Science Olympiad. Machines. Roger Demos

Size: px
Start display at page:

Download "Science Olympiad. Machines. Roger Demos"

Transcription

1 Science Olympiad Machines. Roger Demos

2 Some Basic Physics Concepts

3 What do Machines do? Do they allow one to do more work? Not really, at best they make completing a task easier. So then what do Machines do? Multiply the force. Multiply the distance. Change the direction of the force.

4 Work = Force x Distance an object moves while the force is applied. W = F x d In SI Units: Force is measured in newtons (N) distance is measured in meters (m) Work in N. m which is a joule (J). Named after James Prescott Joule

5 What does work do? Work causes a change in Energy. In other words, it can do any of the following: Make something move faster. Lift something up. Move something against friction. A combination of the above.

6 Examples of Work: A cart is pushed to the right as illustrated N distance cart is moved 4.00 m. How much work is done on the cart? W = F x d = (50.0 N)(4.00 m) = 200. J

7 distance box is moved 20. m N Examples of Work: A box is lifted as illustrated. How much work is done on the box? W = F x d W = (80.0 N)(20. m) W = 1600 J

8 Now let s apply this to some of our machines. The simplest is most likely levers.

9 Class 1 Lever: load on one side of the fulcrum and the effort on the other side. Effort The Fulcrum is the pivot point. The Load is what we are trying to lift or the output of the machine. The Effort is the force that is applied to lift the load or the input of the machine. Load Fulcrum

10 Class 1 Lever: Load on one side of the fulcrum and the Effort on the other side. Effort Load Fulcrum

11 Class 1 Lever: More terminology Note that in lifting the load the Effort moved much farther than the Load. Effort With a smaller Effort we could lift a Load that is heavier. Load Fulcrum

12 Effort distance, d E = 60 cm Load distance, d L = 20 cm Load = 900N Class 1 Lever: More terminology With an Effort of 300 N we were able to lift a Load of 900 N. We multiplied the input force by 3. Effort = 300 N The Effort moved 60 cm while the Load moved only 20 cm. We moved 3 times farther than the LOAD. Fulcrum

13 Effort distance, d E = 60 cm Load distance, d L = 20 cm Load = 900N Class 1 Lever: More terminology Work, W = F x d W IN = E x d E = (300 N)(0.60 m) = 180 J W OUT = L x d L = (900 N)(0.20 m) = 180 J Effort = 300 N Note: Work IN = Work OUT We didn t do more work, we just did it with less Effort than if I tried to lift it without the lever. Fulcrum

14 Effort distance, d E = 60 cm Load distance, d L = 20 cm Load = 900N Class 1 Lever: More terminology We say that we have a Mechanical Advantage, MA. We can lift 3 times more than our input Effort. Effort = 300 N MA = Load/Effort MA = (900 N)/(300 N) MA = 3 MA = d E /d L MA = (60 cm)/(20 cm) MA = 3 Fulcrum

15 Effort distance, d E = 60 cm Load distance, d L = 20 cm Load = 900N Class 1 Lever: More terminology We triple our Effort (input force) at the expense of moving the Load ⅓ as much. Effort = 300 N MA = Load/Effort MA = (900 N)/(300 N) MA = 3 MA = d E /d L MA = (60 cm)/(20 cm) MA = 3 Fulcrum

16 Class 1 Lever: More terminology We can also analyze the lever by measuring the distance from the Effort to the fulcrum (pivot point) and the distance from the Load to the fulcrum. This is called the lever arm or just arm and is often given the variable name x. Effort arm, x E = 3.0 m Load arm, x L = 1.0 m Fulcrum

17 Class 1 Lever: More terminology This can also be used to calculate the Mechanical Advantage. MA = x E /x L = (3.00 m)/(1.00 m) = 3 Looks familiar doesn t it. Effort arm, x E = 3.0 m Load arm, x L = 1.0 m Fulcrum

18 More terminology: Often we use the terms, Ideal Mechanical Advantage, IMA and Actual Mechanical Advantage, AMA IMA = x E /x L or d E /d L AMA = L/E with the load being just what you ultimately wanted to move, excluding anything else that may have to be moved with it. This will become clearer when we look at a 2 nd class lever.

19 More terminology: Often we use the terms, Ideal Mechanical Advantage, IMA and Actual Mechanical Advantage, AMA We want to find out how well the particular machine does its work. This is called Efficiency, Eff. Efficiency, Eff = (AMA/IMA) x 100%

20 2 nd class lever: Notice that the Effort and the Load are on the same side of the Fulcrum and the Load is between the Effort and the Fulcrum. Effort Load Fulcrum

21 2 nd class lever: Again the Effort moves much farther than the Load. We are getting more force out than what we put in, but the load only moves a short distance. We are also lifting the lever along with the load. Fulcrum

22 2 nd class lever: IMA = x E /x L = (2.8 m)/(0.35 m) = 8 The load is 900 N and since the Effort has to lift the Load and the lever, let s say that the Effort is 150 N. Effort Effort arm, x E = 2.8 m Load arm, x L = 0.35 m Load Fulcrum

23 2 nd class lever: IMA = x E /x L = (2.8 m)/(0.35 m) = 8 AMA = L/E = (900 N)/(150 N) = 6 Eff = AMA/IMA = 6/8 x 100% = 75% E = 150N L = 900 N Effort arm, x E = 2.8 m Load arm, x L = 0.35 m Fulcrum

24 3 rd class lever: Notice that the Effort and the Load are on the same side of the Fulcrum and the Effort is between the Load and the Fulcrum. Load Effort Fulcrum

25 3 rd class lever: IMA = x E /x L = (0.50 m)/(2.0 m) = ¼ = 0.25 AMA = L/E = (200 N)/(1000 N) = ⅕ = 0.2 Eff = AMA/IMA = (0.2/0.25) x 100% = 80% L = 200 N x L = 2.0 m E = 1000 N x E = 50. cm Fulcrum

26 There is a lab part of the competition. Let s look at some of the basic concepts for a lever that is in static equilibrium.

