CERN-ATS HiLumi LHC. FP7 High Luminosity Large Hadron Collider Design Study PUBLICATION

Size: px
Start display at page:

Download "CERN-ATS HiLumi LHC. FP7 High Luminosity Large Hadron Collider Design Study PUBLICATION"

Transcription

1 CERN-ATS HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study PUBLICATION INTRA-BEAM SCATTERING AND LUMINOSITY EVOLUTION FOR HL-LHC PROTON BEAMS MICHAELA SCHAUMANN (RWTH AACHEN & CERN), JOHN M. JOWETT, RODERIK BRUCE (CERN) 22 OCTOBER 2012 GENEVA, SWITZERLAND CERN-ATS /12/2012 The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement This work is part of HiLumi LHC Work Package 2.4: Intensity Limitations The electronic version of this HiLumi LHC Publication is available via the HiLumi LHC web site < CERN-ATS

2 EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN ACCELERATORS AND TECHNOLOGY SECTOR CERN-ATS Intra-beam Scattering and Luminosity Evolution for HL-LHC Proton Beams Michaela Schaumann (RWTH Aachen & CERN) John M. Jowett, Roderik Bruce (CERN) Abstract Intra-beam scattering (IBS) in the LHC proton beams will be stronger in the future HL-LHC than at present because of the higher beam intensities, small emittances and new optics. The intensity decay will be due to both IBS and burn-off by the luminosity. We calculate IBS emittance growth rates with MADX and the Collider Time Evolution (CTE) program for two ATS optics versions, ATS-V6.503 and SLHCV3.1b, and different settings of the crossing angle and required corrections. The calculations are done for injection (450 GeV) and collision (7 TeV) energy for various beam conditions. Moreover, CTE simulations of the emittance, bunch length, intensity and luminosity evolution during a fill are presented. Geneva, Switzerland 22 October 2012

3 Contents 1 Introduction 5 2 ATS Optics 6 3 Intra-Beam Scattering Considerations IBS Growth Rates at Injection MADX Calculations at Collision Energy Without Crossing Angles and Separation Bumps With Crossing Angles CTE Simulations at Collision Energy Comparison of MADX and CTE IBS Growth Rate Determination CTE Simulations of the Beam Evolution 24 5 Conclusions 26 List of Figures 1 Horizontal and vertical β-function for ATS optics Horizontal β-function and Dispersion for ATS optics Local IBS growth rates, ATS-V6.503 optics, β = 0.1m Local IBS growth rates, ATS-V6.503 optics, β = 0.1m and 11m IBS growth rates as a function of β, ATS-V6.503 optics Horizontal H -function, ATS-V6.503 optics, β = 0.1m IBS growth rates as a function of β, ATS-V6.503 and SLHCV3.1b optics 16 8 Vertical IBS growth rates as a function of β, ATS-V6.503 and SLHCV3.1b optics Local IBS contribution around the ring for β = 0.1m, without correction Local IBS contribution around the ring for β = 0.1m, with correction Simulated IBS growth rates evolution Comparison IBS growth rates from MADX and CTE Simulated absolute bunch length evolution and its growth Simulated horizontal emittance evolution and its growth Simulated vertical emittance evolution and its growth Simulated intensity evolution and losses Simulated debunching and luminosity losses Simulated evolution of the luminosity per bunch crossing

4 List of Tables 1 Beam parameters for the HL-LHC IBS growth rates at 450 GeV, ATS-V6.503 optics, β = 11m IBS growth rates at 450 GeV, SLHCV3.1b optics, β = 5.5m IBS growth rates calculated with MADX at 7 TeV, optics SLHCV3.1b IBS growth rates at 7 TeV, optics ATS-V6.503 and SLHCV3.1b, β = 0.1m IBS growth rates calculated at 7 TeV, CTE and MADX Summary IBS growth rates and beam parameters

