Problem Solving Section 1

Size: px
Start display at page:

Download "Problem Solving Section 1"

Transcription

1 Problem Solving Section 1 Problem 1: Copper has a mass density ρ m 8.95 gmcm 3 and an electrical resistivity ρ ohm m at room temperature. Calculate, (a). The concentration of the conduction electrons. (b). The mean free time τ. (c). The Fermi energy E F. (d). The Fermi velocity v F and the mean free path at Fermi level. Solution: (a) We have to find the concentration of conduction electrons n N V. Given that, mass density of copper Cu mass volume 8.95 gcm 3. n N mass/mass density (1) Cu has valency 1 and mass number is 64 amu. By plugging N 1 and mass density in Eq(1), we get 1(8.95) n 64( ) cm 3. (b) The relation for electrical conductivity is given by, σ ne2 τ m, (2) σ 1 ρ, (3) Feb. 24,

2 where, τ is relaxation time and ρ is resistivity. For copper, given that ρ cu ohm m. Using Eq(2) and Eq(3), relaxation time is τ m ne 2 ρ ( ) s. (c) The Fermi energy for 3-D is given by, ( ) 2/3 E F h2 3N (4) 8m e πv ( ) 0.66 h2 3n. 8m e π (6.625 ( ) ) 2 3( ). 8( ) ev 7 ev. (d) The Fermi momentum is given by, p F v F k F mv F k F m e From Eq(4), k F is k F (3π 2 n) 1/3 ( 3(3.14) 2 ( ) m 1. ) 1/3 Feb. 24,

3 Thus, Fermi velocity is ( ) v F 2(3.14) ms 1, and mean free path of a conduction electron at Fermi level is l F v F τ ( )( ) m Problem 2: Find the Hall coefficient for germanium if for a given sample (length 1 cm, breadth 5 mm. thickness 1 mm) a current of 5 milliamperes flown from a 1.35 volts supply develops a Hall voltage of 20 millivolts across the specimen in a magnetic field of 0.45 Wbm 2. Solution: We have to find Hall coefficient R H, E y 1 nec (Hj x) R H Hj x, where E y is Hall s field and R H is R H E y Hj x Feb. 24,

4 Therefore, firstly we have to find E y E y V y d voltm 1. (d thickness) Area of cross section (Breadth)(thickness) ( )( ) m 2. j x current density current ( ) area ampm 2. The Hall coefficient is, R H 2 voltm 1 (0.45 wbm 2 )( ampm 2 ) voltm 3 amp 1 wb 1. Problem 3: Use the equation, ( dv v m dt + τ ) e E, Feb. 24,

5 for the electron drift velocity v to show that the conductivity at frequency ω is ( ) 1 + iωτ σ(ω) σ(0), 1 + (ωτ) 2 where σ(0) ne 2 τ/m. Solution: Given that, the magnitude form of equation of motion is For v v 0 e iωt, we have ( dv m dt + v ) ee. (5) τ dv dt iωv 0e iωt iωv. By plugging v and dv dt in Eq(5), m ( iωv 0 e iωt + v ) 0e iωt ee τ ( 1) ee iω + v τ m v ee/m ( 1 iω) τ eeτ m ( 1 + iωτ 1 + ω 2 τ 2 ), and the current density is Feb. 24,

6 Using the relation for electrical conductivity, J nqv ( ) eeτ 1 + iωτ n( e) m 1 + ω 2 τ ( ) 2 ne2 Eτ 1 + iωτ m 1 + ω 2 τ 2 ( ne 2 τ ) ( ) 1 + iωτ E (6) m 1 + ω 2 τ 2 By comparing Eq(6) and Eq(7), σ 0 ne2 τ m J σe. (7) ( ) σ(ω) ne2 τ 1 + iωτ m 1 + ω 2 τ ( 2 ) 1 + iωτ σ(ω 0), 1 + ω 2 τ 2 which is the required condition. Problem 4: a. Calculate the mean free energy for Mg at 0 K. The density of Mg is 1.74 gcm 3. b. How does E F compare to kt for Mg at room temperature? What is the value of the Fermi temperature? Solution: (a) The mean free energy at T 0 K is < E > E N 3 5 k BT F 3 5 E F, (8) Feb. 24,

7 where, Fermi energy is E F Given that, density of Mg 1.74 gcm 3. h2 8m e ( ) 2/3 3N. (9) πv n N V 2( ) 24( ) m 3. Plug n, m e, h in Eq(9) E F (6.625 ( ) 2 3( ) 8( ) J, ) 2/3 and mean free energy is < E > 3 5 ( ) J. (b) In order to compare E F to KT at T room 300 K, take their ratio E F k B T ( ) 275 it means that E F 275k B T. The Fermi temperature is the temperature at which E F k B T F, Feb. 24,

