depth G. Periškić, J. Ožbolt & R. Eligehausen Institute for Construction Materials, University of Stuttgart, Stuttgart, Germany

More information

QUESTION BANK Composite Materials

QUESTION BANK Composite Materials QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.

More information

Constitutive and Damage Accumulation Modeling

Constitutive and Damage Accumulation Modeling Workshop on Modeling and Data needs for Lead-Free Solders Sponsored by NEMI, NIST, NSF, and TMS February 15, 001 New Orleans, LA Constitutive and Damage Accumulation Modeling Leon M. Keer Northwestern

More information

Anisotropic Behaviour of Bituminous Mixtures in Road Pavement Structures

Anisotropic Behaviour of Bituminous Mixtures in Road Pavement Structures 1 1 1 1 1 1 1 1 1 1 1 Anisotropic Behaviour of Bituminous Mixtures in Road Pavement Structures Quang Tuan Nguyen 1, Nguyen Hoang Pham, Hervé Di Benedetto, Cédric Sauzéat ( 1 University of Transport and

More information

STRESS ANALYSIS OF BONDED JOINTS IN PULTRUDED GRP COMPONENTS

STRESS ANALYSIS OF BONDED JOINTS IN PULTRUDED GRP COMPONENTS 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS STRESS ANALYSIS OF BONDED JOINTS IN PULTRUDED GRP COMPONENTS S.W. Boyd*, J. M. Dulieu-Barton*, O. T. Thomsen**, A.Gherardi* [J.M. Dulieu-Barton]: janice@soton.ac.uk

More information

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Fig. 1. Circular fiber and interphase between the fiber and the matrix. Finite element unit cell model based on ABAQUS for fiber reinforced composites Tian Tang Composites Manufacturing & Simulation Center, Purdue University West Lafayette, IN 47906 1. Problem Statement In

More information

Constitutive Relations

Constitutive Relations Constitutive Relations Dr. Andri Andriyana Centre de Mise en Forme des Matériaux, CEMEF UMR CNRS 7635 École des Mines de Paris, 06904 Sophia Antipolis, France Spring, 2008 Outline Outline 1 Review of field

More information

Module 4: Behaviour of a Laminae-II. Learning Unit 1: M1. M4.1 Mechanics of Composites. M4.1.1 Introduction to Mechanics of Composites

Module 4: Behaviour of a Laminae-II. Learning Unit 1: M1. M4.1 Mechanics of Composites. M4.1.1 Introduction to Mechanics of Composites Module 4: Behaviour of a Laminae-II Learning Unit 1: M1 M4.1 Mechanics of Composites M4.1.1 Introduction to Mechanics of Composites The relation between ply uniaxial strengths and constituent properties

More information

A Novel Sensor Design for Generation and Detection of Shear-Horizontal Waves Based on Piezoelectric Fibres

A Novel Sensor Design for Generation and Detection of Shear-Horizontal Waves Based on Piezoelectric Fibres 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic A Novel Sensor Design for Generation and Detection of Shear-Horizontal Waves Based on Piezoelectric

More information

EVALUATION OF DAMAGES DUE TO ALKALI-SILICA REACTION WITH ACOUSTICS TECHNIQUES. DEVELOPMENT OF A NEW NONLINEAR METHOD.

EVALUATION OF DAMAGES DUE TO ALKALI-SILICA REACTION WITH ACOUSTICS TECHNIQUES. DEVELOPMENT OF A NEW NONLINEAR METHOD. EVALUATION OF DAMAGES DUE TO ALKALI-SILICA REACTION WITH ACOUSTICS TECHNIQUES. DEVELOPMENT OF A NEW NONLINEAR METHOD. Apedovi S. Kodjo (1, 2), Patrice Rivard (1), Frederic Cohen-Tenoudji (3) and Jean-Louis

More information

DAMAGE MODEL FOR CONCRETE INCLUDING RESIDUAL HYSTERETIC LOOPS: APPLICATION TO SEISMIC AND DYNAMIC LOADING

DAMAGE MODEL FOR CONCRETE INCLUDING RESIDUAL HYSTERETIC LOOPS: APPLICATION TO SEISMIC AND DYNAMIC LOADING Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICA TIO Publishers, D-79104 Frei burg, Germany DAMAGE MODEL FOR CONCRETE INCLUDING RESIDUAL HYSTERETIC LOOPS: APPLICATION TO SEISMIC

More information

VALIDATION of CoDA SOFTWARE for COMPOSITES SYNTHESIS AND PRELIMINARY DESIGN (or GETTING COMPOSITES USED - PART 2 )

VALIDATION of CoDA SOFTWARE for COMPOSITES SYNTHESIS AND PRELIMINARY DESIGN (or GETTING COMPOSITES USED - PART 2 ) VALIDATION of CoDA SOFTWARE for COMPOSITES SYNTHESIS AND PRELIMINARY DESIGN (or GETTING COMPOSITES USED - PART 2 ) Graham D Sims and William R Broughton Composites Design Data and Methods, Centre for Materials

