Asymmetric least squares estimation and testing

Size: px
Start display at page:

Download "Asymmetric least squares estimation and testing"

Transcription

1 Asymmetric least squares estimation and testing Whitney Newey and James Powell Princeton University and University of Wisconsin-Madison January 27, 2012

2 Outline ALS estimators Large sample properties Asymptotic rerlative efficiencies of alternative tests Conclusion

3 Linear model Data {(y i, x i ), i = 1,..., n} are from y i = x i β 0 + u i, where {x i } is a sequence of regression vectors of dimension p with first component x i = 1 and {u i } is a sequence of scalar error terms.

4 Regression quantile (RQ) estimator Regression quantile (RQ) estimator ˆ b(θ) = argmin β R pq n (β; θ) = argmin β R p n r θ (y i x i β), for fixed values of θ in (0,1) and r θ (λ) = θ 1(λ < 0) λ, 1(A) denoting the indicator function for the event A. i=1

5 Regression quantile (RQ) estimator Homoskedasticity case lim ˆ b(θ) = β 0 + η(θ)e 1, where e j denotes the jth unit vector and η(θ) = F 1 (θ), the quantile function for the error term u i. Heteroskedasticity case The probability limits for the slope coefficients will vary with θ, with differences depending on the joint distribution of u i and x i.

6 Asymmetric least squares (ALS) estimator Asymmetric least squares loss function for τ in (0,1) ALS estimator ρ τ (λ) = τ 1(λ < 0) λ 2, ˆ β(τ) = argmin β R n (β; τ) = argmin β n ρ τ (y i x i β) i=1

7 τth expectile: µ(τ) Expectile function µ(τ) = argmin m E[ρ τ (Y m) ρ τ (Y )], where the expectation is taken with respect to the distribution of the random variable Y, which is assumed to have finite mean. Solution of the equation: µ(τ) µ(τ) E(Y ) = [(2τ 1)/(1 τ)] where F (y) is the c.d.f. of Y 2. [µ(τ), ) (y µ(τ))df (y), µ(τ) is determined by the properties of the expectation of the random variable Y conditional on Y being in a tail of the distribution.

8 Properties of expectile function Expectile function summarizes the d.f. as the quantile function does. Let I F denotes the set {y 0 < F (y) < 1}. Theorem Suppose that E(Y ) = m exists. For each τ (0, 1), a unique solution µ(τ) to the equation exists and has the propeties: (i) As a function µ(τ): (0, 1) R, µ(τ) is strictly monotonic increasing. (ii) The range of µ(τ) is I F and µ(τ) maps (0,1) onto I F. (iii) For Ỹ = sy + t, where s > 0, the τth expectile µ(τ) of Ỹ satisfies µ(τ) = sµ(τ) + t. (iv) If F (y) is continuously differentiable, then µ(τ) is continuously differentiable, and for y m in I F and τ y such that y = µ(τ y ), F (y) = [y m + τ y µ (τ y )(1 2τ y )]/[µ (τ y )(1 2τ y ) 2 ], where this equation holds in the limit for y = m (and τ y = 1/2).

9 Plot of quantile(η(θ)) and expectile (µ(τ)) for the standard normal distribution

10 Relationship between µ(τ, x i ) and x i β(τ) β(τ) = argmin β R(β, τ) = argmin β E[ρ τ (y i x i β) ρ τ (y i )], which will be determined by the conditional distribution, y i x i. β(τ) = {E[ τ 1(y i < x i β(τ)) x i x i ]} 1 E[ τ 1(y i < x i β(τ)) x i y i ] µ(τ, x i ) = argmin m E[ρ τ (y i m) ρ τ (y i ) x i ] for almost all x. x i β(τ) will be a linear approximation to µ(τ, x i). Case: u i x i µ(τ, x i ) = x i β 0 + µ(τ), where µ(τ) is the τth expectile of ɛ i. β(τ) = β 0 + µ(τ)e 1, e 1 = (1, 0,..., 0) Case: u i = (x i γ 0)ɛ i and ɛ i x i µ(τ, x i ) = x i β 0 + µ(τ)x i γ 0 = x i [β 0 + µ(τ)γ 0 ] β(τ) = β 0 + µ(τ)γ 0

11 Symmetry of the conditional distribution The following theorem can be used to detect asymmetry of the conditional distribution y i given x i. Theorem If the distribution of y i conditional on x i is symmetric around x i β 0 with probability one, then. [β(τ) + β(1 τ)]/2 = β 0

12 Advantage of ALS estimators Computation of ˆβ(τ) :iterated weighted least squares estimators. ˆβ(τ) = [ n τ 1(y i < x i ˆβ(τ)) x i x i ] 1 i=1 n τ 1(y i < x i ˆβ(τ)) x i y i It is unnecessary to estimate the density function of the error terms for the joint asymptotic covariance matrix of several estimators cf. Regression quantiles require it. i=1

13 Assumptions Let l denote the Lebesgue measure on the real line and let z = (y, x ), where x is p 1 vector. 1 For each sample size n, z i = (y i, x i ), (i = 1,..., n), is i.i.d. and for γ n in (R) q, z i has a probability density function f (y i x i, γ n )g(x i ) with respect to a measure µ z = l µ x such that γ n = γ 0 + δ/ n Also, the conditional density f (y x, γ 0 ) is continuous in y for almost all x. Let E[ γ] denote the expectation taken at f (y x, γ)g(x), and let E[ ] = E[ γ 0 ]. Also, let ψ τ (λ) = τ 1(λ < 0) λ. 2 There is an open set Γ containing γ 0 such that for almost all z, the conditional density f (y x, γ) is continuous in γ on Γ. Also E[x i ψ τ (y i x i β(τ)) γ] is continuously differentiable in γ on Γ.