8 T F E F k B , 608 K. Problem 5: Estimate the electronic contribution of specific heat kmol of copper at 4 K and 300 K. The Fermi energy of copper is 7.05 ev and is assumed to be temperature independent. Solution: Given that, Fermi energy of Cu is E F 7.05 ev. Using the relation for electronic specific heat C v, C v π2 (k B T ) nkb 2 E F π2 2 k 2 B T E F n. Therefore, electronic contribution of specific heat kmol at T 4 K is C v (3.14)2 2 ( ) ( ) 2.00 Jkmol 1 K 1. Similarly, C v at T 300 K is C v 150 Jkmol 1 K 1. Problem 6: A uniform copper wire of length 0.5 m and diameter 0.3 mm has a resistance of Feb. 24,

9 0.12 Ω at 293 K. If the thermal conductivity of the specimen at the same temperature is 390 Wm 1 K 1, calculate the Lorentz number. Compare this value with the theoretical value. Solution Given that, Length of Cu wire 0.5 m. diameter m. radius m. resistance 0.12 Ω. thermal conductivity 390 Wm 1 K 1. We have to calculate the Lorentz number L as, where σ is electrical conductivity. L K e σt, (10) σ 1 ρ 1 RA/L ( ) Ω 1 m 1. A πr m 2 By plugging the values of σ, K e and T 293 K in Eq(10) 390 L exp (293) WΩK 2. Feb. 24,

10 On the other hand, the theoretical value of Lorentz number can be evaluated by using the relation L theo π2 3 ( ) 2 kb e (3.14)2 3 ( ) 2 ( ) WΩK 2, L theo > L exp. Comparing the above two values of Lorentz numbers, we observe that the theoretical value is about 1.26 times higher than the experimental one. Problem 7: Calculate the Hall coefficient of sodium based on free electron model. structure and the side of the cube is 4.28 A 0. Sodium has bcc Solution Given that, Sodium has bcc structure, therefore number of atoms per unit cell is 2 and the side of the cube is a 4.28 A 0 n Number of electrons volume 2 a 3 2 ( ) m 3. Hall coefficient is given by, Feb. 24,

11 R H 1 nec 1 ( )( )( ) m 2 s 1. Feb. 24,

Nasser S. Alzayed.

Nasser S. Alzayed. Lecture #4 Nasser S. Alzayed nalzayed@ksu.edu.sa ELECTRICAL CONDUCTIVITY AND OHM'S LAW The momentum of a free electron is related to the wavevector by mv = ћk. In an electric field E and magnetic field

More information

In an electric field R and magnetic field B, the force on an electron (charge e) is given by:

In an electric field R and magnetic field B, the force on an electron (charge e) is given by: Lecture 17 Electric conduction Electrons motion in magnetic field Electrons thermal conductivity Brief review In solid state physics, we do not think about electrons zipping around randomly in real space.

More information

7. FREE ELECTRON THEORY.

7. FREE ELECTRON THEORY. 7. FREE ELECTRON THEORY. Aim: To introduce the free electron model for the physical properties of metals. It is the simplest theory for these materials, but still gives a very good description of many

More information

PHY 140A: Solid State Physics. Solution to Homework #7

PHY 140A: Solid State Physics. Solution to Homework #7 PHY 14A: Solid State Physics Solution to Homework #7 Xun Jia 1 December 5, 26 1 Email: jiaxun@physics.ucla.edu Fall 26 Physics 14A c Xun Jia (December 5, 26) Problem #1 Static magnetoconductivity tensor.

More information

Note 5: Current and Resistance

Note 5: Current and Resistance Note 5: Current and Resistance In conductors, a large number of conduction electrons carry electricity. If current flows, electrostatics does not apply anymore (it is a dynamic phenomenon) and there can

More information

Solid State Physics FREE ELECTRON MODEL. Lecture 17. A.H. Harker. Physics and Astronomy UCL

Solid State Physics FREE ELECTRON MODEL. Lecture 17. A.H. Harker. Physics and Astronomy UCL Solid State Physics FREE ELECTRON MODEL Lecture 17 A.H. Harker Physics and Astronomy UCL Magnetic Effects 6.7 Plasma Oscillations The picture of a free electron gas and a positive charge background offers

More information

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport The study of the transport of electrons & holes (in semiconductors) under various conditions. A broad & somewhat specialized

More information

σ = neμ = v D = E H, the Hall Field B Z E Y = ee y Determining n and μ: The Hall Effect V x, E x I, J x E y B z F = qe + qv B F y

σ = neμ = v D = E H, the Hall Field B Z E Y = ee y Determining n and μ: The Hall Effect V x, E x I, J x E y B z F = qe + qv B F y Detemining n and μ: The Hall Effect V x, E x + + + + + + + + + + + --------- E y I, J x F = qe + qv B F y = ev D B z F y = ee y B z In steady state, E Y = v D B Z = E H, the Hall Field Since v D =-J x

More information

Model Question Paper ENGINEERING PHYSICS (14PHY12/14PHY22) Note: Answer any FIVE full questions, choosing one full question from each module.