27 The easiest lever to analyze is the first class lever (seesaw), that is balanced by itself. The center of gravity of the lever is on the fulcrum. c.g.

28 If a lever is not moving (rotating) then it is said to be at static equilibrium. When an object is at static equilibrium the following is true: ΣF = 0, that is netf = 0, no unbalanced forces. Στ = 0, that is there are no unbalanced torques. If you place a seesaw so that its center of gravity is on the fulcrum, it will balance. That is, the left side balances the right side.

29 Torque is the tendency of a force to cause an object to rotate around an axis. In the case of a lever, the axis is the fulcrum. Force In this case the force would make the left side of the lever go down or rotate the lever counterclockwise, ccw.

30 Torque is the tendency of a force to cause an object to rotate around an axis. In the case of a lever, the axis is the fulcrum. Force In this case the force would make the left side of the lever go down or rotate the lever counterclockwise, CCW.

31 What if the force is 24 N, what torque is applied? Earlier we talked about the lever arm or arm being the distance from the fulcrum (axis) to the force. We will use the letter x as the symbol for lever arm. F = 24 N The symbol for torque is the Greek letter tau, τ x = 1.2 m τ = (F)(x) = (24 N)(1.2 m) τ = 28.8 N. m = 29 N. m A torque of 29 N. m will rotate the lever CCW.

32 The weight of the seesaw on the left creates a torque that tries to rotate the seesaw counter-clockwise, CCW, so that the left side would go down. The weight of the seesaw on the right creates a torque that tries to make it rotate clockwise,cw, so that the right side would go down. F F The two balance each other and it does not rotate.

33 Another way to look at this is that we can place all the weight of the seesaw ( F L ) at its center of gravity. The center of gravity of the seesaw is at the axis of rotation (fulcrum) so the value of the lever arm is zero and the force creates no torque. c.g. Note: The center of gravity may not be at the geometric center. F L Especially when using wooden meter sticks!

34 Sample problem: Two identical 40.0 kg twin girls are sitting on opposite ends of a seesaw that is 4.0 m long and weighs 700 N, so that the center of gravity of the seesaw is on the fulcrum. How do we analyze this situation? c.g.

35 First, we need to draw a torque diagram of the seesaw. This is a free body diagram which includes the lever arms. We place all the forces at their proper location. x 1 = 2.0 m F N = 1500 N c.g.. Next, we define the axis of rotation (circle with a dot in the middle) and the lever arms. x 2 = 2.0 m F 1 = 400 N F L = 700 N F 2 = 400 N

36 Στ = 0 or Στ CCW = Στ CW F 1 x 1 = F 2 x 2 (400 N)(2.0 m) = (400 N)(2.0 m) 800 Nm = 800 Nm x 1 = 2.0 m F N = 1500 N c.g.. F L and F N both act through the axis of rotation, so their lever arm is zero, making their torque 0. The torques balance so the seesaw can be in static equilibrium. x 2 = 2.0 m F 1 = 400 N F L = 700 N F 2 = 400 N

37 It is important that the seesaw be level, so that the force applied by each of the girls is acting downward and is perpendicular to the lever arm. If the Force and the Lever Arm are not perpendicular, then the equation for the torque becomes complex. It is better that we avoid that situation.

38 So, what do you do to balance the seesaw if the two people are not the same weight (mass)? One 400 N girl sits on one end of a seesaw that is centered on the fulcrum, is 4.0 m long, and weighs 700 N. Where must her 650 N brother sit in order for the seesaw to be in static equilibrium?? c.g. Option #1, move the heavier person closer to the fulcrum.

39 Στ = 0 or Στ CCW = Στ CW F L and F N both act through the axis of rotation, so their F G x G = F B x B lever arms are zero. F N = 1750 N (400 N)(2.0 m) = (650 N)x B x B = (800 Nm)/(650 N) 800 = 650x x B = 1.23 m B x G = 2.0 m c.g.. x B =?? m F G = 400 N F L = 700 N F B = 650 N

40 Option #2, move the center of gravity of the seesaw so that more of the seesaw is on the side of the lighter person, One 400 N girl sits on one end of a 4.0 m long seesaw weighing 700 N That has moved the center of gravity of the lever 0.2 meters towards her. Where must her 650 N brother sit in order for the seesaw to be in static equilibrium?? Now the weight of the seesaw creates a torque helping the girl. c.g.

41 Στ = 0 or Στ CCW = Στ CW F G x G + F L x L = F B x B F N acts through the axis of rotation, so its lever arm is zero. F N = 1750 N (400)(2.2) + (700)(0.2) = (650 N)x B x B = (1020 Nm)/(650 N) = 650x B x B = 1.57 m x G = 2.2 m c.g.. x B =?? m x L = 0.2 m F G = 400 N F L = 700 N F B = 650 N

42 For the Middle School (Division B) Competition, you will need to build a simple first class lever system. The lever may not be longer than 0.80 m.

43 Simple Machines. (Simple case.) Given small mass placed on one side. Given large mass on the other. Unless the values are too extreme, you may be able to move the large mass close enough to the fulcrum. c.g. If this is the setup, you don t have to worry about the weight of the lever.

44 Simple Machines. (Simple case.) c.g. Small Mass Big Mass F N x S x B F S c.g.. F L F B

45 Simple Machines. (Simple case.) In this case the torque equation is: τ CCW = τ CW (F S )(x S ) = (F B )(x B ) and you can solve for any value. F N x S x B F S c.g.. F L F B

46 So far we have been dealing with the force applied by the hanging mass. This force is known as the weight of the object or the force of gravity (F g ) acting on the object. The force of gravity acting on an object is the product of the mass of the object multiplied by the gravity constant on the planet Earth (9.8 N/kg). F g = mg = m(9.8 N/kg) so, mass, m = F g /(9.8 N/kg) This gets quite confusing because weight is measured in newtons and mass is measured in grams or kilograms (kg). You may have been told to weigh something but you actually measured its mass in grams.