5 1 Introduction For the LHC upgrade, the HL-LHC (High Luminosity Large Hadron Collider) [1], very high bunch currents combined with small emittances are necessary to reach the desired high luminosities. The achievable luminosity L is proportional to the single bunch intensities, N b1 and N b2, of Beams 1 and 2, the revolution frequency f 0 and the number of bunches in the machine k b, and inversely proportional to the β-function at the interaction point (IP) β and the bunch emittances ε: N b1 N b2 f 0 k b L = 2π F = N2 b f 0k b γ βx (ε x1 + ε x2 ) βy (ε y1 + ε y2 ) 4πβ F, (1) ε n where the second equality holds for round beams with equal transverse beam sizes and intensities. The normalised emittance is given as ε n = εγ, with γ as the relativistic Lorentz factor. The factor F describes the geometric luminosity reduction due to the crossing angle [2]: F = 1/ 1 + ( ) θc σ 2 z 2σ. (2) Table 1 quotes the possible beam properties to be considered in the upgrade plans. The official parameters for the LHC high-luminosity upgrade are set by the HiLumi Parameter and Lay-out Committee [3] and can also be found in [4]. The official choice of β is 0.15m in combination with a half-crossing angle of 295 µrad, which differs from the values given in Table 1. In this report β = 0.1m with a corresponding half-crossing angle of 360 µrad was used as a baseline for the calculations to treat the extreme case. Two different bunch spacings (25 ns and 50 ns) should be investigated. Because of the way the beams are produced in the injectors, it is not possible to achieve as good bunch properties for the 25 ns spaced beam as for the 50 ns. A larger bunch spacing, on the other hand, decreases the maximum number of bunches in the machine proportionally reducing the total luminosity. Furthermore, a special 25 ns beam with shorter bunches should be studied. For this beam an additional higher harmonic RF system operating at 800 MHz and providing a peak voltage of 24MV must be installed to modulate the main RF system (400 MHz, 16 MV); with appropriate relative phases, this can be used to provide smaller bunch lengths. Clearly the smallest possible β-function at the interaction point, β, will produce the highest possible luminosity. New optics are currently being developed to provide β values down to 0.1 m. In the following, the so-called ATS (Achromatic Telescopic Squeezing [5]) optics are used for the analysis. This new optic scheme has already been tested during several dedicated machine studies in the LHC [6]. Moreover, while the emittance has a lower limit, the intensity might be further increased to gain more luminosity. However, with increasing intensity, collective effects like beam-beam, space charge, instabilities 5

6 driven by the machine impedance, electron cloud and intra-beam scattering (IBS) become stronger and will limit the reachable bunch brightness ( N b /ε n ). Bunch Spacing 25 ns 25 ns (short) 50 ns Energy [TeV] E β-function in IP1 and 5 [m] β Half-Crossing Angle IP1 & 5 [µrad] α C Intensity per Bunch [10 11 charges] N b RMS Transverse Emittance [ µmrad] ε n RMS Longitudinal Emittance [evs] ε l RMS Bunch Length [ns] τ l = 4σ z /c RMS Momentum Spread [10 4 ] p/p RF Total Voltage [MV] V RF RF Frequency [MHz] f RF Table 1: Beam parameters for the HL-LHC. Three possible beam setups are under investigation. Following the customary 4-sigma convention at the LHC, the bunch length is given in time units as τ l = 4σ z /c where σ z is the RMS bunch length and c the speed of light. The special 25 ns option with short bunches requires a RF system which runs at 24 MV and 800 MHz in addition to the already existing main RF system at 400 MHz and 16 MV. This document studies the effects of IBS on the beam evolution and the limitations that arise for the high brightness bunches. IBS growth rates and the evolution of the emittances, bunch length, intensity and luminosity from CTE (Collider Time Evolution program) [7, 8] simulations and MADX [9] calculations are presented. Reference [10] describes a similar study for the proton beams used in the LHC in ATS Optics The luminosity can be improved by reducing the β-function at the interaction point (IP), as follows from (1). However, as β at the IP is reduced to small values, the β-function in the inner triplets, which are the first magnets before and after the IP, rises. To approximate the β-function in the inner triplets Equation (3) can be used, which describes the increase 6