14 Assumptions 3 There is a constant d > 0 and a measurable function α(z) that satisfy sup Γ f (y x, γ) α(z) and z 4+d α(z)g(x)dµ z <, α(z)g(x)dµ z < 4 E[x i x i ] is nonsingular. 5 The observations satisfy y i = x i β 0 + u i, where u i = σ i ɛ i, σ i = 1 + x i γ nh + 1(ɛ > 0)x i γ ns, where γ nh = δ h / n, γ ns = δ s / n, and ɛ i is i.i.d., independent of x i, and symmetrically distributed around zero. Also, ɛ i has the c.d.f. F (ɛ), which has a continuous density f (ɛ). 6 x i has compact support. Also there exist finite constants D, d > 0 such that f (ɛ) D/(1 + ɛ 5+d ).

15 Asymptotic distribution of the vector of ALS estimators For a vector of weights (τ 1,..., τ m ), let ˆξ = vec[ ˆβ(τ 1 ),..., ˆβ(τ m )] and ξ = vec[β(τ 1 ),..., β(τ m )] be tha population counterpart. For u i (τ) = y i x i β(τ) and w i (τ) = τ 1(u i (τ) < 0), let W j = E[w i (τ j )x i x i ], W = diag[w 1,..., W m ] V jk = E[w i (τ j )w i (τ k )u i (τ j )u i (τ k )x i x i ], V = [V jk ], (j, k = 1,..., m), G j = E[w i (τ j )u i (τ j )x i γ 0 ]/ γ, G = [G 1,..., G m] Theorem If Assumptions 1-4 are satisfied, then for each τ in (0,1), a unique solution β(τ) exists. Also, n(ˆξ ξ) d N(W 1 Gδ, W 1 VW 1 ).

16 Sample moment estimator of the asymptotic covariance matrix of the ALS estimators Let Ŵ j = ˆV jk = n ŵ i (τ j )x i x i /n, Ŵ = diag[ŵ 1,..., Ŵ m ] i=1 n ŵ i (τ j )ŵ i (τ k )û i (τ j )û i (τ k )x i x i /n, ˆV = [ ˆV jk ], (j, k = 1,., m), i=1 where û i (τ) = y i x i ˆβ(τ) and ŵ i (τ) = τ 1(û i (τ) < 0). Theorem If Assumptions 1-4 are satisfied, then Ŵ 1 ˆV Ŵ 1 p W 1 VW 1

17 Asymptotic distribution of test statistic for general linear hypothesis Consider the general hypothesis: H 0 : Hξ = h. A test statistic T for the hypothesis: T = n(h ˆξ h) [HŴ 1 ˆV Ŵ 1 H ] 1 (H ˆξ h) Definition of Σ, D, µν are omitted. Please refer to p Theorem Suppose that Assumptions 1,4,5, and 6 are satisfied. Also suppose that H 0 is satisfied when γ = γ 0, Σ is nonsingular, and H has full row rank. Then T converges in distribution to a noncentral chi-squared with rank(h) d.f. and noncentality parameter (µ δ h + ν δ s ) H [H(Σ D 1 )H ] 1 H(µ δ h + ν δ s )

18 Test of homoskedasticity Contaminated Gaussian error distribution Comparison ALS test with τ =.54 RQ test with θ =.87. Absolute residual test Squared residual test ALS and RQ test θ and τ were selected based on calculation of weights which maximize the respective noncentrality parameters. Absolute and squared residual test based on the sample correlation of l(û i ) with x i. l(u) = u 2 for squared residual test, l(u) = u for absolute residual test

19 Local efficiencies of tests for heteroskedasticity, relative to squared residual regression

20 Test of conditional symmetry Contaminated Gaussian error distribution Comparison ALS test with τ =.54 RQ test with θ =.87. Squared residual test Test based on a comparison of least squares and least absolute deviations regession coefficients ALS and RQ test θ and τ were selected based on calculation of weights which maximize the respective noncentrality parameters.

21 Local efficiencies of tests for asymmetry, relative to squared residual regression

22 Conclusion ALS estimators useful summary statistics of conditional distribution of y i given x i. Tests of homoskedasticity and conditional symmetry based on ALS are reasonably efficient.