47 Simple Machines. (Simple case.) Knowing that F g = mg (F S )(x S ) = (F B )(x B ) This equation can be written: (m s g)(x S ) = (m B g)(x B ) Dividing by g we get: F N (m s g)(x S )/g = (m B g)(x B )/g (m s )(x S ) = (m B )(x B ) x S x B F S = m S g c.g.. F L F B = m B g

48 Simple Machines. (Simple case.) We can now solve for a mass using this equation and modify our torque diagram as shown: (m s )(x S ) = (m B )(x B ) F N x S x B m S c.g.. F L m B

49 Simple Machines. (Simple case.) Suppose that you were given a small mass of 125 grams and an unknown large mass. You set up your lever so it balances as shown: F N x S = 47.6 cm x B = 10.0 cm c.g. m S = 125 g m B =?? F L.

50 Simple Machines. (Simple case.) (m s )(x S ) = (m B )(x B ) (125 g)(47.6 cm) = (m B )(10.0 cm) m B = (125 g)(47.6 cm)/(10.0 cm) = 595 grams F N x S = 47.6 cm x B = 10.0 cm c.g. m S = 125 g m B =??. F L

51 Simple Machines (More realistic case) If the difference between the masses is large, move the fulcrum near one end of the lever. Place the large mass on the short side. Then place the small mass on the long side. c.g. Now the lever helps balance the large weight.

52 Στ = 0 or Στ CCW = Στ CW F N acts through the axis of rotation, so its lever arm is zero. F S x S + F L x L = F B x B F N x S = cm c.g.. x B = cm x L = cm F S = N F L = N F B =?? N

53 Στ = 0 or Στ CCW = Στ CW F N acts through the axis of rotation, so its lever arm is zero. F S x S + F L x L = F B x B (m S g)x S + (m L g)x L = (m B g)x B If you divide through by g you get: x S = cm c.g. F N. x B = cm m S x S + m L x L = m B x B x L = cm F S = m S g F L = m L g F B = m B g

54 Sample: Suppose that you have set up your 1.00 meter long lever of mass 83.4 grams so that the center of gravity is 20.0 cm from the fulcrum. You have also determined that the big unknown mass will be placed 10.0 cm from the fulcrum. x S = cm c.g. F N x B = 10.0 cm. x L = 20.0 cm F S = m S g F L = m L g F B = m B g

55 You are given a known mass of 76.2 grams and a big mass. Putting the masses on the lever, you find that it balances when the little mass is 62.8 centimeters from the fulcrum. x S = 62.8 cm c.g. F N x B = 10.0 cm. x L = 20.0 cm m S = 76.2 g m L = 83.4 g m B =??

56 m S x S + m L x L = m B x B (76.2 g)(62.8 cm) + (83.4 g)(20.0 cm) = m B (10.0 cm) m B = [(76.2 g)(62.8 cm) + (83.4 g)(20.0 cm)]/(10.0 cm) F N m B = 645 grams x S = 62.8 cm c.g. x B = 10.0 cm. x L = 20.0 cm m S = 76.2 g m L = 83.4 g m B =??

57 As long as the levers are horizontal and in static equilibrium, you can use the equations with mass instead of force or weight. Your Physics teacher probably will not be too happy, but the equation is mathematically correct for the situation.

58 High School Compound Machines.

59 c.g. c.g. B First Class Lever Second Class Lever For the High School Competition you will need to build a compound lever system made up of a first class lever connected to a second class lever. Each lever may not be longer than 50.0 cm.

60 c.g. First part of lever system x S = cm c.g. m S x S + m L1 x L1 = Ex E1. x E1 = cm x L1 = cm m S = g m L1 = g E =?? g

61 c.g. Second part of lever system B Ex E2 = m L2 x L2 + m B x B x E2 = cm c.g. x L2 = cm. E = g m L2 = g m B =?? g x B = cm

62 Sample: c.g. x E1 = 5.0 cm x E2 = 35.0 cm c.g. x B = 10.0 cm B Suppose that you built your lever system so that the fulcrum in the class 1 lever was 5.0 cm from the string connecting the levers. Also suppose that in the second class lever the string connecting the levers is 35.0 cm from its fulcrum and you set up the lever so that the unknown big mass is 10.0 cm from the fulcrum.

63 Sample c.g. x E1 = 5.0 cm x E2 = 35.0 cm c.g. x S = 32.7 cm x B = 10.0 cm B You are given a small mass of 86.0 grams and an unknown large mass that you place at the 10.0 cm mark. You slide the small mass along the class 1 lever and manage to get the levers to balance when the small mass is 32.7 cm from its fulcrum.

64 c.g. x S = 32.7 cm x E1 = 5.0 cm x S = 32.7 cm c.g. First part of lever system You also measured the mass of the lever as 27.4 g and arranged the lever so that its center of gravity is 16.0 cm from the fulcrum. x E1 = 5.0 cm. m S = 86.0 g m L1 = 27.4 g x L1 = 16.0 cm E =?? g m S x S + m L1 x L1 = Ex E1

65 E = [(86.0 g)(32.7 cm) + (27.4 g)(16.0 cm)]/(5.0 cm) E = 650 g x S = 32.7 cm x E1 = 5.0 cm c.g. First part of lever system m S x S + m L1 x L1 = Ex E1 (86.0 g)(32.7 cm) + (27.4 g)(16.0 cm) = E(5.0 cm). m S = 86.0 g m L1 = 27.4 g x L1 = 16.0 cm E =?? g

66 x E2 = 35.0 cm Second part of lever system c.g. x B = 10.0 cm B Suppose the mass of the lever is 31.4 g and its center of gravity is 18.0 cm from the fulcrum. x E2 = 35.0 cm c.g. x L2 = 18.0 cm. E = 650 g m L2 = 31.4 g x B = 10.0 cm m B =?? g Ex E2 = m L2 x L2 + m B x B

67 Ex E2 = m L2 x L2 + m B x B Second part of lever system (650 g)(35.0 cm) = (31.4 g)(18.0 cm) + m B (10.0 cm) m B = [(650 g)(35.0 cm) - (31.4 g)(18.0 cm)]/(10.0 cm) m B = 2218 g = kg x x E2 = 35.0 cm L2 = 18.0 cm c.g.. E = 650 g m L2 = 31.4 g x B = 10.0 cm m B =?? g

68 Things to note: You must build your own lever system. You may want to have two set places to have your fulcrum depending on the given masses. You may want to have the unknown mass at a predetermined spot and thus notching the lever at that point. Make sure that you know the mass of your lever and have marked the location of its center of gravity.