7 of the β-function in a drift space with the distance, s, from a symmetry point, e.g. the IP: β(s) = β + s2 β. (3) Already for the nominal LHC setup (optics version V6.503, squeezing down to β = 0.55m [2]) the β-function in the triplets enters the km regime. For β as small as 10 cm the triplets will reach β > 20km. This will lead to aperture problems, since the beam size σ = εβ at each location in the machine depends on the β-function in that place. To accommodate these beams, new magnets with a larger aperture are required close to the IP. Huge peak field at the coils of the magnets are necessary to provide focusing from several kilometres to a few centimetre considering the large apertures. The ATS (Achromatic Telescopic Squeezing) scheme [5] uses the matching quadrupoles from the neighbouring interaction regions (IR), additionally to those located directly around, for a telescopic squeeze from the neighbouring IP to reduce the required magnet strength in the triplets. As shown in Figure 1, this drastically increases the maximum value of β in the enclosed arcs. Note that the right plot was cut at β x,y = 1000m, but actually reaches about 24 km around the main IPs. The procedure is achromatic, since the effect on the beam of the higher order magnets will be enhanced where the β-function is large. Hence, the arising chromaticity can be corrected more effectively by the sextupoles. Within the sequence of optics that occur in the squeeze, this feature emerges only at β = 0.4m; above that value the optics are basically identical with the standard ones, as currently used in the LHC. Figure 1: Horizontal and vertical β-function for ATS optics around the ring for β = 11m (left) and β = 0.1m (right) in IP1 and 5. The increase of β in the arcs around IP1 and 5 for small β arising from the telescopic squeeze is clearly visible in the right plot. Note that the right plot is truncated at β x,y = 1000m, but actually reaches about 24 km around the IPs. At the time of writing two versions of the ATS optics are available. The first one is still based on the nominal sequence of the LHC (version ATS-V6.503 [11]), and the second 7

8 version (SLHCV3.1b [12]) already includes a set of new triplet magnets around the IPs, providing larger aperture and higher field strength [13]. In this report, both versions are used for the analysis and the results are compared. However, from the example of the flat machine, without crossing angles or bumps, in Figure 2, one can see that there are only minor differences between their optical functions. The figure shows the β-function (left) and the dispersion (right) around the ring for ATS-V6.503 in blue and SLHCV3.1b in red; in fact the red lines are mostly covered by the blue, so small are the differences. Therefore, we do not expect to find large discrepancies in the IBS analysis of both optics. Figure 2: Comparison between the two ATS optics versions ATS-V6.503 (blue) and SL- HCV3.1b (red). Left: horizontal β-function, right: horizontal dispersion. In both plots the blue line mostly covers the red curve due to the small differences. Note that the left plot is truncated at β x,y = 1000m, but actually reaches about 24 km around the IPs. 3 Intra-Beam Scattering Considerations 3.1 IBS Growth Rates at Injection The IBS growth rates are inversely proportional to the third power of the relativistic gamma factor, thus for the low energy at injection of 450 GeV the effect is drastically enhanced and needs special attention. Assuming the intensity and emittance could be preserved from injection into collisions at 7 TeV, the values from Table 1 are used for the calculations. However, the bunches are injected with a smaller longitudinal emittance ( 1eVs) which is blown up during the ramp. Moreover, the additional RF system, which would be necessary for the 25 ns option with shorter bunches, would also be switched off at injection where only the main RF system is used. Table 2 gives MADX calculations for the ATS-V6.503 optics version at β = 11m and Table 3 for version SLHCV3.1b at β = 5.5m. A perfectly flat machine with zero crossing angles and no orbit bumps was assumed. In this ideal case, the vertical IBS 8

9 growth rate has a small negative value. Comparison of the tables shows that the two optics produce nearly identical IBS growth rates even with slightly different β values. If the crossing angles and parallel separation bumps are switched on, the differences in the IBS growth rates are still small in the range of /h. The vertical growth rates become positive but they are still of the order of /h. Furthermore, as expected, the growth rates increase with increasing intensity and decreasing emittance. ATS-V6.503 Bunch Spacing 25 ns 25 ns (short) 50 ns Cases 2.2e11, 2.5 µrad, 1eVs 2.2e11, 3 µrad, 1eVs 3.5e11, 3 µrad, 1eVs α IBS,l [1/h] α IBS,x [1/h] α IBS,y [1/h] Table 2: IBS growth rates α IBS,i (i = x,y,l) calculated at 450 GeV injection energy based on optics version ATS-V6.503 at β = 11m for the beams given in Table 1, except that the longitudinal emittance was assumed to be 1eVs. SLHCV3.1b Bunch Spacing 25 ns 25 ns (short) 50 ns Cases 2.2e11, 2.5 µrad, 1eVs 2.2e11, 3 µrad, 1eVs 3.5e11, 3 µrad, 1eVs α IBS,l [1/h] α IBS,x [1/h] α IBS,y [1/h] Table 3: IBS growth rates α IBS,i (i = x,y,l) calculated at 450 GeV injection energy based on optics version SLHCV3.1b at β = 5.5m for the beams given in Table 1, except that the longitudinal emittance was assumed to be 1eVs. 3.2 MADX Calculations at Collision Energy WITHOUT CROSSING ANGLES AND SEPARATION BUMPS In Figure 3 and the local contribution of the IBS growth due to a specific element is plotted as a function of the position s around the ring. The black and red line show the 9