23 Thank you!

Semiparametric Models and Estimators

Semiparametric Models and Estimators Semiparametric Models and Estimators Whitney Newey October 2007 Semiparametric Models Data: Z 1,Z 2,... i.i.d. Model: F aset of pdfs. Correct specification: pdf f 0 of Z i in F. Parametric model: F = {f(z

More information

Quantile Regression: Inference

Quantile Regression: Inference Quantile Regression: Inference Roger Koenker University of Illinois, Urbana-Champaign Aarhus: 21 June 2010 Roger Koenker (UIUC) Introduction Aarhus: 21.6.2010 1 / 28 Inference for Quantile Regression Asymptotics

More information

Quantile methods. Class Notes Manuel Arellano December 1, Let F (r) =Pr(Y r). Forτ (0, 1), theτth population quantile of Y is defined to be

Quantile methods. Class Notes Manuel Arellano December 1, Let F (r) =Pr(Y r). Forτ (0, 1), theτth population quantile of Y is defined to be Quantile methods Class Notes Manuel Arellano December 1, 2009 1 Unconditional quantiles Let F (r) =Pr(Y r). Forτ (0, 1), theτth population quantile of Y is defined to be Q τ (Y ) q τ F 1 (τ) =inf{r : F

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Lecture 17: Likelihood ratio and asymptotic tests

Lecture 17: Likelihood ratio and asymptotic tests Lecture 17: Likelihood ratio and asymptotic tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f

More information

A Resampling Method on Pivotal Estimating Functions

A Resampling Method on Pivotal Estimating Functions A Resampling Method on Pivotal Estimating Functions Kun Nie Biostat 277,Winter 2004 March 17, 2004 Outline Introduction A General Resampling Method Examples - Quantile Regression -Rank Regression -Simulation

More information

Quantile Regression: Inference

Quantile Regression: Inference Quantile Regression: Inference Roger Koenker University of Illinois, Urbana-Champaign 5th RMetrics Workshop, Meielisalp: 28 June 2011 Roger Koenker (UIUC) Introduction Meielisalp: 28.6.2011 1 / 29 Inference

More information

Asymptotic Statistics-III. Changliang Zou

Asymptotic Statistics-III. Changliang Zou Asymptotic Statistics-III Changliang Zou The multivariate central limit theorem Theorem (Multivariate CLT for iid case) Let X i be iid random p-vectors with mean µ and and covariance matrix Σ. Then n (

More information

Asymptotic Statistics-VI. Changliang Zou

Asymptotic Statistics-VI. Changliang Zou Asymptotic Statistics-VI Changliang Zou Kolmogorov-Smirnov distance Example (Kolmogorov-Smirnov confidence intervals) We know given α (0, 1), there is a well-defined d = d α,n such that, for any continuous

More information

Single Index Quantile Regression for Heteroscedastic Data

Single Index Quantile Regression for Heteroscedastic Data Single Index Quantile Regression for Heteroscedastic Data E. Christou M. G. Akritas Department of Statistics The Pennsylvania State University JSM, 2015 E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

STAT 512 sp 2018 Summary Sheet

STAT 512 sp 2018 Summary Sheet STAT 5 sp 08 Summary Sheet Karl B. Gregory Spring 08. Transformations of a random variable Let X be a rv with support X and let g be a function mapping X to Y with inverse mapping g (A = {x X : g(x A}

More information

Expecting the Unexpected: Uniform Quantile Regression Bands with an application to Investor Sentiments

Expecting the Unexpected: Uniform Quantile Regression Bands with an application to Investor Sentiments Expecting the Unexpected: Uniform Bands with an application to Investor Sentiments Boston University November 16, 2016 Econometric Analysis of Heterogeneity in Financial Markets Using s Chapter 1: Expecting

More information

Quantile Regression for Dynamic Panel Data

Quantile Regression for Dynamic Panel Data Quantile Regression for Dynamic Panel Data Antonio Galvao 1 1 Department of Economics University of Illinois NASM Econometric Society 2008 June 22nd 2008 Panel Data Panel data allows the possibility of

More information

Final Exam. Economics 835: Econometrics. Fall 2010

Final Exam. Economics 835: Econometrics. Fall 2010 Final Exam Economics 835: Econometrics Fall 2010 Please answer the question I ask - no more and no less - and remember that the correct answer is often short and simple. 1 Some short questions a) For each

More information

The properties of L p -GMM estimators

The properties of L p -GMM estimators The properties of L p -GMM estimators Robert de Jong and Chirok Han Michigan State University February 2000 Abstract This paper considers Generalized Method of Moment-type estimators for which a criterion

More information

Lecture 26: Likelihood ratio tests

Lecture 26: Likelihood ratio tests Lecture 26: Likelihood ratio tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f θ0 (X) > c 0 for

More information

Mathematics Qualifying Examination January 2015 STAT Mathematical Statistics

Mathematics Qualifying Examination January 2015 STAT Mathematical Statistics Mathematics Qualifying Examination January 2015 STAT 52800 - Mathematical Statistics NOTE: Answer all questions completely and justify your derivations and steps. A calculator and statistical tables (normal,

More information

Quantile Regression for Longitudinal Data

Quantile Regression for Longitudinal Data Quantile Regression for Longitudinal Data by c Xiaoming Lu A Thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Department