69 Other Types of Simple Machines.

70 Fixed Pulley A fixed pulley is basically a First Class Lever that can rotate. The mechanical advantage is 1. All a fixed pulley does is change the direction of the force. Effort Load Effort Fulcrum Load

71 Movable Pulley Effort A movable pulley is basically a Second Class Lever that can rotate. The mechanical advantage is 2. Effort Load Load Fulcrum

72 Block & Tackle A Block and Tackle is a combination of a movable pulley connected to a fixed pulley. In this case the mechanical advantage of the movable pulley is 2 and the MA of the fixed pulley is 1. Combined the mechanical advantage is 2. Effort In order to calculate the Ideal Mechanical Advantage, IMA, of a Block and Tackle, you count the number of supporting ropes. Load

73 Effort Load Block & Tackle A Block and Tackle is a combination of a movable pulley connected to a fixed pulley. In this case the mechanical advantage of the movable pulley is 2 and the MA of the fixed pulley is 1. Combined the mechanical advantage is 2. Work is done to lift the Load, but you also must lift the movable pulley with it. The AMA will be less, not only because of friction in the system but because the weight of the movable pulley also has to be lifted by the Effort.

74 d E d L Wheel and Axle A Wheel and Axle is two different diameter cylinders on the same shaft. This also is a first class lever that can rotate. The Ideal Mechanical Advantage is the ratio of the diameters. IMA = d E /d L. Load Effort Effort Fulcrum Load

75 All these are examples of a wheel and Axle.

76 Inclined Plane x h An inclined plane is basically a ramp that is stationary. A load is pushed up the ramp instead of being lifted straight up. The Ideal Mechanical Advantage of a ramp is the ratio of the length of the ramp (x) to the height of the ramp (h). IMA = x/h

77 Wedge A wedge is like an inclined plane, but instead of being stationary the wedge is driven into something or between things.

78 All these are examples of wedges.

79 LEVERS.

80 Class 1 Levers.

81 Class 1 Levers. One of these can also be used as a class 2 Lever. Which one? How?

82 COMPOUND MACHINES.

83 This is actually a compound machine. The teeth are wedges that cut into the wood. The whole blade is a wheel and axle.

84 These too are compound machines. The teeth are wedges that cut the wires. The handles make a class 1 lever.

85 GOOD LUCK!

Chapter: Work and Machines

Chapter: Work and Machines Table of Contents Chapter: Work and Machines Section 1: Work Section 2: Using Machines Section 3: Simple Machines 1 Work What is work? To many people, the word work means something they do to earn money.

More information

Static Equilibrium; Torque

Static Equilibrium; Torque Static Equilibrium; Torque The Conditions for Equilibrium An object with forces acting on it, but that is not moving, is said to be in equilibrium. The first condition for equilibrium is that the net force

More information

Unit 1: Equilibrium and Center of Mass

Unit 1: Equilibrium and Center of Mass Unit 1: Equilibrium and Center of Mass FORCES What is a force? Forces are a result of the interaction between two objects. They push things, pull things, keep things together, pull things apart. It s really

More information

l Every object in a state of uniform motion tends to remain in that state of motion unless an

l Every object in a state of uniform motion tends to remain in that state of motion unless an Motion and Machine Unit Notes DO NOT LOSE! Name: Energy Ability to do work To cause something to change move or directions Energy cannot be created or destroyed, but transferred from one form to another.

More information

Simple Machines. Bởi: OpenStaxCollege

Simple Machines. Bởi: OpenStaxCollege F Simple Machines Simple Machines Bởi: OpenStaxCollege Simple machines are devices that can be used to multiply or augment a force that we apply often at the expense of a distance through which we apply

More information

2.1 Introduction to Simple Machines

2.1 Introduction to Simple Machines 2.1 Introduction to Simple Machines 2.1 Introduction to Simple Machines Simple Machines Unit DO NOT WRITE ANYWHERE IN THIS PACKAGE One of the few properties that separate us from animals is our ability

More information

The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES. SPH4C Findlay

The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES. SPH4C Findlay The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES SPH4C Findlay What do you think of when you hear the word machine? Simple Machines Machines created

More information

Center of Mass. A baseball thrown into the air follows a smooth parabolic path. A baseball bat thrown into the air does not follow a smooth path.

Center of Mass. A baseball thrown into the air follows a smooth parabolic path. A baseball bat thrown into the air does not follow a smooth path. Center of Mass A baseball thrown into the air follows a smooth parabolic path. A baseball bat thrown into the air does not follow a smooth path. The bat wobbles about a special point. This point stays

More information

SPH 4C Unit 2 Mechanical Systems

SPH 4C Unit 2 Mechanical Systems SPH 4C Unit 2 Mechanical Systems Forces and Free Body Diagrams Learning Goal: I can consistently identify and draw Free Body Diagrams for given real world situations. There are 4 fundamental forces Gravity

More information

Work, Power, & Machines

Work, Power, & Machines Work, Power, & Machines What is work? The product of the force applied to an object and the distance through which that force is applied. Is work being done or not? Mowing the lawn Weight-lifting Moving

More information

Check out Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Check out  Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Name: Mr. Willis Conceptual Physics: Date: Unit IV Work, Power, and Machines Need extra help? Check out http://www.bayhicoach.com Unit IV Study Guide Multiple Choice Identify the letter of the choice that

More information

Work, Power, & Machines

Work, Power, & Machines Work, Power, & Machines 1 What is work? To many people, the word work means something they do to earn money. The word work also means exerting a force with your muscles. 1 What is work? Someone might say

More information

Unit 1 Lesson 1.1 Mechanisms. Simple Machines. The Six Simple Machines. The Six Simple Machines. Project Lead The Way, Inc.

