ME 200 Thermodynamics I, Spring 2015, Exam 3, 8 p.m. to 9 p.m. on April 14, 2015

Size: px
Start display at page:

Download "ME 200 Thermodynamics I, Spring 2015, Exam 3, 8 p.m. to 9 p.m. on April 14, 2015"

Transcription

1 ME 200 Thermodynamics I, Spring 2015, Exam 3, 8 p.m. to 9 p.m. on April 14, 2015 CIRCLE YOUR LECTURE BELOW: 7:30 a.m. 10:30 a.m. 12:30 p.m. 2:30 p.m. 4:30 p.m. Joglekar Chen Chen Kittel Naik INSTRUCTIONS 1. This is a closed book examination. You are provided with an equation sheet and all the property tables needed. 2. Do not hesitate to ask the instructor if you do not understand a problem statement. 3. Start each problem on the same page as the problem statement. Write on only one side of the page. Materials on the back side of the page will not be graded. There are blank pages following problems 2 and 3 for your work. If you need extra pages, ask the instructor. 4. Put only one problem on a page. Another problem on the same page will not be graded. 5. Label your system and list relevant assumptions for problems 2 and If you give multiple solutions, you will receive only a partial credit although one of the solutions might be correct. Delete the solution you do not want graded. 7. For your own benefit, please write clearly and legibly. Maximum credit for each problem is indicated below. 8. After you have completed the exam, at your seat put your papers in order. This may mean that you have to remove the staple and re-staple. Do not turn in loose pages. 9. Once time is called you must stop working on the exam. Points will be subtracted if you continue working on the exam. Problem Possible Score Total 100 1

2 Problem 1: (30/100 points) Each part of this problem is worth 6 points. There is no partial credit and your answer must be placed in the box. The standard problem solving procedure is not required for Problem 1. For parts (1), (2) and (3) of Problem 1, refer to the following T-s diagram of a Carnot refrigeration cycle. (K) (1) What is the value of Q H (heat rejected to the high temperature reservoir), in J? (2) Consider Process 1 to 2. If the working fluid is an ideal gas, how should the pressure vary? (a) Pressure will increase (b) Pressure will remain constant (c) Pressure will decrease (d) Not enough information is given (3) What are some potential sources of irreversibility that would lead to entropy production if we tried to build the refrigeration cycle in real life? (a) Heat transfer through a finite temperature difference (b) Throttling process (c) Friction between piston and cylinder (d) All of the above (4) What assumption(s) is(are) required for the following equation to be valid: (p 2 /p 1 ) = (p r2 /p r1 )? (a) Ideal gas (b) Constant specific heat (c) Isentropic (d) Open system (5) What assumption(s) is(are) required for the following equation to be valid? (a) Internally reversible 2du 2 Pdv (b) Adiabatic s = + 1 T 1 T (c) Closed system (d) None of the above J 2

3 Problem 2 (35/100 points) Given: A piston-cylinder assembly contains 2.0 lb m of saturated liquid and vapor water mixture at 660ºR and quality of 0.2 (State 1). It undergoes an isothermal expansion until it becomes saturated vapor (State 2) while receiving heat from a hot reservoir. Additional information is provided in the table below. State v (ft 3 /lb m ) u (Btu/lb m ) s (Btu/lb m or) Find: (a) Complete the table. (b) Evaluate the work done by the system, in Btu. (c) Determine the heat transfer into the system, in Btu. (d) Calculate the reservoir temperature if the entropy produced is Btu/ºR, in o R. (e) Draw the process on T-s diagram and label states 1 and 2. Place your final answers in the boxes below: (b) Btu (c) Btu (d) ºR System sketch: (Label the system under your consideration, such as control mass/volume) Hot Reservoir T H =? ºR T 1 = T 2 = 660ºR Q 1 2 Assumptions: (e) T s 3

4 Problem 2 (continued) Basic equations: Solution: (b) 4

5 Problem 2 (continued) 5

6 Problem 3 (35/100 points) Given: Air flowing steadily at the rate of 5 kg/s enters a well-insulated compressor at 1 bar and 300 K (State 1). Air is compressed to a pressure of 6.07 bar (State 2). The compressor requires power input of kw. The specific heat is not constant. Do not interpolate; use the closest table value. Molecular weight of air = kg/kmol Universal gas constant = kj/kmol K Find: (a) Calculate temperature of air at the exit of the compressor, in K. (b) Find the rate of entropy generation for the compressor, in kw/k. (c) Determine the isentropic efficiency of the compressor, in %. (d) Show the isentropic and actual process for air on T-s diagram. Label states and constant pressure lines. Place your final answers in the boxes below: (a) K (b) kw/k (c) % System sketch: (Label the system under your consideration, such as control mass/volume) W compressor P 1 = 1 bar T 1 = 300 K Compressor P 2 = 6.07 bar Assumptions: (d) T s 6

7 Problem 3 (continued) Basic equations: Solution: (a) 7

8 Problem 3 (continued) 8

ME 200 Final Exam December 12, :00 a.m. to 10:00 a.m.