Model Question Paper ENGINEERING PHYSICS (14PHY12/14PHY22) Note: Answer any FIVE full questions, choosing one full question from each module. Model Question Paper ENGINEERING PHYSICS (14PHY1/14PHY) Time: 3 hrs. Max. Marks: 100 Note: Answer any FIVE full questions, choosing one full question from each module. MODULE 1 1) a. Explain in brief Compton

More information

Chapter 27: Current and Resistance

Chapter 27: Current and Resistance Chapter 7: Current and esistance In this section of the course we will be studying the flow of electric charge, current, in a circuit. We have already seen electric current when we first discussed electric

More information

Chapter 24: Electric Current

Chapter 24: Electric Current Chapter 24: Electric Current Electric current Electric current is a net flow of electric charge. Quantitatively, current is the rate at which charge crosses a given area. I = dq dt dq = q(n AL)=q(n Av

More information

Chapter 6 Free Electron Fermi Gas

Chapter 6 Free Electron Fermi Gas Chapter 6 Free Electron Fermi Gas Free electron model: The valence electrons of the constituent atoms become conduction electrons and move about freely through the volume of the metal. The simplest metals

More information

3.225 Electrical,Optical, and Magnetic Properties of Materials

3.225 Electrical,Optical, and Magnetic Properties of Materials 3.5 Electrical,Optical, and Magnetic Properties of Materials Professor Eugene Fitzgerald Purpose: connect atoms and structure to properties Semi-historical context What was understood first from the micro

More information

Electrical conduction in solids

Electrical conduction in solids Equations of motion Electrical conduction in solids Electrical conduction is the movement of electrically charged particles through a conductor or semiconductor, which constitutes an electric current.

More information

Chapter 27 Solutions. )( m 3 = = s = 3.64 h

Chapter 27 Solutions. )( m 3 = = s = 3.64 h Chapter 27 Solutions 27.1 I Q t N Q e Q I t (30.0 10 6 A)(40.0 s) 1.20 10 3 C 1.20 10 3 C 1.60 10 19 C/electron 7.50 1015 electrons *27.2 The atomic weight of silver 107.9, and the volume V is V (area)(thickness)

More information

Handout 5: Current and resistance. Electric current and current density

Handout 5: Current and resistance. Electric current and current density 1 Handout 5: Current and resistance Electric current and current density Figure 1 shows a flow of positive charge. Electric current is caused by the flow of electric charge and is defined to be equal to

More information

Ohm's Law and Resistance

Ohm's Law and Resistance Ohm's Law and Resistance Resistance Resistance is the property of a component which restricts the flow of electric current. Energy is used up as the voltage across the component drives the current through

More information

Carrier Mobility and Hall Effect. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Carrier Mobility and Hall Effect. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Carrier Mobility and Hall Effect 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 calculation Calculate the hole and electron densities

More information

Transport Properties of Semiconductors

Transport Properties of Semiconductors SVNY85-Sheng S. Li October 2, 25 15:4 7 Transport Properties of Semiconductors 7.1. Introduction In this chapter the carrier transport phenomena in a semiconductor under the influence of applied external

More information

Unit III Free Electron Theory Engineering Physics

Unit III Free Electron Theory Engineering Physics . Introduction The electron theory of metals aims to explain the structure and properties of solids through their electronic structure. The electron theory is applicable to all solids i.e., both metals

More information

Lecture Frontier of complexity more is different Think of a spin - a multitude gives all sorts of magnetism due to interactions

Lecture Frontier of complexity more is different Think of a spin - a multitude gives all sorts of magnetism due to interactions Lecture 1 Motivation for course The title of this course is condensed atter physics which includes solids and liquids (and occasionally gases). There are also interediate fors of atter, e.g., glasses,

More information

Current and Resistance

Current and Resistance PHYS102 Previous Exam Problems CHAPTER 26 Current and Resistance Charge, current, and current density Ohm s law Resistance Power Resistance & temperature 1. A current of 0.300 A is passed through a lamp

More information

n i exp E g 2kT lnn i E g 2kT

n i exp E g 2kT lnn i E g 2kT HOMEWORK #10 12.19 For intrinsic semiconductors, the intrinsic carrier concentration n i depends on temperature as follows: n i exp E g 2kT (28.35a) or taking natural logarithms, lnn i E g 2kT (12.35b)

More information

Electrons in a periodic potential: Free electron approximation

Electrons in a periodic potential: Free electron approximation Dr. A. Sapelin, Jan 01 Electrons in a periodic potential: ree electron approximation ree electron ermi gas - gas of non-interacting electrons subject to Pauli principle Wealy bound electrons move freely