More information

Cracking in Quasi-Brittle Materials Using Isotropic Damage Mechanics

Cracking in Quasi-Brittle Materials Using Isotropic Damage Mechanics Cracking in Quasi-Brittle Materials Using Isotropic Damage Mechanics Tobias Gasch *1 and Anders Ansell 1 1 KTH Royal Institute of Technology, Department of Civil and Architectural Engineering *Corresponding

More information

The Relationship between the Applied Torque and Stresses in Post-Tension Structures

The Relationship between the Applied Torque and Stresses in Post-Tension Structures ECNDT 6 - Poster 218 The Relationship between the Applied Torque and Stresses in Post-Tension Structures Fui Kiew LIEW, Sinin HAMDAN * and Mohd. Shahril OSMAN, Faculty of Engineering, Universiti Malaysia

More information

USING A HOMOGENIZATION PROCEDURE FOR PREDICTION OF MATERIAL PROPERTIES AND THE IMPACT RESPONSE OF UNIDIRECTIONAL COMPOSITE

USING A HOMOGENIZATION PROCEDURE FOR PREDICTION OF MATERIAL PROPERTIES AND THE IMPACT RESPONSE OF UNIDIRECTIONAL COMPOSITE Volume II: Fatigue, Fracture and Ceramic Matrix Composites USING A HOMOGENIZATION PROCEDURE FOR PREDICTION OF MATERIAL PROPERTIES AND THE IMPACT RESPONSE OF UNIDIRECTIONAL COMPOSITE A. D. Resnyansky and

More information

2.1 Strain energy functions for incompressible materials

2.1 Strain energy functions for incompressible materials Chapter 2 Strain energy functions The aims of constitutive theories are to develop mathematical models for representing the real behavior of matter, to determine the material response and in general, to

More information

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6) Geology 229 Engineering Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Common mechanic properties: Density; Elastic properties: - elastic modulii Outline of this Lecture 1. Uniaxial rock

More information

LECTURE NO. 4-5 INTRODUCTION ULTRASONIC * PULSE VELOCITY METHODS

LECTURE NO. 4-5 INTRODUCTION ULTRASONIC * PULSE VELOCITY METHODS LECTURE NO. 4-5 ULTRASONIC * PULSE VELOCITY METHODS Objectives: To introduce the UPV methods To briefly explain the theory of pulse propagation through concrete To explain equipments, procedures, calibrations,

More information

Simulation of an Ultrasonic Immersion Test for the Characterization of Anisotropic Materials

Simulation of an Ultrasonic Immersion Test for the Characterization of Anisotropic Materials DIPARTIMENTO DI SCIENZE DELL INGEGNERIA CIVILE E DELL ARCHITETTURA POLITECNICO DI BARI Simulation of an Ultrasonic Immersion Test for the Characterization of Anisotropic Materials A. Castellano*, P. Foti,

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information

Low-Cycle Fatigue Crack Growth in Ti-6242 at Elevated Temperature Rebecka Brommesson 1,a, Magnus Hörnqvist,2,b, and Magnus Ekh 3,c

Low-Cycle Fatigue Crack Growth in Ti-6242 at Elevated Temperature Rebecka Brommesson 1,a, Magnus Hörnqvist,2,b, and Magnus Ekh 3,c Low-Cycle Fatigue Crack Growth in Ti-6242 at Elevated Temperature Rebecka Brommesson 1,a, Magnus Hörnqvist,2,b, and Magnus Ekh 3,c 1,3 Department of Applied Mechanics, Chalmers University of Technology,

More information

Influence of column web stiffening on the seismic behaviour of beam-tocolumn

Influence of column web stiffening on the seismic behaviour of beam-tocolumn Influence of column web stiffening on the seismic behaviour of beam-tocolumn joints A.L. Ciutina & D. Dubina The Politehnica University of Timisoara, Romania ABSTRACT: The present paper summarises the

More information

ELASTIC MODULI OF SILICON CARBIDE PARTICULATE REINFORCED ALUMINUM METAL MATRIX COMPOSITES

ELASTIC MODULI OF SILICON CARBIDE PARTICULATE REINFORCED ALUMINUM METAL MATRIX COMPOSITES ELASTIC MODULI OF SILICON CARBIDE PARTICULATE REINFORCED ALUMINUM METAL MATRIX COMPOSITES H. Jeong and O.K. Hsu Center for NDE Iowa State University Ames, IA 511 R.E. Shannon and P.K. Liaw Metals Technologies

More information

SIMULATION OF ULTRASONIC NDT IN COMPOSITE RADIUS

SIMULATION OF ULTRASONIC NDT IN COMPOSITE RADIUS SIMULATION OF ULTRASONIC NDT IN COMPOSITE RADIUS N. Dominguez 1, O. Grellou 2, S. Van-der-Veen 2 1 European Aeronautic Defense and Space Company (EADS), Innovation Works Dept., 1 rue Marius Terce, 325