10 cumulative sum of the corresponding (blue or red, respectively) local contribution. The maximum value of the cumulative sum can be found at the end of the ring (maximum s) and is equivalent to the total IBS growth rate usually quoted for the whole machine. The calculations were done with MADX using the ATS-V6.503 optics version for a flat machine without crossing angles and separation bumps. Figure 3 compares the effect on the 25 ns (red) and 50 ns (blue) beam based on the β = 0.1m optic. As a first observation it is clear that the impact on the 25 ns beam is weaker, due to the relaxed single bunch parameters in this case. Furthermore, the cumulative sum, which accumulates the local growth rates at each element with increasing s, for the longitudinal plane (left) increases approximately linear. This indicates that the spikes close to the IPs are quite narrow and thus the contribution to the total growth rate is similar for all elements. The local horizontal growth rates (right plot) are increased for the high β regions in the arcs around IP1 and 5, while the contribution of the straight sections is almost zero, due to the small dispersion (see below). A comparison of the injection optics at β = 11m (blue) and the fully squeezed optics at β = 0.1m (red) is displayed in Figure for the example of the 50 ns beam. For β = 11m all arcs are similar and show the same behaviour. For β = 0.1m the ATS scheme induces an increased amplitude in the arcs around IP1 and 5, while the remaining arcs are unchanged, similar to the effect on the β-functions shown in Figure 1. However, closer inspection of the red curve in the left plot reveals that the average of the oscillation in the high β regions is decreased with respect to β = 11m. This indicates that the total IBS growth in the longitudinal plane is slowed down by the squeeze. On the other hand, the strong contribution of the high β regions increases the total growth rate in the transverse planes. The evolution of this effect along the squeeze is shown in Figure 5 where the total IBS growth rate is plotted as a function of β for the longitudinal (dashed lines) and horizontal (solid lines) plane. The IBS growth rates α IBS,i (i = x,l,y) in the horizontal, longitudinal and vertical plane can be written [14, 15] as with and α IBS,x α IBS,l α IBS,y = A γ 2 H x ε x γ 2 σ 2 δ β y ε y 0 A = [a λ 1/2 x λ + b x ] (λ 3 + aλ 2 + bλ + c) 3/2 [a l λ + b l ] dλ (4) [a y λ + b y ] r 2 0 cn(log) 8πγ(γ 2 1) 3/2 ε x ε y σ δ σ z (5) H x = D2 x β x (1 + α 2 x ) + β x D 2 x + 2α x D x D x (6) where γ the relativistic Lorentz factor, ε x,y the horizontal and vertical emittance, σ z the RMS bunch length, σ δ the RMS energy spread, r 0 the classical particle radius, c the speed 10

11 Figure 3: Longitudinal (top) and horizontal (bottom) local IBS growth rates for the ATS- V6.503 optics with β = 0.1m and without crossing angles and separation bumps. Each plot compares the nominal beams given in Table 1 with 25 ns (red) and 50 ns (blue) bunch spacing. 11

12 Figure 4: Longitudinal (top) and horizontal (bottom) local IBS growth rates for the ATS- V6.503 optics with β = 0.1m (red) and β = 11m (blue) without crossing angles and separation bumps. The 50 ns beam with 2.5eVs longitudinal emittance was chosen as an example for both cases. The β = 11m describes the situation at the end of the ramp and not as the situation with injection optics and 450GeV. 12