More information

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018 Mathematics Ph.D. Qualifying Examination Stat 52800 Probability, January 2018 NOTE: Answers all questions completely. Justify every step. Time allowed: 3 hours. 1. Let X 1,..., X n be a random sample from

More information

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley Review of Classical Least Squares James L. Powell Department of Economics University of California, Berkeley The Classical Linear Model The object of least squares regression methods is to model and estimate

More information

Stat 710: Mathematical Statistics Lecture 31

Stat 710: Mathematical Statistics Lecture 31 Stat 710: Mathematical Statistics Lecture 31 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 31 April 13, 2009 1 / 13 Lecture 31:

More information

Review of Econometrics

Review of Econometrics Review of Econometrics Zheng Tian June 5th, 2017 1 The Essence of the OLS Estimation Multiple regression model involves the models as follows Y i = β 0 + β 1 X 1i + β 2 X 2i + + β k X ki + u i, i = 1,...,

More information

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012 Problem Set #6: OLS Economics 835: Econometrics Fall 202 A preliminary result Suppose we have a random sample of size n on the scalar random variables (x, y) with finite means, variances, and covariance.

More information

Homework 7: Solutions. P3.1 from Lehmann, Romano, Testing Statistical Hypotheses.

Homework 7: Solutions. P3.1 from Lehmann, Romano, Testing Statistical Hypotheses. Stat 300A Theory of Statistics Homework 7: Solutions Nikos Ignatiadis Due on November 28, 208 Solutions should be complete and concisely written. Please, use a separate sheet or set of sheets for each

More information

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics Jiti Gao Department of Statistics School of Mathematics and Statistics The University of Western Australia Crawley

More information

Statistics 135 Fall 2008 Final Exam

Statistics 135 Fall 2008 Final Exam Name: SID: Statistics 135 Fall 2008 Final Exam Show your work. The number of points each question is worth is shown at the beginning of the question. There are 10 problems. 1. [2] The normal equations

More information

Single Index Quantile Regression for Heteroscedastic Data

Single Index Quantile Regression for Heteroscedastic Data Single Index Quantile Regression for Heteroscedastic Data E. Christou M. G. Akritas Department of Statistics The Pennsylvania State University SMAC, November 6, 2015 E. Christou, M. G. Akritas (PSU) SIQR

More information

A more powerful subvector Anderson and Rubin test in linear instrumental variables regression. Patrik Guggenberger Pennsylvania State University

A more powerful subvector Anderson and Rubin test in linear instrumental variables regression. Patrik Guggenberger Pennsylvania State University A more powerful subvector Anderson and Rubin test in linear instrumental variables regression Patrik Guggenberger Pennsylvania State University Joint work with Frank Kleibergen (University of Amsterdam)

More information

Chapter 4. Replication Variance Estimation. J. Kim, W. Fuller (ISU) Chapter 4 7/31/11 1 / 28

Chapter 4. Replication Variance Estimation. J. Kim, W. Fuller (ISU) Chapter 4 7/31/11 1 / 28 Chapter 4 Replication Variance Estimation J. Kim, W. Fuller (ISU) Chapter 4 7/31/11 1 / 28 Jackknife Variance Estimation Create a new sample by deleting one observation n 1 n n ( x (k) x) 2 = x (k) = n

More information

Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014

Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014 Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014 Put your solution to each problem on a separate sheet of paper. Problem 1. (5166) Assume that two random samples {x i } and {y i } are independently

More information

Quantile Regression for Extraordinarily Large Data

Quantile Regression for Extraordinarily Large Data Quantile Regression for Extraordinarily Large Data Shih-Kang Chao Department of Statistics Purdue University November, 2016 A joint work with Stanislav Volgushev and Guang Cheng Quantile regression Two-step

More information

WISE International Masters

WISE International Masters WISE International Masters ECONOMETRICS Instructor: Brett Graham INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This examination paper contains 32 questions. You are

More information

Inference on distributions and quantiles using a finite-sample Dirichlet process

Inference on distributions and quantiles using a finite-sample Dirichlet process Dirichlet IDEAL Theory/methods Simulations Inference on distributions and quantiles using a finite-sample Dirichlet process David M. Kaplan University of Missouri Matt Goldman UC San Diego Midwest Econometrics

More information

2. Variance and Covariance: We will now derive some classic properties of variance and covariance. Assume real-valued random variables X and Y.

2. Variance and Covariance: We will now derive some classic properties of variance and covariance. Assume real-valued random variables X and Y. CS450 Final Review Problems Fall 08 Solutions or worked answers provided Problems -6 are based on the midterm review Identical problems are marked recap] Please consult previous recitations and textbook

More information

Elicitability and backtesting

Elicitability and backtesting Elicitability and backtesting Johanna F. Ziegel University of Bern joint work with Natalia Nolde, UBC 17 November 2017 Research Seminar at the Institute for Statistics and Mathematics, WU Vienna 1 / 32

More information

Stat 710: Mathematical Statistics Lecture 27

Stat 710: Mathematical Statistics Lecture 27 Stat 710: Mathematical Statistics Lecture 27 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 27 April 3, 2009 1 / 10 Lecture 27:

More information

Advanced Statistics II: Non Parametric Tests

Advanced Statistics II: Non Parametric Tests Advanced Statistics II: Non Parametric Tests Aurélien Garivier ParisTech February 27, 2011 Outline Fitting a distribution Rank Tests for the comparison of two samples Two unrelated samples: Mann-Whitney

More information

Quick Review on Linear Multiple Regression

Quick Review on Linear Multiple Regression Quick Review on Linear Multiple Regression Mei-Yuan Chen Department of Finance National Chung Hsing University March 6, 2007 Introduction for Conditional Mean Modeling Suppose random variables Y, X 1,

More information

Asymptotic Theory. L. Magee revised January 21, 2013

Asymptotic Theory. L. Magee revised January 21, 2013 Asymptotic Theory L. Magee revised January 21, 2013 1 Convergence 1.1 Definitions Let a n to refer to a random variable that is a function of n random variables. Convergence in Probability The scalar a

More information

Multiple Equation GMM with Common Coefficients: Panel Data

Multiple Equation GMM with Common Coefficients: Panel Data Multiple Equation GMM with Common Coefficients: Panel Data Eric Zivot Winter 2013 Multi-equation GMM with common coefficients Example (panel wage equation) 69 = + 69 + + 69 + 1 80 = + 80 + + 80 + 2 Note:

More information

New Developments in Econometrics Lecture 16: Quantile Estimation

New Developments in Econometrics Lecture 16: Quantile Estimation New Developments in Econometrics Lecture 16: Quantile Estimation Jeff Wooldridge Cemmap Lectures, UCL, June 2009 1. Review of Means, Medians, and Quantiles 2. Some Useful Asymptotic Results 3. Quantile

More information

Quantile and Expectile Regression for random effects model

Quantile and Expectile Regression for random effects model Quantile and Expectile Regression for random effects model Amadou Diogo Barry, Arthur Charpentier, Karim Oualkacha To cite this version: Amadou Diogo Barry, Arthur Charpentier, Karim Oualkacha. Quantile

More information

Quantile Processes for Semi and Nonparametric Regression

Quantile Processes for Semi and Nonparametric Regression Quantile Processes for Semi and Nonparametric Regression Shih-Kang Chao Department of Statistics Purdue University IMS-APRM 2016 A joint work with Stanislav Volgushev and Guang Cheng Quantile Response

More information

Instrumental Variables Estimation and Weak-Identification-Robust. Inference Based on a Conditional Quantile Restriction

Instrumental Variables Estimation and Weak-Identification-Robust. Inference Based on a Conditional Quantile Restriction Instrumental Variables Estimation and Weak-Identification-Robust Inference Based on a Conditional Quantile Restriction Vadim Marmer Department of Economics University of British Columbia vadim.marmer@gmail.com

More information

So far our focus has been on estimation of the parameter vector β in the. y = Xβ + u

So far our focus has been on estimation of the parameter vector β in the. y = Xβ + u Interval estimation and hypothesis tests So far our focus has been on estimation of the parameter vector β in the linear model y i = β 1 x 1i + β 2 x 2i +... + β K x Ki + u i = x iβ + u i for i = 1, 2,...,

More information

GARCH Models Estimation and Inference. Eduardo Rossi University of Pavia

GARCH Models Estimation and Inference. Eduardo Rossi University of Pavia GARCH Models Estimation and Inference Eduardo Rossi University of Pavia Likelihood function The procedure most often used in estimating θ 0 in ARCH models involves the maximization of a likelihood function

More information

Robust Backtesting Tests for Value-at-Risk Models

Robust Backtesting Tests for Value-at-Risk Models Robust Backtesting Tests for Value-at-Risk Models Jose Olmo City University London (joint work with Juan Carlos Escanciano, Indiana University) Far East and South Asia Meeting of the Econometric Society

More information

Nonlinear Error Correction Model and Multiple-Threshold Cointegration May 23, / 31

Nonlinear Error Correction Model and Multiple-Threshold Cointegration May 23, / 31 Nonlinear Error Correction Model and Multiple-Threshold Cointegration Man Wang Dong Hua University, China Joint work with N.H.Chan May 23, 2014 Nonlinear Error Correction Model and Multiple-Threshold Cointegration

More information

Generalized Method of Moments (GMM) Estimation

Generalized Method of Moments (GMM) Estimation Econometrics 2 Fall 2004 Generalized Method of Moments (GMM) Estimation Heino Bohn Nielsen of29 Outline of the Lecture () Introduction. (2) Moment conditions and methods of moments (MM) estimation. Ordinary

More information

Econ 2120: Section 2

Econ 2120: Section 2 Econ 2120: Section 2 Part I - Linear Predictor Loose Ends Ashesh Rambachan Fall 2018 Outline Big Picture Matrix Version of the Linear Predictor and Least Squares Fit Linear Predictor Least Squares Omitted

More information

What s New in Econometrics? Lecture 14 Quantile Methods

What s New in Econometrics? Lecture 14 Quantile Methods What s New in Econometrics? Lecture 14 Quantile Methods Jeff Wooldridge NBER Summer Institute, 2007 1. Reminders About Means, Medians, and Quantiles 2. Some Useful Asymptotic Results 3. Quantile Regression