More information

Physics 202, Lecture 8. Exam 1

Physics 202, Lecture 8. Exam 1 Physics 202, Lecture 8 Today s Topics More on Exam 1: logistics and mini-review Current And Resistance (Ch. 27) Current: Macroscopic and Microscopic Resistance: Macroscopic and Microscopic Electrical Power

More information

Chapter 25: Electric Current

Chapter 25: Electric Current Chapter 25: Electric Current Conductors and Charge Carriers Consider a conducting piece of metal: The valence electrons are weakly bound to the nuclei form a fluidlike sea of electrons that can move through

More information

Exam 2 Solutions. = /10 = / = /m 3, where the factor of

Exam 2 Solutions. = /10 = / = /m 3, where the factor of PHY049 Fall 007 Prof. Yasu Takano Prof. Paul Avery Oct. 17, 007 Exam Solutions 1. (WebAssign 6.6) A current of 1.5 A flows in a copper wire with radius 1.5 mm. If the current is uniform, what is the electron

More information

SOLUTIONS FOR THEORETICAL COMPETITION Theoretical Question 1 (10 points) 1A (3.5 points)

SOLUTIONS FOR THEORETICAL COMPETITION Theoretical Question 1 (10 points) 1A (3.5 points) II International Zhautkov Olmpiad/Theoretical Competition/Solutions Page 1/10 SOLUTIONS FOR THEORETICAL COMPETITION Theoretical Question 1 (10 points) 1A (.5 points) m v Mu m = + w + ( u w ) + mgr It is

More information

February 6, 2015 According to free electron theory, the properties of a metal depends on gas of free electrons. The outer most electrons of metal atoms are also known as Valence Electrons.These valence

More information

SEMICONDUCTOR BEHAVIOR AND THE HALL EFFECT

SEMICONDUCTOR BEHAVIOR AND THE HALL EFFECT 5 Feb 14 Semi.1 SEMICONDUCTOR BEHAVIOR AND THE HALL EFFECT The object of this experiment is to study various properties of n- and p-doped germanium crystals. The temperature dependence of the electrical

More information

Louisiana State University Physics 2102, Exam 2, March 5th, 2009.

Louisiana State University Physics 2102, Exam 2, March 5th, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 2, March 5th, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

Electric Current. Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A)

Electric Current. Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric current is I Average Electric

More information

Chapter 26 & 27. Electric Current and Direct- Current Circuits

Chapter 26 & 27. Electric Current and Direct- Current Circuits Chapter 26 & 27 Electric Current and Direct- Current Circuits Electric Current and Direct- Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination

More information

Carrier transport: Drift and Diffusion

Carrier transport: Drift and Diffusion . Carrier transport: Drift and INEL 5209 - Solid State Devices - Spring 2012 Manuel Toledo April 10, 2012 Manuel Toledo Transport 1/ 32 Outline...1 Drift Drift current Mobility Resistivity Resistance Hall

More information

Last Revision: August,

Last Revision: August, A3-1 HALL EFFECT Last Revision: August, 21 2007 QUESTION TO BE INVESTIGATED How to individual charge carriers behave in an external magnetic field that is perpendicular to their motion? INTRODUCTION The

More information

CURRENT ELECTRICITY The charge flowing any cross-section per unit time in a conductor is called electric current.

CURRENT ELECTRICITY The charge flowing any cross-section per unit time in a conductor is called electric current. CUENT ELECTICITY Important Points:. Electric Current: The charge flowing any cross-section per unit time in a conductor is called electric current. Electric Current I q t. Current Density: a) The current

More information

Electrons in metals PHYS208. revised Go to Topics Autumn 2010

Electrons in metals PHYS208. revised Go to Topics Autumn 2010 Go to Topics Autumn 010 Electrons in metals revised 0.1.010 PHYS08 Topics 0.1.010 Classical Models The Drude Theory of metals Conductivity - static electric field Thermal conductivity Fourier Law Wiedemann-Franz

More information

Chapter 6 Free Electron Fermi Gas

Chapter 6 Free Electron Fermi Gas Chapter 6 Free Electron Fermi Gas Free electron model: The valence electrons of the constituent atoms become conduction electrons and move about freely through the volume of the metal. The simplest metals

More information

Hall effect in germanium

Hall effect in germanium Hall effect in germanium Principle The resistance and Hall voltage are measured on rectangular pieces of germanium as a function of the doping of the crystal, temperature and of magnetic field. From the

More information

Inductance. thevectorpotentialforthemagneticfield, B 1. ] d l 2. 4π I 1. φ 12 M 12 I 1. 1 Definition of Inductance. r 12