13 Figure 5: Horizontal (solid lines) and longitudinal (dashed lines) IBS growth rates as a function of β. Red: nominal 25 ns spacing, blue: 50 ns spaced beam. The calculation uses the ATS-V6.503 optics version without crossing angles and separation bumps. of light, N the number of particles per bunch, β x,y the horizontal and vertical β-function, (log) ln(r max /r min ) a Coulomb logarithm, with r max denoting the smaller of σ x and the Debye length and r min the larger of the classical distance of closest approach and quantum diffraction limit from the nuclear radius, typically assuming values of (log) The coefficients a, b, c, a x, b x, a l, b l, a y and b y inside the integral can be found in Table 1 of [15], they as well depend on the optics and beam parameters mentioned above. In this form the horizontal IBS growth rate α IBS,x is proportional to the horizontal H - function from Equation 6 which only depends on lattice parameters, namely on the horizontal dispersion D x and its derivative D x and the optical functions β x and α x = β x/2. This function is plotted in Figure 6 for β = 11m (blue) and 0.1 m (red). The H -function is increased in the four arcs on either side of the two main IPs for the squeezed optics. From this, the increase of the horizontal IBS growth rate during the squeeze can now be understood. Nevertheless, the longitudinal growth rate does not depend linearly on the lattice functions and thus the influence of the changed optics is small; it actually improves the situation. The calculations assume uncoupled transverse planes, thus the IBS growth in the vertical plane is very small. Analysis of data from present LHC operations indicates that this 13

14 is a good approximation for well corrected physics optics. With the further influence of radiation damping, the net growth of the vertical emittance can even be negative. Figure 6: Horizontal H -function for the ATS-V6.503 optics with β = 0.1m (red) and 11 m (blue) and no crossing angles and separation bumps WITH CROSSING ANGLES By switching on the crossing angle bumps in the IPs the dispersion is enhanced. Due to those orbit bumps, the particles pass the triplet quadrupoles on an off-centred orbit and they see a stronger dipole component of the field, which induces dispersion. In the alternating crossing scheme the beams cross in the vertical in IP1 and IP2 and in the horizontal plane in IP5 and IP8, so the dispersion is increased in both planes. The induced off-centred orbit will lead to a wrong deflection of the beam in the magnets which can have a major influence on the beam stability and must be corrected. Via orbit bumps in the arcs the beam is again set on an off-centred orbit, due to which it sees a strong quadrupole component in the sextupoles and in combination with the phase advance of π between the sextupoles this cancels the dispersion created by the crossing angle bumps in the inner triplet [16]. In the following a comparison of the calculations with and without crossing angle and dispersion correction is given. 14

15 Figure 7 shows the horizontal and longitudinal IBS growth rates as a function of β for the ATS-V6.503 optics version on the left and for the SLHCV3.1b on the right, comparing on or off crossing angles and dispersion correction. When comparing both plots the reader has to be careful since the SLHCV3.1b plot does not show a continuous squeeze sequence of β values but only a few intermediate steps and as well two values for flat optics (i.e. with β aspect ratio not equal to unity, but still round emittances) at the beginning. However, for both optics the curves for the flat machine (zero crossing angle and separation, no dispersion correction) in red and the one with crossing angle and dispersion correction in blue are in very good agreement, whereas the rates for a crossing angle with uncorrected dispersion (green) are raised. In the vertical plane this is even more evident, as it can be seen in Figure 8, where the IBS growth rate jumps from a slight damping to a value comparable with the other planes. The uncorrected case in green shows a slightly higher rate for the SLHCV3.1b version, whereas the other cases are equivalent. The origin can again be seen by looking at the local IBS contributions around the ring as displayed in Figure 9 for the ATS-V6.503 on the left and SLHCV3.1b on the right. The plots show a comparison of the optics without crossing angle in blue and with crossing angle on in red. The blue curves are mostly identical for both optics, except for the height of some peaks around the IPs. After the crossing angle was switched on the differences between the two optics keep small. Nevertheless, a clear increase in the amplitude of the growth rates is visible leading to higher total growth rates in the horizontal and vertical plane. This change mainly arises from the enhanced dispersion in the transverse planes, therefore the longitudinal plane is less affected. Figure 10 shows the situation after the dispersion was corrected. The correction is not perfect, thus also the IBS local contributions show remaining perturbations close to the locations where the additional dispersion was produced. The horizontal growth rates shows peaks around IP5, which is crossing in the horizontal plane, and vice versa the vertical growth rate is heightened around IP1 with a vertical crossing angle. Table 5 compares the calculated IBS growth rates from MADX for the two optics cases and different crossing angle settings at β = 0.1m. Table 4 gives an overview of the IBS growth rates based on SLHCV3.1b optics for four different values of β including round and flat beams. 15