ME 200 Final Exam December 12, :00 a.m. to 10:00 a.m. CIRCLE YOUR LECTURE BELOW: First Name Last Name 7:30 a.m. 8:30 a.m. 10:30 a.m. 1:30 p.m. 3:30 p.m. Mongia Abraham Sojka Bae Naik ME 200 Final Exam December 12, 2011 8:00 a.m. to 10:00 a.m. INSTRUCTIONS

More information

FINAL EXAM. ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW:

FINAL EXAM. ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW: ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW: Div. 5 7:30 am Div. 2 10:30 am Div. 4 12:30 am Prof. Naik Prof. Braun Prof. Bae Div. 3 2:30 pm Div. 1 4:30 pm Div. 6 4:30 pm Prof. Chen Prof.

More information

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m.

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m. CIRCLE YOUR LECTURE BELOW: First Name Last Name 7:30 a.m. 8:30 a.m. 10:30 a.m. 11:30 a.m. Boregowda Boregowda Braun Bae 2:30 p.m. 3:30 p.m. 4:30 p.m. Meyer Naik Hess ME 200 Final Exam December 14, 2015

More information

ME 200 Exam 2 October 16, :30 p.m. to 7:30 p.m.

ME 200 Exam 2 October 16, :30 p.m. to 7:30 p.m. CIRCLE YOUR LECTURE BELOW: First Name Solution Last Name 7:30 am 8:30 am 10:30 am 11:30 am Joglekar Bae Gore Abraham 1:30 pm 3:30 pm 4:30 pm Naik Naik Cheung ME 200 Exam 2 October 16, 2013 6:30 p.m. to

More information

EXAM # 1 CIRCLE YOUR LECTURE BELOW: 8:30 am 11:30 am 2:30 pm Prof. Memon Prof. Naik Prof. Lucht INSTRUCTIONS

EXAM # 1 CIRCLE YOUR LECTURE BELOW: 8:30 am 11:30 am 2:30 pm Prof. Memon Prof. Naik Prof. Lucht INSTRUCTIONS Last Name First Name CIRCLE YOUR LECTURE BELOW: 8: am : am : pm Prof. Memon Prof. Naik Prof. Lucht EXAM # INSTRUCTIONS. This is a closed book examination. An equation sheet and all needed property tables

More information

EXAM # 1 ME 300 SP2017

EXAM # 1 ME 300 SP2017 CIRCLE YOUR LECTURE BELOW: 8:3 am :3 am 3:3 pm Prof. Lucht Prof. Chen Prof. Goldenstein EXAM # ME 3 SP7 INSTRUCTIONS. Please place all your electronics, including but not limited to cell phones, computers,

More information

ME 200 Exam 2 October 22, :30 p.m. to 7:30 p.m.

ME 200 Exam 2 October 22, :30 p.m. to 7:30 p.m. CIRCLE YOUR LECTURE BELOW: First Name Solution Last Name 7:0 a.m. 8:0 a.m. 10:0 a.m. 11:0 a.m. Boregowda Boregowda Braun Bae :0 p.m. :0 p.m. 4:0 p.m. Meyer Naik Hess ME 00 Exam October, 015 6:0 p.m. to

More information

Last Name: First Name: Purdue ID: Please write your name in BLOCK letters. Otherwise Gradescope may not recognize your name.