Unit 1 Lesson 1.1 Mechanisms. Simple Machines. The Six Simple Machines. The Six Simple Machines. Project Lead The Way, Inc. Mechanisms Simple Machines Lever, Wheel and Axle, and Pulley 2012 Simple Machines Mechanisms that manipulate magnitude of force and distance. The Six Simple Machines Lever Wheel and Axle Pulley The Six

More information

STATIC EQUILIBRIUM. Purpose

STATIC EQUILIBRIUM. Purpose Purpose Theory STATIC EQUILIBRIUM a. To understand torque by experimentally measuring and manipulating them. b. To determine static equilibrium conditions by different torques that operate on a system.

More information

Section 2: Static Equilibrium II- Balancing Torques

Section 2: Static Equilibrium II- Balancing Torques Section 2: Static Equilibrium II- Balancing Torques Last Section: If (ie. Forces up = Forces down and Forces left = Forces right), then the object will have no translatory motion. In other words, the object

More information

How Do Objects Move? Describing Motion. Different Kinds of Motion

How Do Objects Move? Describing Motion. Different Kinds of Motion How Do Objects Move? Describing Motion Different Kinds of Motion Motion is everywhere. The planets are in motion around the Sun. Cars are in motion as they are driven down the street. There s even motion

More information

P12 Torque Notes.notebook. March 26, Torques

P12 Torque Notes.notebook. March 26, Torques Torques The size of a torque depends on two things: 1. The size of the force being applied (a larger force will have a greater effect) 2. The distance away from the pivot point (the further away from this

More information

use one of the methods to compute the magnitude of the torque, given the magnitudes of the force and position vector

use one of the methods to compute the magnitude of the torque, given the magnitudes of the force and position vector PH2213 : Examples from Chapter 12 : Static Equilibrium Equilibrium represents the condition where an object is not accelerating (either linearly or angularly). It can still be moving (and rotating), it

More information

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW Pagpalain ka! (Good luck, in Filipino) Date Chapter 8 - Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body

More information

ΣF = 0 and Στ = 0 In 2-d: ΣF X = 0 and ΣF Y = 0 Goal: Write expression for Στ and ΣF

ΣF = 0 and Στ = 0 In 2-d: ΣF X = 0 and ΣF Y = 0 Goal: Write expression for Στ and ΣF Thur Sept 24 Assign 5 Friday Exam Mon Oct 5 Morton 235 7:15-9:15 PM Email if conflict Today: Rotation and Torques Static Equilibrium Sign convention for torques: (-) CW torque (+) CCW torque Equilibrium

More information

Mechanisms Simple Machines. Lever, Wheel and Axle, & Pulley

Mechanisms Simple Machines. Lever, Wheel and Axle, & Pulley Mechanisms Simple Machines Lever, Wheel and Axle, & Pulley Simple Machines Mechanisms that manipulate magnitude of force and distance. The Six Simple Machines Lever Wheel and Axle Pulley The Six Simple

More information

Centripetal force keeps an object in circular motion Rotation and Revolution

Centripetal force keeps an object in circular motion Rotation and Revolution Centripetal force keeps an object in circular motion. 10.1 Rotation and Revolution Two types of circular motion are and. An is the straight line around which rotation takes place. When an object turns

More information

Section 2: Static Equilibrium II- Balancing Torques

Section 2: Static Equilibrium II- Balancing Torques Section 2: Static Equilibrium II- Balancing Torques Last Section: If (ie. Forces up = Forces down and Forces left = Forces right), then the object will have no translatory motion. In other words, the object

More information

Chapter 5 The Force Vector

Chapter 5 The Force Vector Conceptual Physics/ PEP Name: Date: Chapter 5 The Force Vector Section Review 5.1 1. Indicate whether each of the following units of measurement are scalar or vector units: Speed _scalar time scalar mass

More information

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius.

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius. Warm up A remote-controlled car's wheel accelerates at 22.4 rad/s 2. If the wheel begins with an angular speed of 10.8 rad/s, what is the wheel's angular speed after exactly three full turns? AP Physics

More information

Section 1: Work and Power. Section 2: Using Machines. Section 3: Simple Machines

Section 1: Work and Power. Section 2: Using Machines. Section 3: Simple Machines Table of Contents Chapter: Work and Simple Machines Section 1: Work and Power Section 2: Using Machines Section 3: Simple Machines 1 Work and Power What is work? Work is done when a force causes an object

More information

A machine* is a device that makes work easier, changes the direction of the work, or changes the speed of the work

A machine* is a device that makes work easier, changes the direction of the work, or changes the speed of the work Simple Machines A machine* is a device that makes work easier, changes the direction of the work, or changes the speed of the work A simple machine works with only one movement There are six simple machines

More information

a c = v2 F = ma F = Gm 1m 2 r d out RMA = F out r 2 " = Fd sin# IMA = d in eff = RMA F in IMA = W out

a c = v2 F = ma F = Gm 1m 2 r d out RMA = F out r 2  = Fd sin# IMA = d in eff = RMA F in IMA = W out Name: Physics Chapter 7 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: a c = v2 F = ma F = Gm 1m 2 r r 2 " = Fd sin#

More information

Work, Power and Machines

Work, Power and Machines CHAPTER 13.1 & 13.2 Work, Power and Machines Section one: Work, Power, and Machines Objective one: Calculate Work Objective Two: Differentiate Work and Power Objective Three: Discover that machines make

More information

CHAPTER 5. Work, Power and Machines

CHAPTER 5. Work, Power and Machines CHAPTER 5 Work, Power and Machines Section one: Work, Power, and Machines Objective one: Calculate Work Objective Two: Differentiate Work and Power Objective Three: Discover that machines make work easier

More information

Consider two students pushing with equal force on opposite sides of a desk. Looking top-down on the desk:

Consider two students pushing with equal force on opposite sides of a desk. Looking top-down on the desk: 1 Bodies in Equilibrium Recall Newton's First Law: if there is no unbalanced force on a body (i.e. if F Net = 0), the body is in equilibrium. That is, if a body is in equilibrium, then all the forces on