Inductance. thevectorpotentialforthemagneticfield, B 1. ] d l 2. 4π I 1. φ 12 M 12 I 1. 1 Definition of Inductance. r 12 Inductance 1 Definition of Inductance When electric potentials are placed on a system of conductors, charges move to cancel the electric field parallel to the conducting surfaces of the conductors. We

More information

d = k where k is a constant of proportionality equal to the gradient.

d = k where k is a constant of proportionality equal to the gradient. VARIATION In Physics and Chemistry there are many laws where one quantity varies in some way with another quantity. We will be studying three types of variation direct, inverse and joint.. DIRECT VARIATION

More information

Basic Electricity. ME 120 Lecture Notes. Portland State University Mechanical and Materials Engineering

Basic Electricity. ME 120 Lecture Notes. Portland State University Mechanical and Materials Engineering Basic Electricity ME 120 Lecture Notes Portland State University Mechanical and Materials Engineering Learning Objectives Successful completion of this module will enable students to Link the basic model

More information

Chapter 19. Electric Current, Resistance, and DC Circuit Analysis

Chapter 19. Electric Current, Resistance, and DC Circuit Analysis Chapter 19 Electric Current, Resistance, and DC Circuit Analysis I = dq/dt Current is charge per time SI Units: Coulombs/Second = Amps Direction of Electron Flow _ + Direction of Conventional Current:

More information

SUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r.

SUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r. SUMMARY Phys 53 (University Physics II) Compiled by Prof. Erickson q 1 q Coulomb s Law: F 1 = k e r ˆr where k e = 1 4π =8.9875 10 9 N m /C, and =8.85 10 1 C /(N m )isthepermittivity of free space. Generally,

More information

EECS 117 Lecture 13: Method of Images / Steady Currents

EECS 117 Lecture 13: Method of Images / Steady Currents EECS 117 Lecture 13: Method of Images / Steady Currents Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS 217 Lecture 13 p. 1/21 Point Charge Near Ground Plane Consider

More information

Can Fermi energy be determined by heating and/or cooling a copper wire?

Can Fermi energy be determined by heating and/or cooling a copper wire? arxiv:1811.05559v1 [physics.ed-ph] 13 Nov 2018 Can Fermi energy be determined by heating and/or cooling a copper wire? A.C. Abhyankar Department of Materials Engineering Defence Institute of Advanced Technology

More information

Chapter 2. Spinelektronik: Grundlagen und Anwendung spinabhängiger Transportphänomene. Winter 05/06

Chapter 2. Spinelektronik: Grundlagen und Anwendung spinabhängiger Transportphänomene. Winter 05/06 Winter 05/06 : Grundlagen und Anwendung spinabhängiger Transportphänomene Chapter 2 : Grundlagen und Anwendung spinabhängiger Transportphänomene 1 Winter 05/06 2.0 Scattering of charges (electrons) In

More information

Electric Currents and Simple Circuits

Electric Currents and Simple Circuits -1 Electric Currents and Simple Circuits Electrons can flow along inside a metal wire if there is an E-field present to push them along ( F= qe). The flow of electrons in a wire is similar to the flow

More information

Quantum Physics III (8.06) Spring 2008 Solution Set 1

Quantum Physics III (8.06) Spring 2008 Solution Set 1 Quantum Physics III (8.06) Spring 2008 Solution Set 1 February 12, 2008 1. Natural Units (a) (4 points) In cgs units we have the numbers a, b, c giving the dimensions of Q as [Q] = [gm] a [cm] b [s] c.

More information

The Hall Effect. Stuart Field Department of Physics Colorado State University. January 17, 2011

The Hall Effect. Stuart Field Department of Physics Colorado State University. January 17, 2011 The Hall Effect Stuart Field Department of Physics Colorado State University January 17, 2011 Abstract The Hall effect in a thin bismuth strip was investigated. The Hall voltage was found to be a linear

More information

ELECTRONS AND HOLES Lecture 21

ELECTRONS AND HOLES Lecture 21 Solid State Physics ELECTRONS AND HOLES Lecture 21 A.H. Harker Physics and Astronomy UCL Electrons and Holes 8 Electrons and Holes 8.1 Equations of motion In one dimension, an electron with wave-vector

More information

SYED AMMAL ENGINEERING COLLEGE: RAMANATHAPURAM Dr.E.M.Abdullah Campus DEPARTMENT OF PHYSICS Question Bank Engineering physics II PH6251 (R-2013)

SYED AMMAL ENGINEERING COLLEGE: RAMANATHAPURAM Dr.E.M.Abdullah Campus DEPARTMENT OF PHYSICS Question Bank Engineering physics II PH6251 (R-2013) SYED AMMAL ENGINEERING COLLEGE: RAMANATHAPURAM Dr.E.M.Abdullah Campus DEPARTMENT OF PHYSICS Question Bank Engineering physics II PH6251 (R-2013) PART A UNIT-I Conducting Materials 1. What are the classifications