Last Name: First Name: Purdue ID: Please write your name in BLOCK letters. Otherwise Gradescope may not recognize your name. Solution Key Last Name: First Name: Purdue ID: Please write your name in BLOCK letters. Otherwise Gradescope may not recognize your name. CIRCLE YOUR LECTURE BELOW: MWF 10:30 am MWF 3:30 pm TR 8:30 am

More information

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process:

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process: Last Name First Name ME 300 Engineering Thermodynamics Exam #2 Spring 2008 March 28, 2008 Form A Note : (i) (ii) (iii) (iv) Closed book, closed notes; one 8.5 x 11 sheet allowed. 60 points total; 60 minutes;

More information

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy;

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy; MAE 320 HW 7B his comprehensive homework is due Monday, December 5 th, 206. Each problem is worth the points indicated. Copying of the solution from another is not acceptable. Multi-choice, multi-answer

More information

Number of extra papers used if any

Number of extra papers used if any Last Name: First Name: Thermo no. ME 200 Thermodynamics 1 Fall 2018 Exam Circle your structor s last name Division 1 (7:0): Naik Division (1:0): Wassgren Division 6 (11:0): Sojka Division 2 (9:0): Choi

More information

MAE 320 THERODYNAMICS FINAL EXAM - Practice. Name: You are allowed three sheets of notes.

MAE 320 THERODYNAMICS FINAL EXAM - Practice. Name: You are allowed three sheets of notes. 50 MAE 320 THERODYNAMICS FINAL EXAM - Practice Name: You are allowed three sheets of notes. 1. Fill in the blanks for each of the two (Carnot) cycles below. (a) 5 a) Heat engine or Heat pump/refrigerator

More information

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number:

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION June 19, 2015 2:30 pm - 4:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Permitted

More information

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE Chapter 6 Using Entropy 1 2 Chapter Objective Means are introduced for analyzing systems from the 2 nd law perspective as they undergo processes that are not necessarily cycles. Objective: introduce entropy

More information

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION February 14, 2011 5:30 pm - 7:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Answer all questions

More information

Chapter 6. Using Entropy

Chapter 6. Using Entropy Chapter 6 Using Entropy Learning Outcomes Demonstrate understanding of key concepts related to entropy and the second law... including entropy transfer, entropy production, and the increase in entropy

More information

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. Both the Kelvin and Fahrenheit scales are absolute temperature scales. Specific volume, v, is an intensive property,

More information

ME 200 Thermodynamics 1 Fall 2017 Exam 3

ME 200 Thermodynamics 1 Fall 2017 Exam 3 ME 200 hermodynamics 1 Fall 2017 Exam Circle your structor s last name Division 1: Naik Division : Wassgren Division 6: Braun Division 2: Sojka Division 4: Goldenste Division 7: Buckius Division 8: Meyer

More information

ME 300 Thermodynamics II Exam 1 September 27, :00 p.m. 9:00 p.m.

ME 300 Thermodynamics II Exam 1 September 27, :00 p.m. 9:00 p.m. ME 00 Thermodynamics II Exam 1 September 7, 01 8:00 p.m. 9:00 p.m. Name: Solution Section (Circle One): Sojka Naik 11:0 a.m. 1:0 p.m. Instructions: This is a closed book/notes exam. You may use a calculator.

More information

University of Engineering & Technology Lahore. (KSK Campus)

University of Engineering & Technology Lahore. (KSK Campus) Course File Session-2015 Semester: Fall 2016 MT-24: Thermodynamics for Technologists Department of Mechanical Engineering University of Engineering & Technology Lahore. (KSK Campus) Course File Contents

More information

Readings for this homework assignment and upcoming lectures

Readings for this homework assignment and upcoming lectures Homework #3 (group) Tuesday, February 13 by 4:00 pm 5290 exercises (individual) Thursday, February 15 by 4:00 pm extra credit (individual) Thursday, February 15 by 4:00 pm Readings for this homework assignment

More information

Course: MECH-341 Thermodynamics II Semester: Fall 2006

Course: MECH-341 Thermodynamics II Semester: Fall 2006 FINAL EXAM Date: Thursday, December 21, 2006, 9 am 12 am Examiner: Prof. E. Timofeev Associate Examiner: Prof. D. Frost READ CAREFULLY BEFORE YOU PROCEED: Course: MECH-341 Thermodynamics II Semester: Fall

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2018, UC Berkeley Midterm 1 February 13, 2018 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed Please show

More information

ME 200 Thermodynamics 1 Fall 2016 Final Exam

ME 200 Thermodynamics 1 Fall 2016 Final Exam Last Name: First Name: Thermo no. ME 200 Thermodynamics 1 Fall 2016 Final Exam Circle your instructor s last name Ardekani Bae Fisher olloway Jackson Meyer Sojka INSTRUCTIONS This is a closed book and

More information

KNOWN: Data are provided for a closed system undergoing a process involving work, heat transfer, change in elevation, and change in velocity.