More information

STA 2201/442 Assignment 2

STA 2201/442 Assignment 2 STA 2201/442 Assignment 2 1. This is about how to simulate from a continuous univariate distribution. Let the random variable X have a continuous distribution with density f X (x) and cumulative distribution

More information

Inference for High Dimensional Robust Regression

Inference for High Dimensional Robust Regression Department of Statistics UC Berkeley Stanford-Berkeley Joint Colloquium, 2015 Table of Contents 1 Background 2 Main Results 3 OLS: A Motivating Example Table of Contents 1 Background 2 Main Results 3 OLS:

More information

Asymptotics for Nonlinear GMM

Asymptotics for Nonlinear GMM Asymptotics for Nonlinear GMM Eric Zivot February 13, 2013 Asymptotic Properties of Nonlinear GMM Under standard regularity conditions (to be discussed later), it can be shown that where ˆθ(Ŵ) θ 0 ³ˆθ(Ŵ)

More information

Problem Set 2 Solution

Problem Set 2 Solution Problem Set 2 Solution Aril 22nd, 29 by Yang. More Generalized Slutsky heorem [Simle and Abstract] su L n γ, β n Lγ, β = su L n γ, β n Lγ, β n + Lγ, β n Lγ, β su L n γ, β n Lγ, β n + su Lγ, β n Lγ, β su

More information

1 Appendix A: Matrix Algebra

1 Appendix A: Matrix Algebra Appendix A: Matrix Algebra. Definitions Matrix A =[ ]=[A] Symmetric matrix: = for all and Diagonal matrix: 6=0if = but =0if 6= Scalar matrix: the diagonal matrix of = Identity matrix: the scalar matrix

More information

Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests

Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests Throughout this chapter we consider a sample X taken from a population indexed by θ Θ R k. Instead of estimating the unknown parameter, we

More information

Chapter 4: Asymptotic Properties of the MLE

Chapter 4: Asymptotic Properties of the MLE Chapter 4: Asymptotic Properties of the MLE Daniel O. Scharfstein 09/19/13 1 / 1 Maximum Likelihood Maximum likelihood is the most powerful tool for estimation. In this part of the course, we will consider

More information

Central Bank of Chile October 29-31, 2013 Bruce Hansen (University of Wisconsin) Structural Breaks October 29-31, / 91. Bruce E.

Central Bank of Chile October 29-31, 2013 Bruce Hansen (University of Wisconsin) Structural Breaks October 29-31, / 91. Bruce E. Forecasting Lecture 3 Structural Breaks Central Bank of Chile October 29-31, 2013 Bruce Hansen (University of Wisconsin) Structural Breaks October 29-31, 2013 1 / 91 Bruce E. Hansen Organization Detection

More information

Asymptotic Distributions of Instrumental Variables Statistics with Many Instruments

Asymptotic Distributions of Instrumental Variables Statistics with Many Instruments CHAPTER 6 Asymptotic Distributions of Instrumental Variables Statistics with Many Instruments James H. Stock and Motohiro Yogo ABSTRACT This paper extends Staiger and Stock s (1997) weak instrument asymptotic

More information

ECAS Summer Course. Fundamentals of Quantile Regression Roger Koenker University of Illinois at Urbana-Champaign

ECAS Summer Course. Fundamentals of Quantile Regression Roger Koenker University of Illinois at Urbana-Champaign ECAS Summer Course 1 Fundamentals of Quantile Regression Roger Koenker University of Illinois at Urbana-Champaign La Roche-en-Ardennes: September, 2005 An Outline 2 Beyond Average Treatment Effects Computation

More information

On the L p -quantiles and the Student t distribution

On the L p -quantiles and the Student t distribution 1 On the L p -quantiles and the Student t distribution Valeria Bignozzi based on joint works with Mauro Bernardi, Luca Merlo and Lea Petrella MEMOTEF Department, Sapienza University of Rome Workshop Recent

More information

Bivariate Paired Numerical Data

Bivariate Paired Numerical Data Bivariate Paired Numerical Data Pearson s correlation, Spearman s ρ and Kendall s τ, tests of independence University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html

More information

Lecture 32: Asymptotic confidence sets and likelihoods

Lecture 32: Asymptotic confidence sets and likelihoods Lecture 32: Asymptotic confidence sets and likelihoods Asymptotic criterion In some problems, especially in nonparametric problems, it is difficult to find a reasonable confidence set with a given confidence

More information

Economics 582 Random Effects Estimation

Economics 582 Random Effects Estimation Economics 582 Random Effects Estimation Eric Zivot May 29, 2013 Random Effects Model Hence, the model can be re-written as = x 0 β + + [x ] = 0 (no endogeneity) [ x ] = = + x 0 β + + [x ] = 0 [ x ] = 0

More information

Financial Econometrics and Volatility Models Copulas

Financial Econometrics and Volatility Models Copulas Financial Econometrics and Volatility Models Copulas Eric Zivot Updated: May 10, 2010 Reading MFTS, chapter 19 FMUND, chapters 6 and 7 Introduction Capturing co-movement between financial asset returns