More information

Lecture 7.1 : Current and Resistance

Lecture 7.1 : Current and Resistance Lecture 7.1 : Current and Resistance Lecture Outline: Current and Current Density Conductivity and Resistivity Resistance and Ohm s Law Textbook Reading: Ch. 30.3-30.5 Feb. 26, 2013 1 Announcements By

More information

Unit 11 Wire Tables and Conductor Sizes

Unit 11 Wire Tables and Conductor Sizes Wire Tables and Conductor Sizes Objectives: Discuss factors that determine conductor ampacity. Discuss resistance of wire. Determine insulation characteristics. Use temperature correction factors. Determine

More information

Plasmons, polarons, polaritons

Plasmons, polarons, polaritons Plasmons, polarons, polaritons Dielectric function; EM wave in solids Plasmon oscillation -- plasmons Electrostatic screening Electron-electron interaction Mott metal-insulator transition Electron-lattice

More information

Solutions to PS 6 Physics 401a

Solutions to PS 6 Physics 401a Solutions to PS 6 Physics 401a 1. Let B point along the z axis. Then by circuar symmetry, we have B(r, t) =B(r, t)e z (1) Using Faraday s Law, we can find the electric field at radius r to be E(r, t) dl

More information

week 6 chapter 31 Current and Resistance

week 6 chapter 31 Current and Resistance week 6 chapter 31 Current and Resistance Which is the correct way to light the lightbulb with the battery? 4) all are correct 5) none are correct 1) 2) 3) Which is the correct way to light the lightbulb

More information

The Need for Quantum Mechanics in Materials Science

The Need for Quantum Mechanics in Materials Science The Need for Quantum Mechanics in Materials Science VBS/MRC Need for Quantum Mechanics 0 Some Experimental Facts Regarding Metals Dulong-Petit Law High-Temperature Molar Specific Heat = 3R Atoms - Classical

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester.

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester. WS 20 Reg. No. : Question Paper Code : 27472 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Second Semester Civil Engineering PH 6251 ENGINEERING PHYSICS II (Common to all branches except Biotechnology

More information

FIITJEE Solutions to AIEEE PHYSICS

FIITJEE Solutions to AIEEE PHYSICS FTJEE Solutions to AEEE - 7 -PHYSCS Physics Code-O 4. The displacement of an object attached to a spring and executing simple harmonic motion is given by x = cos πt metres. The time at which the maximum

More information

ragsdale (zdr82) HW5 ditmire (58335) 1

ragsdale (zdr82) HW5 ditmire (58335) 1 ragsdale (zdr82) HW5 ditmire (58335) 1 This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001 (part 1 of 2) 10.0

More information

Chapter 25 Resistance and Current

Chapter 25 Resistance and Current Chapter 25 Resistance and Current Current in Wires We define the Ampere (amp) to be one Coulomb of charge flow per second A Coulomb is about 7 x 10 18 electrons (or protons) of charge For reference a mole

More information

PH 102 Exam I N N N N. 3. Which of the following is true for the electric force and not true for the gravitational force?

PH 102 Exam I N N N N. 3. Which of the following is true for the electric force and not true for the gravitational force? Name Date INSTRUCTIONS PH 102 Exam I 1. nswer all questions below. ll problems have equal weight. 2. Clearly mark the answer you choose by filling in the adjacent circle. 3. There will be no partial credit

More information

The Hall Effect. Figure 1: Geometry of the Hall probe [1]

The Hall Effect. Figure 1: Geometry of the Hall probe [1] The Hall Effect 1 Introduction In 1879, E. H. Hall observed that when a current-carrying conductor is placed in a transverse magnetic field, the Lorentz force on the moving charges produces a potential

More information

Lecture 3: Electron statistics in a solid

Lecture 3: Electron statistics in a solid Lecture 3: Electron statistics in a solid Contents Density of states. DOS in a 3D uniform solid.................... 3.2 DOS for a 2D solid........................ 4.3 DOS for a D solid........................

More information

Physical Structure of Matter. Hall effect in p-germanium Solid-state Physics, Plasma Physics. What you need:

Physical Structure of Matter. Hall effect in p-germanium Solid-state Physics, Plasma Physics. What you need: Solid-state Physics, Plasma Physics Physical Structure of Matter What you can learn about Semiconductor Band theory Forbidden zone Intrinsic conductivity Extrinsic conductivity Valence band Conduction

More information

CURRENT ELECTRICITY. Q1. Plot a graph showing variation of current versus voltage for a material.