KNOWN: Data are provided for a closed system undergoing a process involving work, heat transfer, change in elevation, and change in velocity. Problem 44 A closed system of mass of 10 kg undergoes a process during which there is energy transfer by work from the system of 0147 kj per kg, an elevation decrease of 50 m, and an increase in velocity

More information

ME 200 Thermodynamics 1 Spring Exam 2

ME 200 Thermodynamics 1 Spring Exam 2 Last Name: First Name: Thermo no. ME 200 Thermodynamics 1 Sprg 2017 - Exam 2 Circle your structor s last name Ardekani Fisher Hess Naik Sojka (onle and on campus) INSTRUCTIONS This is a closed book and

More information

Unified Thermodynamics Quiz 1

Unified Thermodynamics Quiz 1 Unified Thermodynamics Quiz 1 November 22, 2006 Calculators allowed. No books or notes allowed. A list of equations is provided. Put your ID number on each page of the exam. Read all questions carefully.

More information

Circle your instructor s last name

Circle your instructor s last name ME 00 Thermodynamics Fall 07 Exam Circle your structor s last name Division : Naik Division : Wassgren Division 6: Braun Division : Sojka Division 4: Goldenste Division 7: Buckius Division 8: Meyer INSTRUCTIONS

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2018, UC Berkeley Midterm 2 March 22, 2018 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed Please show all

More information

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points)

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points) HW-1 (25 points) (a) Given: 1 for writing given, find, EFD, etc., Schematic of a household piping system Find: Identify system and location on the system boundary where the system interacts with the environment

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 13 June 2007 Midterm Examination R. Culham This is a 2 hour, open-book examination. You are permitted to use: course text book calculator There are

More information

ME Thermodynamics I

ME Thermodynamics I Homework - Week 01 HW-01 (25 points) Given: 5 Schematic of the solar cell/solar panel Find: 5 Identify the system and the heat/work interactions associated with it. Show the direction of the interactions.

More information

8:30 am 11:30 am 2:30 pm Prof. Memon Prof. Naik Prof. Lucht

8:30 am 11:30 am 2:30 pm Prof. Memon Prof. Naik Prof. Lucht 1 Last Name First Name CIRCLE YOUR LECTURE BELOW: 8:3 am 11:3 am :3 pm Prof. Memon Prof. Naik Prof. Luht EXAM # 3 INSTRUCTIONS 1. This is a losed book examination. An equation sheet and all needed property

More information

Number of extra papers used if any

Number of extra papers used if any Last Nae: First Nae: Thero no. ME 00 Therodynaics 1 Fall 018 Exa 1 Circle your instructor s last nae Division 1 (7:0): Naik Division (1:0): Wassgren Division 6 (11:0): Sojka Division (9:0): Choi Division

More information

Chemical Engineering Thermodynamics Spring 2002

Chemical Engineering Thermodynamics Spring 2002 10.213 Chemical Engineering Thermodynamics Spring 2002 Test 2 Solution Problem 1 (35 points) High pressure steam (stream 1) at a rate of 1000 kg/h initially at 3.5 MPa and 350 ºC is expanded in a turbine

More information

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 7 Entropy by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics: An Engineering Approach, 5th ed.,

More information

Lecture 29-30: Closed system entropy balance

Lecture 29-30: Closed system entropy balance ME 200 Thermodynamics I Spring 2016 Lecture 29-30: Closed system entropy balance Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 200240, P.

More information

1. INTRODUCTION TO REFRIGERATION AND AIR CONDITION

1. INTRODUCTION TO REFRIGERATION AND AIR CONDITION CHAPTER ONE 1. INTRODUCTION TO REFRIGERATION AND AIR CONDITION Refrigeration may be defined as the process of reducing and maintaining a temperature of a space or material below that of the surroundings.

More information

1. j&& 100 &o 2. %4k%-ig#3g%m+~%%a*&4+s 5fl~J6?~+* O

1. j&& 100 &o 2. %4k%-ig#3g%m+~%%a*&4+s 5fl~J6?~+* O 1. j&& 100 &o 2. %4k%-ig#3g%m+~%%a*&4+s 5fl~J6?~+* O 3. Mathematical and governing equations are listed in page 6. Problem 1. &$Fa ( ff- 10 /J.% 9 $./J.% 2 @ ff- 20 %) ( ) 1. Compressibility factor, Z,

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2017, UC Berkeley Midterm 2 FORM A March 23, 2017 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed Please show

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 20 June 2005 Midterm Examination R. Culham & M. Bahrami This is a 90 minute, closed-book examination. You are permitted to use one 8.5 in. 11 in. crib

More information

PROBLEM 6.3. Using the appropriate table, determine the indicated property. In each case, locate the state on sketches of the T-v and T-s diagrams.