More information

APPLICATION OF ACOUSTIC EMISSION METHOD DURING CYCLIC LOADING OF CONCRETE BEAM

APPLICATION OF ACOUSTIC EMISSION METHOD DURING CYCLIC LOADING OF CONCRETE BEAM More info about this article: http://www.ndt.net/?id=21866 Abstract IX th NDT in PROGRESS October 9 11, 2017, Prague, Czech Republic APPLICATION OF ACOUSTIC EMISSION METHOD DURING CYCLIC LOADING OF CONCRETE

More information

EXPERIMENTAL IDENTIFICATION OF HYPERELASTIC MATERIAL PARAMETERS FOR CALCULATIONS BY THE FINITE ELEMENT METHOD

EXPERIMENTAL IDENTIFICATION OF HYPERELASTIC MATERIAL PARAMETERS FOR CALCULATIONS BY THE FINITE ELEMENT METHOD Journal of KONES Powertrain and Transport, Vol. 7, No. EXPERIMENTAL IDENTIFICATION OF HYPERELASTIC MATERIAL PARAMETERS FOR CALCULATIONS BY THE FINITE ELEMENT METHOD Robert Czabanowski Wroclaw University

More information

Nonlinear Analysis of Reinforced Concrete Shells Subjected to Impact Loads

Nonlinear Analysis of Reinforced Concrete Shells Subjected to Impact Loads Transactions of the 7 th International Conference on Structural Mechanics in Reactor Technology (SMiRT 7) Prague, Czech Republic, August 7, 00 Paper # J0- Nonlinear Analysis of Reinforced Concrete Shells

More information

N o n l i n e a r M u l t i - S c a l e M o d e l i n g o f A e r o s p a c e C o m p o s i t e s M a t e r i a l s & S t r u c t u r e s

N o n l i n e a r M u l t i - S c a l e M o d e l i n g o f A e r o s p a c e C o m p o s i t e s M a t e r i a l s & S t r u c t u r e s N o n l i n e a r M u l t i - S c a l e M o d e l i n g o f A e r o s p a c e C o m p o s i t e s M a t e r i a l s & S t r u c t u r e s R o g e r A. A s s a k e r C E O, e - X s t r e a m e n g i n e

More information

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2000. Dr. Coates Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

More information

Modelling Dynamic Behaviour and Spall Failure of Aluminium Alloy AA7010

Modelling Dynamic Behaviour and Spall Failure of Aluminium Alloy AA7010 Journal of Physics: Conference Series PAPER OPEN ACCESS Modelling Dynamic Behaviour and Spall Failure of Aluminium Alloy AA7010 To cite this article: N Ma at et al 2017 J. Phys.: Conf. Ser. 914 012033

More information

6th NDT in Progress Evaluation of metal weld-zone by using Poisson s ratio distribution

6th NDT in Progress Evaluation of metal weld-zone by using Poisson s ratio distribution 6th NDT in Progress 2011 International Workshop of NDT Experts, Prague, 10-12 Oct 2011 Evaluation of metal weld-zone by using Poisson s ratio distribution Jong Yeon Lee *1, Jeong-Hoon Moon 2, Hyunbyuk

More information

Most of the material in this package is based on a recently published book. This is:

Most of the material in this package is based on a recently published book. This is: Mechanics of Composite Materials Version 2.1 Bill Clyne, University of Cambridge Boban Tanovic, MATTER Assumed Pre-knowledge It is assumed that the student is familiar with simple concepts of mechanical

More information

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test M. Praveen Kumar 1 and V. Balakrishna Murthy 2* 1 Mechanical Engineering Department, P.V.P. Siddhartha Institute of Technology,

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011 Interlaminar failure analysis of FRP cross ply laminate with elliptical cutout Venkateswara Rao.S 1, Sd. Abdul Kalam 1, Srilakshmi.S 1, Bala Krishna Murthy.V 2 1 Mechanical Engineering Department, P. V.

More information

An Experimental Characterization of the Non-linear Rheology of Rock

An Experimental Characterization of the Non-linear Rheology of Rock An Experimental Characterization of the Non-linear Rheology of Rock G. N. BorrNoTr New England Research Inc. Contract: F49620-95-C-0019 Sponsor: AFOSR ABSTRACT A laboratory experimental program is underway

More information

1 Introduction. Abstract

1 Introduction. Abstract Abstract This paper presents a three-dimensional numerical model for analysing via finite element method (FEM) the mechanized tunneling in urban areas. The numerical model is meant to represent the typical

More information

A STRAIN-BASED DAMAGE MECHANICS MODELING FOR WOVEN FABRIC COMPOSITES UNDER BIAXIAL FATIGUE LOADING

A STRAIN-BASED DAMAGE MECHANICS MODELING FOR WOVEN FABRIC COMPOSITES UNDER BIAXIAL FATIGUE LOADING International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 3, March 2018, pp. 282 291, Article ID: IJCIET_09_03_030 Available online at http://http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=3

More information

Understand basic stress-strain response of engineering materials.

Understand basic stress-strain response of engineering materials. Module 3 Constitutive quations Learning Objectives Understand basic stress-strain response of engineering materials. Quantify the linear elastic stress-strain response in terms of tensorial quantities

More information