More information

The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models

The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models John M. Neuhaus Charles E. McCulloch Division of Biostatistics University of California, San

More information

Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016

Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016 Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Find the maximum likelihood estimate of θ where θ is a parameter

More information

Testing Overidentifying Restrictions with Many Instruments and Heteroskedasticity

Testing Overidentifying Restrictions with Many Instruments and Heteroskedasticity Testing Overidentifying Restrictions with Many Instruments and Heteroskedasticity John C. Chao, Department of Economics, University of Maryland, chao@econ.umd.edu. Jerry A. Hausman, Department of Economics,

More information

Regression Analysis. y t = β 1 x t1 + β 2 x t2 + β k x tk + ϵ t, t = 1,..., T,

Regression Analysis. y t = β 1 x t1 + β 2 x t2 + β k x tk + ϵ t, t = 1,..., T, Regression Analysis The multiple linear regression model with k explanatory variables assumes that the tth observation of the dependent or endogenous variable y t is described by the linear relationship

More information

10. Linear Models and Maximum Likelihood Estimation

10. Linear Models and Maximum Likelihood Estimation 10. Linear Models and Maximum Likelihood Estimation ECE 830, Spring 2017 Rebecca Willett 1 / 34 Primary Goal General problem statement: We observe y i iid pθ, θ Θ and the goal is to determine the θ that

More information

Section 9: Generalized method of moments

Section 9: Generalized method of moments 1 Section 9: Generalized method of moments In this section, we revisit unbiased estimating functions to study a more general framework for estimating parameters. Let X n =(X 1,...,X n ), where the X i

More information

AFT Models and Empirical Likelihood

AFT Models and Empirical Likelihood AFT Models and Empirical Likelihood Mai Zhou Department of Statistics, University of Kentucky Collaborators: Gang Li (UCLA); A. Bathke; M. Kim (Kentucky) Accelerated Failure Time (AFT) models: Y = log(t

More information

δ -method and M-estimation

δ -method and M-estimation Econ 2110, fall 2016, Part IVb Asymptotic Theory: δ -method and M-estimation Maximilian Kasy Department of Economics, Harvard University 1 / 40 Example Suppose we estimate the average effect of class size

More information

Econometrics II - EXAM Outline Solutions All questions have 25pts Answer each question in separate sheets

Econometrics II - EXAM Outline Solutions All questions have 25pts Answer each question in separate sheets Econometrics II - EXAM Outline Solutions All questions hae 5pts Answer each question in separate sheets. Consider the two linear simultaneous equations G with two exogeneous ariables K, y γ + y γ + x δ

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

The Slow Convergence of OLS Estimators of α, β and Portfolio. β and Portfolio Weights under Long Memory Stochastic Volatility

The Slow Convergence of OLS Estimators of α, β and Portfolio. β and Portfolio Weights under Long Memory Stochastic Volatility The Slow Convergence of OLS Estimators of α, β and Portfolio Weights under Long Memory Stochastic Volatility New York University Stern School of Business June 21, 2018 Introduction Bivariate long memory

More information

Introduction to Time Series Analysis. Lecture 11.

Introduction to Time Series Analysis. Lecture 11. Introduction to Time Series Analysis. Lecture 11. Peter Bartlett 1. Review: Time series modelling and forecasting 2. Parameter estimation 3. Maximum likelihood estimator 4. Yule-Walker estimation 5. Yule-Walker

More information

Notes on Generalized Method of Moments Estimation

Notes on Generalized Method of Moments Estimation Notes on Generalized Method of Moments Estimation c Bronwyn H. Hall March 1996 (revised February 1999) 1. Introduction These notes are a non-technical introduction to the method of estimation popularized

More information

Extreme inference in stationary time series

Extreme inference in stationary time series Extreme inference in stationary time series Moritz Jirak FOR 1735 February 8, 2013 1 / 30 Outline 1 Outline 2 Motivation The multivariate CLT Measuring discrepancies 3 Some theory and problems The problem

More information

Confidence Intervals for Low-dimensional Parameters with High-dimensional Data

Confidence Intervals for Low-dimensional Parameters with High-dimensional Data Confidence Intervals for Low-dimensional Parameters with High-dimensional Data Cun-Hui Zhang and Stephanie S. Zhang Rutgers University and Columbia University September 14, 2012 Outline Introduction Methodology

More information

Quantile Regression for Panel Data Models with Fixed Effects and Small T : Identification and Estimation

Quantile Regression for Panel Data Models with Fixed Effects and Small T : Identification and Estimation Quantile Regression for Panel Data Models with Fixed Effects and Small T : Identification and Estimation Maria Ponomareva University of Western Ontario May 8, 2011 Abstract This paper proposes a moments-based

More information

Empirical likelihood and self-weighting approach for hypothesis testing of infinite variance processes and its applications

Empirical likelihood and self-weighting approach for hypothesis testing of infinite variance processes and its applications Empirical likelihood and self-weighting approach for hypothesis testing of infinite variance processes and its applications Fumiya Akashi Research Associate Department of Applied Mathematics Waseda University

More information

GMM Estimation and Testing

GMM Estimation and Testing GMM Estimation and Testing Whitney Newey July 2007 Idea: Estimate parameters by setting sample moments to be close to population counterpart. Definitions: β : p 1 parameter vector, with true value β 0.