PROBLEM 6.3. Using the appropriate table, determine the indicated property. In each case, locate the state on sketches of the T-v and T-s diagrams. PROBLEM 63 Using the appropriate table, determine the indicated property In each case, locate the state on sketches of the -v and -s diagrams (a) water at p = 040 bar, h = 147714 kj/kg K Find s, in kj/kg

More information

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

R13 SET - 1 '' ''' '' ' '''' Code No RT21033 SET - 1 II B. Tech I Semester Supplementary Examinations, June - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

ERRATA SHEET Thermodynamics: An Engineering Approach 8th Edition Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015

ERRATA SHEET Thermodynamics: An Engineering Approach 8th Edition Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 ERRATA SHEET Thermodynamics: An Engineering Approach 8th Edition Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 December 2015 This errata includes all corrections since the first printing of the book.

More information

First Name Last Name CIRCLE YOUR LECTURE BELOW: Div. 1 10:30 am Div. 2 2:30 pm Div. 3 4:30 pm Prof. Gore Prof. Udupa Prof. Chen

First Name Last Name CIRCLE YOUR LECTURE BELOW: Div. 1 10:30 am Div. 2 2:30 pm Div. 3 4:30 pm Prof. Gore Prof. Udupa Prof. Chen CIRCLE YOUR LECURE BELOW: Div. 1 10:30 am Div. :30 m Div. 3 4:30 m Prof. Gore Prof. Udua Prof. Chen EXAM # 3 INSRUCIONS 1. his is a closed book examination. All needed roerty tables are rovided.. Do not

More information

Classification following properties of the system in Intensive and Extensive

Classification following properties of the system in Intensive and Extensive Unit I Classification following properties of the system in Intensive and Extensive Extensive : mass, weight, volume, potential energy, Kinetic energy, Internal energy, entropy, exergy, energy, magnetization

More information

Two mark questions and answers UNIT II SECOND LAW 1. Define Clausius statement. It is impossible for a self-acting machine working in a cyclic process, to transfer heat from a body at lower temperature

More information

Thermodynamics II. Week 9

Thermodynamics II. Week 9 hermodynamics II Week 9 Example Oxygen gas in a piston cylinder at 300K, 00 kpa with volume o. m 3 is compressed in a reversible adiabatic process to a final temperature of 700K. Find the final pressure

More information

To receive full credit all work must be clearly provided. Please use units in all answers.

To receive full credit all work must be clearly provided. Please use units in all answers. Exam is Open Textbook, Open Class Notes, Computers can be used (Computer limited to class notes, lectures, homework, book material, calculator, conversion utilities, etc. No searching for similar problems

More information

Thermal Energy Final Exam Fall 2002

Thermal Energy Final Exam Fall 2002 16.050 Thermal Energy Final Exam Fall 2002 Do all eight problems. All problems count the same. 1. A system undergoes a reversible cycle while exchanging heat with three thermal reservoirs, as shown below.

More information

Chapter 7. Entropy: A Measure of Disorder

Chapter 7. Entropy: A Measure of Disorder Chapter 7 Entropy: A Measure of Disorder Entropy and the Clausius Inequality The second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of microscopic

More information

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2)

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2) 1. This question is about thermodynamic processes. (a) Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas.......... An ideal gas is held in a container by a moveable

More information

2012 Thermodynamics Division C

2012 Thermodynamics Division C Team: Team Number: Team Member Names: 1. 2. Instructions: Answer all questions on the test paper. If you need more room, you may attach extra paper. The test is worth a total of 50 points. Show all work

More information

CHAPTER 8 ENTROPY. Blank

CHAPTER 8 ENTROPY. Blank CHAPER 8 ENROPY Blank SONNAG/BORGNAKKE SUDY PROBLEM 8-8. A heat engine efficiency from the inequality of Clausius Consider an actual heat engine with efficiency of η working between reservoirs at and L.