CURRENT ELECTRICITY. Q1. Plot a graph showing variation of current versus voltage for a material. CURRENT ELECTRICITY QUESTION OF ONE MARK (VERY SHORT ANSWER) Q. Plot a graph showing variation of current versus voltage for a material. Ans. Q. The graph shown in the figure represents a plot of current

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 15.3.2 Example 2 Multiple-Output Full-Bridge Buck Converter Q 1 D 1 Q 3 D 3 + T 1 : : n 2 D 5 i

More information

Fundamental Constants

Fundamental Constants Fundamental Constants Atomic Mass Unit u 1.660 540 2 10 10 27 kg 931.434 32 28 MeV c 2 Avogadro s number N A 6.022 136 7 36 10 23 (g mol) 1 Bohr magneton μ B 9.274 015 4(31) 10-24 J/T Bohr radius a 0 0.529

More information

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it. Benha University Faculty of Engineering Shoubra Electrical Engineering Department First Year communications. Answer all the following questions Illustrate your answers with sketches when necessary. The

More information

Physics 211B : Solution Set #1

Physics 211B : Solution Set #1 Physics B : Solution Set # [] Drude formula Consider a hypothetical monovalent s-band metal with a simple cubic crystal structure he valence band dispersion is given by the tight binding result, εk) =

More information

PHY102 Electricity Course Summary

PHY102 Electricity Course Summary TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional

More information

Chapter 4: Summary. Solve lattice vibration equation of one atom/unitcellcase Consider a set of ions M separated by a distance a,

Chapter 4: Summary. Solve lattice vibration equation of one atom/unitcellcase Consider a set of ions M separated by a distance a, Chapter 4: Summary Solve lattice vibration equation of one atom/unitcellcase case. Consider a set of ions M separated by a distance a, R na for integral n. Let u( na) be the displacement. Assuming only

More information

CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS 4-1 CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 4.1 In order to compute the fraction of atom sites that are vacant in copper at 1357 K, we must employ Equation

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF PHYSICS QUESTION BANK II SEMESTER PH6251 ENGINEERING PHYSICS - II Regulation 2013 Academic Year 2016 17 Prepared by Dr.H.Krishnan,

More information

Chapter 25 Current Resistance, and Electromotive Force

Chapter 25 Current Resistance, and Electromotive Force Chapter 25 Current Resistance, and Electromotive Force 1 Current In previous chapters we investigated the properties of charges at rest. In this chapter we want to investigate the properties of charges

More information

Resistance Learning Outcomes

Resistance Learning Outcomes Resistance Learning Outcomes Define resistance and give its unit. Solve problems about resistance. State Ohm s Law. HL: Derive the formulas for resistors in series and parallel. Solve problems about resistors

More information

Mat E 272 Lecture 25: Electrical properties of materials

Mat E 272 Lecture 25: Electrical properties of materials Mat E 272 Lecture 25: Electrical properties of materials December 6, 2001 Introduction: Calcium and copper are both metals; Ca has a valence of +2 (2 electrons per atom) while Cu has a valence of +1 (1

More information

Physics 2B: Review for Celebration #2. Chapter 22: Current and Resistance

Physics 2B: Review for Celebration #2. Chapter 22: Current and Resistance Physics 2: eview for Celebration #2 Chapter 22: Current and esistance Current: q Current: I [I] amps (A) 1 A 1 C/s t Current flows because a potential difference across a conductor creates an electric

More information

1 Fundamental Constants, Elements, Units

1 Fundamental Constants, Elements, Units 1 Fundamental Constants, Elements, Units 1.1 Fundamental Physical Constants Table 1.1. Fundamental Physical Constants Electron mass m e = 9.10939 10 28 g Proton mass m p = 1.67262 10 24 g Atomic unit of

More information

Lecture 14 Current Density Ohm s Law in Differential Form

Lecture 14 Current Density Ohm s Law in Differential Form Lecture 14 Current Density Ohm s Law in Differential Form Sections: 5.1, 5.2, 5.3 Homework: See homework file Direct Electric Current Review DC is the flow of charge under electrostatic forces in conductors

More information

Electricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power

Electricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power Electricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power Lana Sheridan De Anza College Feb 6, 2018 Last time resistance resistivity conductivity Ohm s Law Overview Drude model

More information

CHAPTER: 3 CURRENT ELECTRICITY

CHAPTER: 3 CURRENT ELECTRICITY CHAPTER: 3 CURRENT ELECTRICITY 1. Define electric current. Give its SI unit. *Current is the rate of flow of electric charge. I (t) = dq dt or I = q t SI unit is ampere (A), 1A = 1C 1s 2. Define current

More information

Resistance Learning Outcomes. Resistance Learning Outcomes. Resistance

Resistance Learning Outcomes. Resistance Learning Outcomes. Resistance Resistance Learning Outcomes Define resistance and give its unit. Solve problems about resistance. State Ohm s Law. HL: Derive the formulas for resistors in series and parallel. Solve problems about resistors