More information

Business Statistics. Lecture 10: Correlation and Linear Regression

Business Statistics. Lecture 10: Correlation and Linear Regression Business Statistics Lecture 10: Correlation and Linear Regression Scatterplot A scatterplot shows the relationship between two quantitative variables measured on the same individuals. It displays the Form

More information

1 General problem. 2 Terminalogy. Estimation. Estimate θ. (Pick a plausible distribution from family. ) Or estimate τ = τ(θ).

1 General problem. 2 Terminalogy. Estimation. Estimate θ. (Pick a plausible distribution from family. ) Or estimate τ = τ(θ). Estimation February 3, 206 Debdeep Pati General problem Model: {P θ : θ Θ}. Observe X P θ, θ Θ unknown. Estimate θ. (Pick a plausible distribution from family. ) Or estimate τ = τ(θ). Examples: θ = (µ,

More information

Stat 710: Mathematical Statistics Lecture 12

Stat 710: Mathematical Statistics Lecture 12 Stat 710: Mathematical Statistics Lecture 12 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 12 Feb 18, 2009 1 / 11 Lecture 12:

More information

Introduction to Quantile Regression

Introduction to Quantile Regression Introduction to Quantile Regression CHUNG-MING KUAN Department of Finance National Taiwan University May 31, 2010 C.-M. Kuan (National Taiwan U.) Intro. to Quantile Regression May 31, 2010 1 / 36 Lecture

More information

M-estimators for augmented GARCH(1,1) processes

M-estimators for augmented GARCH(1,1) processes M-estimators for augmented GARCH(1,1) processes Freiburg, DAGStat 2013 Fabian Tinkl 19.03.2013 Chair of Statistics and Econometrics FAU Erlangen-Nuremberg Outline Introduction The augmented GARCH(1,1)

More information

University of Warwick, EC9A0 Maths for Economists Lecture Notes 10: Dynamic Programming

University of Warwick, EC9A0 Maths for Economists Lecture Notes 10: Dynamic Programming University of Warwick, EC9A0 Maths for Economists 1 of 63 University of Warwick, EC9A0 Maths for Economists Lecture Notes 10: Dynamic Programming Peter J. Hammond Autumn 2013, revised 2014 University of

More information

Intermediate Econometrics

Intermediate Econometrics Intermediate Econometrics Heteroskedasticity Text: Wooldridge, 8 July 17, 2011 Heteroskedasticity Assumption of homoskedasticity, Var(u i x i1,..., x ik ) = E(u 2 i x i1,..., x ik ) = σ 2. That is, the

More information

Regression diagnostics

Regression diagnostics Regression diagnostics Kerby Shedden Department of Statistics, University of Michigan November 5, 018 1 / 6 Motivation When working with a linear model with design matrix X, the conventional linear model

More information

Copula modeling for discrete data

Copula modeling for discrete data Copula modeling for discrete data Christian Genest & Johanna G. Nešlehová in collaboration with Bruno Rémillard McGill University and HEC Montréal ROBUST, September 11, 2016 Main question Suppose (X 1,

More information

Bivariate Relationships Between Variables

Bivariate Relationships Between Variables Bivariate Relationships Between Variables BUS 735: Business Decision Making and Research 1 Goals Specific goals: Detect relationships between variables. Be able to prescribe appropriate statistical methods

More information

Least Squares Model Averaging. Bruce E. Hansen University of Wisconsin. January 2006 Revised: August 2006

Least Squares Model Averaging. Bruce E. Hansen University of Wisconsin. January 2006 Revised: August 2006 Least Squares Model Averaging Bruce E. Hansen University of Wisconsin January 2006 Revised: August 2006 Introduction This paper developes a model averaging estimator for linear regression. Model averaging

More information

Zellner s Seemingly Unrelated Regressions Model. James L. Powell Department of Economics University of California, Berkeley

Zellner s Seemingly Unrelated Regressions Model. James L. Powell Department of Economics University of California, Berkeley Zellner s Seemingly Unrelated Regressions Model James L. Powell Department of Economics University of California, Berkeley Overview The seemingly unrelated regressions (SUR) model, proposed by Zellner,

More information

ICSA Applied Statistics Symposium 1. Balanced adjusted empirical likelihood

ICSA Applied Statistics Symposium 1. Balanced adjusted empirical likelihood ICSA Applied Statistics Symposium 1 Balanced adjusted empirical likelihood Art B. Owen Stanford University Sarah Emerson Oregon State University ICSA Applied Statistics Symposium 2 Empirical likelihood

More information

Comprehensive Examination Quantitative Methods Spring, 2018

Comprehensive Examination Quantitative Methods Spring, 2018 Comprehensive Examination Quantitative Methods Spring, 2018 Instruction: This exam consists of three parts. You are required to answer all the questions in all the parts. 1 Grading policy: 1. Each part

More information