More information

Mechanical Advantage & Simple Machines. Physics 5 th Six Weeks

Mechanical Advantage & Simple Machines. Physics 5 th Six Weeks Mechanical Advantage & Simple Machines Physics 5 th Six Weeks And now, for an appetizer: Bill Nye and using Mechanical Advantage Mechanical Advantage A machine is something that makes doing work easier

More information

Broughton High School

Broughton High School 1 Physical Science Vocabulary Vocabulary for Chapter 5 - Work and Machines No.# Term Page # Definition 2 1. Compound Machine 2. Efficiency 3. Inclined Plane 4. Input force 5. Lever 6. Machine 7. Mechanical

More information

Rotational Motion. Chapter 8: Rotational Motion. Angular Position. Rotational Motion. Ranking: Rolling Cups 9/21/12

Rotational Motion. Chapter 8: Rotational Motion. Angular Position. Rotational Motion. Ranking: Rolling Cups 9/21/12 Rotational Motion Chapter 8: Rotational Motion In physics we distinguish two types of motion for objects: Translational Motion (change of location): Whole object moves through space. Rotational Motion

More information

Chapter 8 Rotational Motion and Equilibrium. 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction

Chapter 8 Rotational Motion and Equilibrium. 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction Chapter 8 Rotational Motion and Equilibrium Name 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction 1. The distance between a turning axis and the

More information

Rotational Equilibrium

Rotational Equilibrium Rotational Equilibrium 6-1 Rotational Equilibrium INTRODUCTION Have you ever tried to pull a stubborn nail out of a board or develop your forearm muscles by lifting weights? Both these activities involve

More information

Please read this introductory material carefully; it covers topics you might not yet have seen in class.

Please read this introductory material carefully; it covers topics you might not yet have seen in class. b Lab Physics 211 Lab 10 Torque What You Need To Know: Please read this introductory material carefully; it covers topics you might not yet have seen in class. F (a) (b) FIGURE 1 Forces acting on an object

More information

CPO Science Foundations of Physics

CPO Science Foundations of Physics CPO Science Foundations of Physics Unit 4, Chapter 10 Chapter 9 Unit 4: Energy and Momentum Chapter 10 Work and Energy 10.1 Machines and Mechanical Advantage 10.3 Energy and Conservation of Energy Chapter

More information

Chapter 5: Forces in Equilibrium

Chapter 5: Forces in Equilibrium Chapter 5: Forces in Equilibrium I don't know what I may seem to the world, but, as to myself, I seem to have been only like a boy playing on the sea shore, and diverting myself in now and then finding

More information

Work and Simple Machines

Work and Simple Machines Work Work and Simple Machines Simple Machines Mechanical Advantage Calculating MA Misc. 200 200 200 200 200 400 400 400 400 400 600 600 600 600 600 800 800 800 800 800 1000 1000 1000 1000 1000 FINAL JEOPARDY

More information

Announcements Oct 16, 2014

Announcements Oct 16, 2014 Announcements Oct 16, 2014 1. Prayer 2. While waiting, see how many of these blanks you can fill out: Centripetal Accel.: Causes change in It points but not Magnitude: a c = How to use with N2: Always

More information

Work & Simple Machines. Chapter 4

Work & Simple Machines. Chapter 4 Work & Simple Machines Chapter 4 Work & Power Section 1 Work Work - occurs when a force causes an object to move in the same direction that the force is applied. Work involves motion, not just effort.

More information

Comparing the Mechanical Advantage of Levers

Comparing the Mechanical Advantage of Levers Chapter 14 Work, Power, and Machines Investigation 14A Comparing the Mechanical Advantage of Levers Background Information A lever consists of a rigid bar that is free to rotate around a fixed point. The

More information

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²) Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of

More information

TORQUE Diandra Leslie-Pelecky Edited by Anne Starace

TORQUE Diandra Leslie-Pelecky Edited by Anne Starace TORQUE Diandra Leslie-Pelecky Edited by Anne Starace Abstract: As you may have noticed, it is much more difficult to hold an object at arm s length than close to your body and door handles are placed on

More information

Physics Unit: Force & Motion

Physics Unit: Force & Motion Physics Unit: Force & Motion What is physical science? A. Physical science is a field of science that studies matter and energy. B. Physical science has 2 main branches: 1. PHYSICS: the study of how matter

More information

Simple Machines. Wei-Chih Wang University of Washington

Simple Machines. Wei-Chih Wang University of Washington Simple Machines Wei-Chih Wang University of Washington What is Engineering? To different people, it means different things To me, it s an Art (constructive imagination) and sometimes it means making Toy

More information

W = Fd. KE = 1 2 mv2

W = Fd. KE = 1 2 mv2 Ch 10 Energy, Work and Simple Machines work: moving an object in the direction of the force exerted upon it (Joules) work W = Fd force (Newtons) (meters) distance object is displaced in the direction of

More information

PHYSICS 149: Lecture 21

PHYSICS 149: Lecture 21 PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30

More information

Chapter 9 TORQUE & Rotational Kinematics

Chapter 9 TORQUE & Rotational Kinematics Chapter 9 TORQUE & Rotational Kinematics This motionless person is in static equilibrium. The forces acting on him add up to zero. Both forces are vertical in this case. This car is in dynamic equilibrium

More information

Physics. Chapter 8 Rotational Motion

Physics. Chapter 8 Rotational Motion Physics Chapter 8 Rotational Motion Circular Motion Tangential Speed The linear speed of something moving along a circular path. Symbol is the usual v and units are m/s Rotational Speed Number of revolutions

More information

Rotational Mechanics Part II Torque. Pre AP Physics

Rotational Mechanics Part II Torque. Pre AP Physics Rotational Mechanics Part II Torque Pre AP Physics We have so far discussed rotational kinematics the description of rotational motion in terms of angle, angular velocity and angular acceleration. Now

More information

Lecture 2 - Force Analysis

Lecture 2 - Force Analysis Lecture 2 - orce Analysis A Puzzle... Triangle or quadrilateral? 4 distinct points in a plane can either be arrange as a triangle with a point inside or as a quadrilateral. Extra Brownie Points: Use the

More information

ISN X: WORK, POWER, MACHINES

ISN X: WORK, POWER, MACHINES name: per ISN X: WORK, POWER, MACHINES page # Item Check-in Point Value 1-2 Table of Contents/Things 2 Know no check for this --------------------- text Reading & Text Questions on 67-73 * 2 3 Eureka Work

More information

Simple machines and the lever

Simple machines and the lever Simple machines and the lever Objectives Define mechanical advantage. Calculate and demonstrate the mechanical advantage of a lever. Draw a free-body diagram of a simple machine. 1. What is mechanical

More information

PHYSICS - CLUTCH CH 13: ROTATIONAL EQUILIBRIUM.