16 Figure 7: Horizontal (solid lines) and longitudinal (dashed lines) IBS growth rates as a function of β for the ATS-V6.503 (top) and SLHCV3.1b (bottom) optics version on the example of the 50 ns beam. Red: without crossing angle and dispersion correction, green: with crossing angle, but without dispersion correction, blue: with crossing angle and dispersion correction. 16

17 Figure 8: Vertical IBS growth rates as a function of β for the ATS-V6.503 (top) and SLHCV3.1b (bottom) optics version for the example of the 50 ns beam. Red: without crossing angle and dispersion correction, green: with crossing angle, but without dispersion correction, blue: with crossing angle and dispersion correction. 17

18 Figure 9: Longitudinal (top), horizontal (middle) and vertical (bottom) local IBS contribution around the ring for β = 0.1m. Blue: without crossing angle, separation and dispersion correction, red: with crossing angle, but without separation and correction. On the left for ATS-V6.503 and on the right for SLHCV3.1b. 18

19 Figure 10: Longitudinal (top), horizontal (middle) and vertical (bottom) local IBS contribution around the ring for β = 0.1m. Blue: without crossing angle, separation and dispersion correction, red: with crossing angle and dispersion correction. On the left for ATS-V6.503 and on the right for SLHCV3.1b. 19

20 (0,0,0) (1,0,0) (1,0,1) (0,0,0) (1,0,0) (1,0,1) SLHCV3.1b 25 ns βx /βsep [cm] α IBS,l [1/h] α IBS,x [1/h] α IBS,y [1/h] 10/ e-6 15/ e-6 5/ e-6 7.5/ e-6 10/ / / / / / / / e-4 50 ns 10/ e-6 15/ e-6 5/ e-6 7.5/ e-6 10/ / / / / / / / e-4 Table 4: IBS growth rates calculated with MADX at 7 TeV collision energy bases on optics version SLHCV3.1b for a set of β values for the beams given in Table 1. β sep and β x are the values of the β-function in the separation and crossing plane, respectively. Three different settings of the crossing angle, separation and dispersion correction are given: (xangle, sep, disp) = (0,0,0) or (1,0,0) or (1,0,1), where 0 and 1 mean off and on. 20

21 Optics ATS-V6.503 SLHCV3.1b Bunch Spacing 25 ns 50 ns 25 ns 50 ns (0,0,0) (1,0,0) (1,0,1) α IBS,l [1/h] α IBS,x [1/h] α IBS,y [1/h] -1.6e-6-1.7e-6-1.6e-6-1.7e-6 α IBS,l [1/h] α IBS,x [1/h] α IBS,y [1/h] α IBS,l [1/h] α IBS,x [1/h] α IBS,y [1/h] Table 5: IBS growth rates calculated at 7 TeV collision energy based on optics version ATS-V6.503 and SLHCV3.1b at β = 0.1m for the beams given in Table 1. Three different settings of the crossing angle, separation and dispersion correction are given: (xangle, sep, disp) = (0,0,0) or (1,0,0) or (1,0,1), where 0 and 1 mean off and on. 3.3 CTE Simulations at Collision Energy From the simulations with the CTE program the evolution with time of the IBS growth rates shown in Figure 11 are obtained. The CTE program provides the option to include two RF systems with different voltages and harmonic numbers, so it was possible to simulate the 25 ns case with short bunches for which the modulation of the main RF system with an additional one at 24MV and 800MHz is necessary, shown as the green dashed curve. The nominal 25 ns are displayed in red and the 50 ns case in blue. The initial values can be found in Table 6 together with the calculations of MADX. It is interesting that the evolution of the green curve is more similar to the blue (50 ns) than to the red (25 ns) one. This can be understood by looking at the plots 13 to 17 of the evolution of the beam parameters in Section 4. Those show that the relative evolution of the parameters is more similar for the green and blue curve than for the green and the red curve. 3.4 Comparison of MADX and CTE IBS Growth Rate Determination The agreement of the IBS calculations between the CTE program and MADX is very good, as Figure 12 shows. Here calculations for the 25 ns (red) and 50 ns (blue) beams are done as a function of time. The CTE simulation (solid line) was started with the input parameters given in Table 1 and once per hour the data was extracted, to be used as input for the MADX (dashed lines) calculation. In this way it is ensured that the calculations for a given time are based on the same beam parameters and thus they can be compared 21