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2017, UC Berkeley Midterm 2 FORM B March 23, 2017 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed lease show

More information

EVALUATING PROPERTIES FOR A PURE SUBSTANCES. By Ertanto Vetra

EVALUATING PROPERTIES FOR A PURE SUBSTANCES. By Ertanto Vetra EVALUATING PROPERTIES FOR A PURE SUBSTANCES 1 By Ertanto Vetra Outlines - TV, PV, PT, PVT Diagram - Property Tables - Introduction to Enthalpy - Reference State & Reference Values - Ideal Gas Equation

More information

Unified Quiz: Thermodynamics

Unified Quiz: Thermodynamics Unified Quiz: Thermodynamics October 14, 2005 Calculators allowed. No books or notes allowed. A list of equations is provided. Put your ID number on each page of the exam. Read all questions carefully.

More information

ME Thermodynamics I. Lecture Notes and Example Problems

ME Thermodynamics I. Lecture Notes and Example Problems ME 227.3 Thermodynamics I Lecture Notes and Example Problems James D. Bugg September 2018 Department of Mechanical Engineering Introduction Part I: Lecture Notes This part contains handout versions of

More information

King Fahd University of Petroleum & Minerals

King Fahd University of Petroleum & Minerals King Fahd University of Petroleum & Minerals Mechanical Engineering Thermodynamics ME 04 BY Dr. Haitham Bahaidarah My Office Office Hours: :00 0:00 am SMW 03:00 04:00 pm UT Location: Building Room # 5.4

More information

Physics 121, April 29, The Second Law of Thermodynamics.

Physics 121, April 29, The Second Law of Thermodynamics. Physics 121, April 29, 2008. The Second Law of Thermodynamics. http://www.horizons.uc.edu/masterjuly1998/oncampus.htm Physics 121. April 29, 2008. Course Information Topics to be discussed today: The Second

More information

MAE 110A. Homework 6: Solutions 11/9/2017

MAE 110A. Homework 6: Solutions 11/9/2017 MAE 110A Hoework 6: Solutions 11/9/2017 H6.1: Two kg of H2O contained in a piston-cylinder assebly, initially at 1.0 bar and 140 C undergoes an internally ersible, isotheral copression to 25 bar. Given

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 12 June 2006

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 12 June 2006 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 1 June 006 Midterm Examination R. Culham This is a hour, closed-book examination. You are permitted to use one 8.5 in. 11 in. crib sheet (one side

More information

Content. Entropy and principle of increasing entropy. Change of entropy in an ideal gas.

Content. Entropy and principle of increasing entropy. Change of entropy in an ideal gas. Entropy Content Entropy and principle of increasing entropy. Change of entropy in an ideal gas. Entropy Entropy can be viewed as a measure of molecular disorder, or molecular randomness. As a system becomes

More information

Common Terms, Definitions and Conversion Factors

Common Terms, Definitions and Conversion Factors 1 Common Terms, Definitions and Conversion Factors 1. Force: A force is a push or pull upon an object resulting from the object s interaction with another object. It is defined as Where F = m a F = Force

More information

Lecture 44: Review Thermodynamics I

Lecture 44: Review Thermodynamics I ME 00 Thermodynamics I Lecture 44: Review Thermodynamics I Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R. China Email : liyo@sjtu.edu.cn

More information

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22.

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22. Entropy Clausius inequality can be used to analyze the cyclic process in a quantitative manner. The second law became a law of wider applicability when Clausius introduced the property called entropy.

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of Thermodynamics Reading Problems 7-1 7-3 7-88, 7-131, 7-135 7-6 7-10 8-24, 8-44, 8-46, 8-60, 8-73, 8-99, 8-128, 8-132, 8-1 8-10, 8-13 8-135, 8-148, 8-152, 8-166, 8-168, 8-189

More information

Lecture 35: Vapor power systems, Rankine cycle

Lecture 35: Vapor power systems, Rankine cycle ME 00 Thermodynamics I Spring 015 Lecture 35: Vapor power systems, Rankine cycle Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R.