PHYSICS - CLUTCH CH 13: ROTATIONAL EQUILIBRIUM. !! www.clutchprep.com EXAMPLE: POSITION OF SECOND KID ON SEESAW EXAMPLE: A 4 m-long seesaw 50 kg in mass and of uniform mass distribution is pivoted on a fulcrum at its middle, as shown. Two kids sit on

More information

Torques and Static Equilibrium

Torques and Static Equilibrium Torques and Static Equilibrium INTRODUCTION Archimedes, Greek mathematician, physicist, engineer, inventor and astronomer, was widely regarded as the leading scientist of the ancient world. He made a study

More information

Unit 4 Statics. Static Equilibrium Translational Forces Torque

Unit 4 Statics. Static Equilibrium Translational Forces Torque Unit 4 Statics Static Equilibrium Translational Forces Torque 1 Dynamics vs Statics Dynamics: is the study of forces and motion. We study why objects move. Statics: is the study of forces and NO motion.

More information

Chapter 15 Work, Power & Simple Machines

Chapter 15 Work, Power & Simple Machines Chapter 15 Work, Power & Simple Machines Essential Questions: I. What is Work? (In Physics Terms!) II. What is Power? (In Physics Terms!) III. How do machines make work easier and how efficient are they?

More information

PHYSICS. Chapter 12 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 12 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 12 Lecture RANDALL D. KNIGHT Chapter 12 Rotation of a Rigid Body IN THIS CHAPTER, you will learn to understand and apply the physics

More information

7.P Simple Machines Study Guide Multiple Choice: Identify the letter of the choice that best completes the statement or answers the question.

7.P Simple Machines Study Guide Multiple Choice: Identify the letter of the choice that best completes the statement or answers the question. 7.P.2.4 - Simple Machines Study Guide Multiple Choice: Identify the letter of the choice that best completes the statement or answers the question. 1. For work to be done on an object, a. some force need

More information

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

More information

CHAPTER 4 TEST REVIEW

CHAPTER 4 TEST REVIEW CHAPTER 4 TEST REVIEW Work = Force x Distance 1. Work is measured in. a. Newtons b. Joules c. Centimeters d. Grams 2. Sir Isaac Newton is famous for discovering the. a. Laws of motion b. Laws of work c.

More information

Today we applied our knowledge of vectors to different kinds of problems.

Today we applied our knowledge of vectors to different kinds of problems. DAY 18 Summary of Primary Topics Covered Center of Mass and More Vector Examples Today we applied our knowledge of vectors to different kinds of problems. Working these problems is a matter of taking concepts

More information

Physics 6A Lab Experiment 6

Physics 6A Lab Experiment 6 Biceps Muscle Model Physics 6A Lab Experiment 6 APPARATUS Biceps model Large mass hanger with four 1-kg masses Small mass hanger for hand end of forearm bar with five 100-g masses Meter stick Centimeter

More information

Newton s Laws and Free-Body Diagrams General Physics I

Newton s Laws and Free-Body Diagrams General Physics I Newton s Laws and Free-Body Diagrams In the next few sections, we will be exploring some of the most fundamental laws of our universe, laws that govern the relationship actions and motion. These laws are

More information

Chapter 09 Multiple Choice Test

Chapter 09 Multiple Choice Test Class: Date: Chapter 09 Multiple Choice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A simple machine can multiply: a. forces only. b. energy only.

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

Torque and Rotational Equilibrium

Torque and Rotational Equilibrium Torque and Rotational Equilibrium Theory Torque is the rotational analog of force. If you want something to move (translate), you apply a force; if you want something to rotate, you apply a torque. Torque

More information

Principles of Technology

Principles of Technology Principles of Technology Prime Movers in Mechanical Systems Introduction Force and torque are the two prime movers in any mechanical system. Force is the name given to a push or pull on an object that

More information

PHY 1150 Doug Davis Chapter 8; Static Equilibrium 8.3, 10, 22, 29, 52, 55, 56, 74

PHY 1150 Doug Davis Chapter 8; Static Equilibrium 8.3, 10, 22, 29, 52, 55, 56, 74 PHY 1150 Doug Davis Chapter 8; Static Equilibrium 8.3, 10, 22, 29, 52, 55, 56, 74 8.3 A 2-kg ball is held in position by a horizontal string and a string that makes an angle of 30 with the vertical, as

More information

transfer of heat energy by conduction, convection, and radiation Doppler effect static electricity

transfer of heat energy by conduction, convection, and radiation Doppler effect static electricity Energy, Force, and Motion identifying energy transformations; Identifying and analyzing the transfer of heat energy by conduction, convection, and radiation interpreting a phase diagram; describing and

More information

Rotational Equilibrium

Rotational Equilibrium Rotational Equilibrium In this laboratory, we study the conditions for static equilibrium. Axis Through the Center of Gravity Suspend the meter stick at its center of gravity, with its numbers increasing

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Torque and levers * Free High School Science Texts Project. 1 Torque and Levers

Torque and levers * Free High School Science Texts Project. 1 Torque and Levers OpenStax-CNX module: m38992 1 Torque and levers * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 Torque and

More information

Application of Forces. Chapter Eight. Torque. Force vs. Torque. Torque, cont. Direction of Torque 4/7/2015