More information

Experiment 11: Hall Effect & Energy Gap in Germanium

Experiment 11: Hall Effect & Energy Gap in Germanium Experiment 11: Hall Effect & Energy Gap in Germanium We will see if the charge carrying particles are negative in n-doped germanium, and if they are positive in p-doped germanium. We will also measure

More information

Free Electron Fermi Gas and Energy Bands

Free Electron Fermi Gas and Energy Bands PHYS 353 SOLID STATE PHYSICS STUDY GUIDE FOR PART 3 OUTLINE: Free Electron Fermi Gas and Energy Bands A. Quantum Theory and energy levels 1. Schrodinger's equation 2. quantum numbers and energy levels

More information

Materials & Properties II: Thermal & Electrical Characteristics. Sergio Calatroni - CERN

Materials & Properties II: Thermal & Electrical Characteristics. Sergio Calatroni - CERN Materials & Properties II: Thermal & Electrical Characteristics Sergio Calatroni - CERN Outline (we will discuss mostly metals) Electrical properties - Electrical conductivity o Temperature dependence

More information

You wish to measure air temperatures over the range from 0 C to 50 C using the thermistor bridge shown below. R T Thermistor R 1 V + V R 3

You wish to measure air temperatures over the range from 0 C to 50 C using the thermistor bridge shown below. R T Thermistor R 1 V + V R 3 PROBLEM 1 (45 points) UNIVERSITY OF CALIFORNIA Electrical Engineering and Computer Sciences EECS 145L Electronic Transducer Lab MIDTERM # (100 points maximum) (closed book, calculators OK- note formulas

More information

PHYS 375: Introduction

PHYS 375: Introduction PHYS 375: Introduction Some general remarks Note on labs Today s lecture: Storing electric energy Voltage, Current, Power Conductivity, Ohm s law Resistor Kirchoff s laws Series and parallel circuits Thevenin

More information

Magnetic Fields; Sources of Magnetic Field

Magnetic Fields; Sources of Magnetic Field This test covers magnetic fields, magnetic forces on charged particles and current-carrying wires, the Hall effect, the Biot-Savart Law, Ampère s Law, and the magnetic fields of current-carrying loops

More information

Carriers Concentration, Current & Hall Effect in Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Carriers Concentration, Current & Hall Effect in Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Carriers Concentration, Current & Hall Effect in Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Conductivity Charge

More information

Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II In today s lecture, we will learn to: Calculate the resistance of a conductor depending on the material and shape Apply

More information

Structured Essay. Answers

Structured Essay. Answers Structured Essay Answers 0. (a) AVρ...(0) (b) Momentum of air mass = mv = Av ρ v = Av ρ...(0) (c) (d) (e) (f) Force exerted on air /Force exerted on fan = F = Av ρ - 0 mv - mv t F = = Av Reaction forces

More information

Spring 2005 MSE111 Midterm. Prof. Eugene Haller. 3/15/05, 9:40 am

Spring 2005 MSE111 Midterm. Prof. Eugene Haller. 3/15/05, 9:40 am Spring 005 MSE111 Midterm Prof. Eugene Haller 3/15/05, 9:40 am University of California at Berkeley Department of Materials Science and Engineering 80 minutes, 68 points total, 10 pages Name: SID: Problem

More information

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers**

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Conductors under dynamic conditions Current, current density, drift velocity Ohm s law Types of conductor

More information

Flow Rate is the NET amount of water passing through a surface per unit time

Flow Rate is the NET amount of water passing through a surface per unit time Electric Current An Analogy Water Flow in a Pipe H 2 0 gallons/minute Flow Rate is the NET amount of water passing through a surface per unit time Individual molecules are bouncing around with speeds of

More information

Macroscopic dielectric theory

Macroscopic dielectric theory Macroscopic dielectric theory Maxwellʼs equations E = 1 c E =4πρ B t B = 4π c J + 1 c B = E t In a medium it is convenient to explicitly introduce induced charges and currents E = 1 B c t D =4πρ H = 4π

More information

Quantum transport in nanoscale solids

Quantum transport in nanoscale solids Quantum transport in nanoscale solids The Landauer approach Dietmar Weinmann Institut de Physique et Chimie des Matériaux de Strasbourg Strasbourg, ESC 2012 p. 1 Quantum effects in electron transport R.

More information

fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok

fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok 1 Course Progress Introductory level Electrostatic, Coulomb s Law Electric Field, Gauss Law Magnetic field, Maxwell s Equations Current,

More information

6 Chapter. Current and Resistance

6 Chapter. Current and Resistance 6 Chapter Current and Resistance 6.1 Electric Current... 6-2 6.1.1 Current Density... 6-2 6.2 Ohm s Law... 6-5 6.3 Summary... 6-8 6.4 Solved Problems... 6-9 6.4.1 Resistivity of a Cable... 6-9 6.4.2 Charge

More information