More information

Refrigeration. 05/04/2011 T.Al-Shemmeri 1

Refrigeration. 05/04/2011 T.Al-Shemmeri 1 Refrigeration is a process of controlled removal of heat from a substance to keep it at a temperature below the ambient condition, often below the freezing point of water (0 O C) 05/04/0 T.Al-Shemmeri

More information

7. Development of the 2nd Law

7. Development of the 2nd Law 7-1 7. Development of the 2nd Law 7.1 1st Law Limitations The 1 st Law describes energy accounting. Once we have a process (or string of processes) we can calculate the relevant energy interactions. The

More information

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1 CHAPTER 7 ENTROPY S. I. Abdel-Khalik (2014) 1 ENTROPY The Clausius Inequality The Clausius inequality states that for for all cycles, reversible or irreversible, engines or refrigerators: For internally-reversible

More information

Thermodynamics is the Science of Energy and Entropy

Thermodynamics is the Science of Energy and Entropy Definition of Thermodynamics: Thermodynamics is the Science of Energy and Entropy - Some definitions. - The zeroth law. - Properties of pure substances. - Ideal gas law. - Entropy and the second law. Some

More information

Existing Resources: Supplemental/reference for students with thermodynamics background and interests:

Existing Resources: Supplemental/reference for students with thermodynamics background and interests: Existing Resources: Masters, G. (1991) Introduction to Environmental Engineering and Science (Prentice Hall: NJ), pages 15 29. [ Masters_1991_Energy.pdf] Supplemental/reference for students with thermodynamics

More information

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A UBMCC11 - THERMODYNAMICS B.E (Marine Engineering) B 16 UNIT I BASIC CONCEPTS AND FIRST LAW PART- A 1. What do you understand by pure substance? 2. Define thermodynamic system. 3. Name the different types

More information

ME 300 Thermodynamics II Spring 2015 Exam 3. Son Jain Lucht 8:30AM 11:30AM 2:30PM

ME 300 Thermodynamics II Spring 2015 Exam 3. Son Jain Lucht 8:30AM 11:30AM 2:30PM NAME: PUID#: ME 300 Thermodynamics II Spring 05 Exam 3 Circle your section (-5 points for not circling correct section): Son Jain Lucht 8:30AM :30AM :30PM Instructions: This is a closed book/note exam.

More information

Physics 5D PRACTICE FINAL EXAM Fall 2013

Physics 5D PRACTICE FINAL EXAM Fall 2013 Print your name: Physics 5D PRACTICE FINAL EXAM Fall 2013 Real Exam is Wednesday December 11 Thimann Lecture 3 4:00-7:00 pm Closed book exam two 8.5x11 sheets of notes ok Note: Avogadro s number N A =

More information

Thermodynamics Qualifying Exam Study Material

Thermodynamics Qualifying Exam Study Material Thermodynamics Qualifying Exam Study Material The candidate is expected to have a thorough understanding of undergraduate engineering thermodynamics topics. These topics are listed below for clarification.

More information

Number of extra papers used if any

Number of extra papers used if any Last Nae: First Nae: Thero no. ME 00 Therodynaics 1 Fall 018 Exa Circle your structor s last nae Diision 1 (7:0): Naik Diision (1:0): Wassgren Diision 6 (11:0): Sojka Diision (9:0): Choi Diision 4 (8:0):

More information

MECHANICAL ENGINEERING

MECHANICAL ENGINEERING MECHANICAL ENGINEERING ESE TOPICWISE OBJECTIVE SOLVED PAPER-I FROM (1995-2018) UPSC Engineering Services Examination State Engineering Service Examination & Public Sector Examination. IES MASTER PUBLICATION

More information

ME 300 Thermodynamics II

ME 300 Thermodynamics II ME 300 Thermodynamics II Prof. S. H. Frankel Fall 2006 ME 300 Thermodynamics II 1 Week 1 Introduction/Motivation Review Unsteady analysis NEW! ME 300 Thermodynamics II 2 Today s Outline Introductions/motivations

More information

Second Law of Thermodynamics -

Second Law of Thermodynamics - Second Law of Thermodynamics - REVIEW ENTROPY EXAMPLE Dr. Garrick 1/19/09 First Law of Thermodynamics you can t win! First Law of Thermodynamics: Energy cannot be Created or Destroyed the total energy

More information

MAE 11. Homework 8: Solutions 11/30/2018

MAE 11. Homework 8: Solutions 11/30/2018 MAE 11 Homework 8: Solutions 11/30/2018 MAE 11 Fall 2018 HW #8 Due: Friday, November 30 (beginning of class at 12:00p) Requirements:: Include T s diagram for all cycles. Also include p v diagrams for Ch

More information

Unified Quiz: Thermodynamics

Unified Quiz: Thermodynamics Fall 004 Unified Quiz: Thermodynamics November 1, 004 Calculators allowed. No books allowed. A list of equations is provided. Put your name on each page of the exam. Read all questions carefully. Do all