Application of Forces. Chapter Eight. Torque. Force vs. Torque. Torque, cont. Direction of Torque 4/7/2015 Raymond A. Serway Chris Vuille Chapter Eight Rotational Equilibrium and Rotational Dynamics Application of Forces The point of application of a force is important This was ignored in treating objects as

More information

Physics 12 Unit 2: Vector Dynamics

Physics 12 Unit 2: Vector Dynamics 1 Physics 12 Unit 2: Vector Dynamics In this unit you will extend your study of forces. In particular, we will examine force as a vector quantity; this will involve solving problems where forces must be

More information

2016 Junior Lesson One

2016 Junior Lesson One 2016 Junior Lesson One To complete this lesson make sure you answer all the questions in bold and do one of the projects at the end of the lesson. Parts marked ADVANCED are for the curious. This year we

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 130) Lecture 0 Rotational dynamics equilibrium nd Newton s Law for rotational motion rolling Exam II review http://www.physics.wayne.edu/~apetrov/phy130/ Lightning Review Last lecture:

More information

Forces I. Newtons Laws

Forces I. Newtons Laws Forces I Newtons Laws Kinematics The study of how objects move Dynamics The study of why objects move Newton s Laws and Forces What is force? What are they? Force A push or a pull Symbol is F Unit is N

More information

Uniform Circular Motion

Uniform Circular Motion Uniform Circular Motion Motion in a circle at constant angular speed. ω: angular velocity (rad/s) Rotation Angle The rotation angle is the ratio of arc length to radius of curvature. For a given angle,

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

Holt Physics Chapter 8. Rotational Equilibrium and Dynamics

Holt Physics Chapter 8. Rotational Equilibrium and Dynamics Holt Physics Chapter 8 Rotational Equilibrium and Dynamics Apply two equal and opposite forces acting at the center of mass of a stationary meter stick. F 1 F 2 F 1 =F 2 Does the meter stick move? F ext

More information

Study Guide. Physics 3104A. Science. Force, Motion and Energy. Adult Basic Education. Prerequisite: Physics 2104B or Physics 2204.

Study Guide. Physics 3104A. Science. Force, Motion and Energy. Adult Basic Education. Prerequisite: Physics 2104B or Physics 2204. Adult Basic Education Science Force, Motion and Energy Prerequisite: Physics 2104B or Physics 2204 Credit Value: 1 Text: Physics: Concepts and Connections. Irwin, 2002 Physics Concentration Physics 1104

More information

Date Period Name. Energy, Work, and Simple Machines Vocabulary Review

Date Period Name. Energy, Work, and Simple Machines Vocabulary Review Date Period Name CHAPTER 10 Study Guide Energy, Work, and Simple Machines Vocabulary Review Write the term that correctly completes the statement. Use each term once. compound machine joule resistance

More information

Chapter 9 Rotational Dynamics

Chapter 9 Rotational Dynamics Chapter 9 ROTATIONAL DYNAMICS PREVIEW A force acting at a perpendicular distance from a rotation point, such as pushing a doorknob and causing the door to rotate on its hinges, produces a torque. If the

More information

Lesson 1: How can you describe motion?

Lesson 1: How can you describe motion? Lesson 1 Summary Use with pp. 407 409 Lesson 1: How can you describe motion? Vocabulary velocity the speed and direction of an object s motion Types of Motion Motion is movement. When you see something

More information

Chapter 9: Rotational Dynamics Tuesday, September 17, 2013

Chapter 9: Rotational Dynamics Tuesday, September 17, 2013 Chapter 9: Rotational Dynamics Tuesday, September 17, 2013 10:00 PM The fundamental idea of Newtonian dynamics is that "things happen for a reason;" to be more specific, there is no need to explain rest

More information

Forces and Newton s Laws Notes

Forces and Newton s Laws Notes Forces and Newton s Laws Notes Force An action exerted on an object which can change the motion of the object. The SI unit for force is the Newton (N) o N = (kg m)/s 2 o Pound is also a measure of force

More information

WORK, ENERGY, AND MACHINES

WORK, ENERGY, AND MACHINES WORK, ENERGY, AND MACHINES Vocabulary Review Write the term that correctly completes the statement. Use each term once. compound machine joule resistance force efficiency kinetic energy translational kinetic

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8. Rotational Equilibrium and Rotational Dynamics Chapter 8 Rotational Equilibrium and Rotational Dynamics 1 Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related 2 Torque The door is free to rotate

More information

Section 1 Work, Power, and Machines

Section 1 Work, Power, and Machines Chapter 12 Work and Energy Section 1 Work, Power, and Machines Section 2 Simple Machines Section 3 What is Energy? Section 4 Conservation of Energy Skills Experiment Design SI Units and SI unit conversions

More information

Lab 2: Equilibrium. Note: the Vector Review from the beginning of this book should be read and understood prior to coming to class!

Lab 2: Equilibrium. Note: the Vector Review from the beginning of this book should be read and understood prior to coming to class! Lab 2: Equilibrium Note: This lab will be conducted over 2 weeks, with half the class working with forces while the other half works with torques the first week, and then switching the second week. Description

More information

AP Physics 1 Rotational Motion Practice Test

AP Physics 1 Rotational Motion Practice Test AP Physics 1 Rotational Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A spinning ice skater on extremely smooth ice is able

More information

Applying Newton s Laws

Applying Newton s Laws Chapter 5 Applying Newton s Laws PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Goals for Chapter 5 To use and apply Newton s Laws

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

Lever Lab: First Class Lever

Lever Lab: First Class Lever Lever Lab 2 Name: Lever Lab: First Class Lever Objective: To investigate the use of a lever as a simple machine. Materials: Workshop Stand, Lever, Bolt, Hooked Masses Background: A lever is one of the

More information

Definition. is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau)

Definition. is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau) Torque Definition is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau) = r F = rfsin, r = distance from pivot to force, F is the applied force

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Torque and Rotational Equilibrium

Torque and Rotational Equilibrium Torque and Rotational Equilibrium Name Section Theory Torque is the rotational analog of force. If you want something to move (translate), you apply a force; if you want something to rotate, you apply

More information