22 Figure 11: Simulated IBS growth rates in the longitudinal (top, left), horizontal (top, right) and vertical (bottom) plane. The ATS-V6.503 optics version with β = 0.1m was used. directly. The agreement in the horizontal plane is better than 5% and in the longitudinal plane around 2% for the initial points and it seems to become even better with time, when the beam parameters become more relaxed. In Table 6 the IBS growth rates of both methods calculated with the input parameters taken from Table 1 are summarized again. In this case it can be seen that the IBS growth rates of the MADX calculation differ more from the CTE ones as indicated in Figure 12. This is due to the fact that CTE is using an iterative procedure to exactly match the longitudinal phase space before starting the tracking and does not use the small angel approximation. For this it takes the bunch length and the RF properties as input and varies the energy spread until the desired bunch length and the iterated energy spread follow a Hamiltonian trajectory in the longitudinal phase space. Using this method the energy spread is not constrained and can be slightly different from the nominal one given in Table 1. Hence, the longitudinal emittance which is calculated from the RMS energy spread, RMS bunch length and the total energy might also not be exactly 2.5eVs, which is the value used for the MADX calculation in Table 6. 22

23 Bunch Spacing 25 ns 25 ns (short) 50 ns Program CTE MADX CTE CTE MADX α IBS,l [1/h] α IBS,x [1/h] α IBS,y [1/h] e e e e e-6 Table 6: IBS growth rates calculated at 7 TeV for the beams given in Table 1. Figure 12: Comparison of IBS growth rate calculation of MADX (dashed lines) and CTE Nagaitsev Method [18, 17] (solid lines). Red: 25 ns, blue: 50 ns spacing from Table 1. 23

24 4 CTE Simulations of the Beam Evolution In this section we present a collection of the beam parameter evolutions simulated with CTE for the three initial beams from Table 1. The CTE program provides a choice of several methods for calculating the IBS growth rates. Most of them take full account of the details of the optics and some allow the effects of vertical dispersion to be included, just as MADX does. However typical simulations require the growth rate integrals to be evaluated a very large number of times so we have preferred to use the fast method according to [17]. However this does not include the effect of vertical dispersion on IBS, so the case where the crossing angle is switched on but the dispersion is not corrected could not be simulated correctly. However, as can be seen form the previous analysis with MADX, the calculations for the flat machine and when the crossing angle is applied while the dispersion is corrected are in very good agreement. Therefore, it is convenient and reasonably accurate to use the optics of the flat machine, without crossing angles and separation bumps, as a basis for the CTE simulations to estimate the beam evolution. Moreover, the SLHCV3.1b optics version shows only small differences with respect to the ATS version based on the nominal sequence, thus it is enough to run the simulations with either one of them as a good approximation to the other. ATS-V6.503 was chosen as the underlying lattice for the simulations. Each figure shows the evolution on the left side on an absolute scale and on the right relative to the initial value. The red line demonstrates the nominal 25 ns beam, the blue curve the 50 ns beam and the dashed green curve the special case of the 25 ns spaced beam with shorter bunches and an additional RF system at 24MV and 800MHz. Figure 13: Simulated absolute bunch length (left) and bunch length growth (right). The bunch length (Figure 13) evolves in a similar way for all three beams. It is decreasing because the rather strong radiation damping at this energy overcomes the contrary effect of IBS in the longitudinal plane. Radiation damping only depends on the energy and the bending magnets and has the same strength for all beams and optics considered here (small contributions from the orbit bumps in quadrupoles have been neglected). 24