More information

ME 022: Thermodynamics

ME 022: Thermodynamics ME 022: Thermodynamics General Information: Term: 2019 Summer Session Instructor: Staff Language of Instruction: English Classroom: TBA Office Hours: TBA Class Sessions Per Week: 5 Total Weeks: 5 Total

More information

BME-A PREVIOUS YEAR QUESTIONS

BME-A PREVIOUS YEAR QUESTIONS BME-A PREVIOUS YEAR QUESTIONS CREDITS CHANGE ACCHA HAI TEAM UNIT-1 Introduction: Introduction to Thermodynamics, Concepts of systems, control volume, state, properties, equilibrium, quasi-static process,

More information

Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k.

Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k. PROBLEM 6.25 Three m 3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 295 K, 200 kpa. The air receives 1546 kj of work from the paddle wheel. Assuming the ideal gas model,

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name: Lesson 23 1. (10 pt) Write the equation for the thermal efficiency of a Carnot heat engine below: 1 L H 2. (10 pt) Can the thermal efficiency of an actual engine ever exceed that of an equivalent Carnot

More information

ME Thermodynamics I = = = 98.3% 1

ME Thermodynamics I = = = 98.3% 1 HW-08 (25 points) i) : a) 1 Since ν f < ν < ν g we conclude the state is a Saturated Liquid-Vapor Mixture (SLVM) 1, from the saturation tables we obtain p 3.6154 bar. 1 Calculating the quality, x: x ν

More information

Reversibility, Irreversibility and Carnot cycle. Irreversible Processes. Reversible Processes. Carnot Cycle

Reversibility, Irreversibility and Carnot cycle. Irreversible Processes. Reversible Processes. Carnot Cycle Reversibility, Irreversibility and Carnot cycle The second law of thermodynamics distinguishes between reversible and irreversible processes. If a process can proceed in either direction without violating

More information

October 18, 2011 Carnot cycle - 1

October 18, 2011 Carnot cycle - 1 Carnot Cycle In 1824, Sadi Carnot (1796-1832) published a short book, eflections on the Motive Power of Fire (The book is now free online You should try it out) To construct an engine, Carnot noted, at

More information

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING Delft University of Technology DEPRTMENT OF EROSPCE ENGINEERING Course: Physics I (E-04) Course year: Date: 7-0-0 Time: 4:00-7:00 Student name and itials (capital letters): Student number:. You have attended

More information

SOLUTION: Consider the system to be the refrigerator (shown in the following schematic), which operates over a cycle in normal operation.

SOLUTION: Consider the system to be the refrigerator (shown in the following schematic), which operates over a cycle in normal operation. Soln_21 An ordinary household refrigerator operating in steady state receives electrical work while discharging net energy by heat transfer to its surroundings (e.g., the kitchen). a. Is this a violation

More information

Name: I have observed the honor code and have neither given nor received aid on this exam.

Name: I have observed the honor code and have neither given nor received aid on this exam. ME 235 FINAL EXAM, ecember 16, 2011 K. Kurabayashi and. Siegel, ME ept. Exam Rules: Open Book and one page of notes allowed. There are 4 problems. Solve each problem on a separate page. Name: I have observed

More information

UNIT I Basic concepts and Work & Heat Transfer

UNIT I Basic concepts and Work & Heat Transfer SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: Engineering Thermodynamics (16ME307) Year & Sem: II-B. Tech & II-Sem

More information

Spring_#7. Thermodynamics. Youngsuk Nam.

Spring_#7. Thermodynamics. Youngsuk Nam. Spring_#7 Thermodynamics Youngsuk Nam ysnam1@khu.ac.kr You can t connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2018, UC Berkeley Midterm 2 March 22, 2018 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed Please show all

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions.

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions. We RoU No. 700095 Candidate should write his/her Roll No. here. Total No. of Questions : 7 No. of Printed Pages : 7 SEM-2017(03HI MECHANICAL ENGINEERING Paper II Time ; 3 Hours ] [ Total Marks : 0 Instructions

More information

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A 1. What is meant by thermodynamics system? (A/M 2006) Thermodynamics system is defined as any space or matter or group of matter

More information

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit.

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit. Page 1 of 8 Hall Ticket Number: 14CH 404 II/IV B.Tech (Regular) DEGREE EXAMINATION June, 2016 Chemical Engineering Fourth Semester Engineering Thermodynamics Time: Three Hours Maximum : 60 Marks Answer

More information