25 Figure 14: Simulated normalised horizontal emittance (left) and horizontal emittance growth (right). Figure 15: Simulated normalised vertical emittance (left) and vertical emittance growth (right). As can be seen from Figure 11 the IBS growth rates are also very similar. Only the nominal 25 ns beam (red) is slightly less affected by IBS, resulting in a slightly faster bunch length decrease. The horizontal and vertical normalised emittances are given as functions of time in Figure 14 and 15. The horizontal emittance is growing, since the radiation damping rate of the transverse plane is only half of the longitudinal damping rate and is insufficeient to compensate IBS. Moreover, the short bunch 25 ns beam has the fastest emittance growth arising from the higher IBS growth rate, due to the small bunch length. Moreover, because of the short bunch length, the debunching losses shown in the right plot of Figure 17, which are in general very small for these beams, are almost zero for the green curve. Consequently, the main source of particle losses (Figure 16 and 17 left) is the luminosity production, as desired. The relative particle losses are equivalent for the 25

26 50 ns and the short bunch 25 ns beams, but the higher initial intensity of the 50 ns bunch produces more luminosity, see Figure 18, even though the luminosity reduction due to the (half) crossing angle is weaker for shorter bunches. Figure 16: Simulated intensity (left) and intensity losses (right). Figure 17: Simulated debunching losses (left) and luminosity losses (right.) 5 Conclusions We have provided a detailed comparison of the various optics and beam parameter options for HL-LHC from the point of view of intra-beam scattering growth rates. Simulations have included the evolution of beam parameters and luminosity with self-consistent IBS calculations, including non-gaussian longitudinal distributions and losses from the RF bucket, radiation damping and the loss of intensity due to luminosity production ( burnoff ). 26

27 Figure 18: Simulated evolution of the luminosity per bunch crossing (without crabcavity). The growth rates increase with increasing intensity and decreasing emittance, leading to stronger IBS effects for the beam parameters of the beam spaced by 50 ns as compared to 25 ns. Furthermore, higher IBS growth rates at injection are due to the smaller energy and the smaller longitudinal emittance. Throughout the squeeze to β values low as 10cm, using the ATS optics scheme, the longitudinal IBS growth rate improves by about 20%, whereas the horizontal growth rate increases by about 20%. The reason for this was understood in detail by investigating the local IBS contributions around the ring, where the growth in the horizontal plane strongly depends on the lattice. The horizontal H -function increases in the high β regions around IP1 and 5, resulting in an increase of the accumulated IBS growth rate. The dependence on the lattice parameters of the longitudinal growth is less dominant and hence the average longitudinal IBS contribution is even reduced. The calculations for the flat machine compared to a setup with crossing angle and dispersion correction are in very good agreement. For a machine with uncorrected dispersion after introducing the crossing angle the transverse growth rates rise while the longitudinal one is improved. It has to be noted that the vertical growth rate can be neglected in a corrected machine, but may become comparable with the horizontal and longitudinal plane in the presences of vertical dispersion (even without significant betatron coupling). The correction of the spurious dispersion, in particular for the vertical plane, is a new feature of the ATS optics which is not available for the nominal optics. The two ATS optics versions ATS-V6.503 and SLHCV3.1b, which include different element sequences, show very similar behaviour as far as IBS is concerned. The calcu- 27

28 Inj. Coll. Inj. Coll. Spacing 25 ns 50 ns E [GeV] β [m] N b [10 11 charges] ε n [ µmrad] ε l [evs] α IBS,l [1/h] α IBS,x [1/h] α IBS,y [1/h] Table 7: Summary of the HL-LHC beam parameters and the corresponding IBS growth rates calculated with MADX for the ATS-V6.503 optics version at injection and collision energy. lated growth rates only differ in the order of /h. and are summarised in Table 5 and 4. Besides, it has been shown that the MADX and CTE (using the Nagaitsev method [18]) IBS calculations agree within 5% in the parameter range considered. Table 7 gives an overview of the HL-LHC beam parameters together with the corresponding IBS growth rates. CTE simulations of the emittance, intensity, bunch length and luminosity evolution were presented. The effect of radiation damping turns out to have a positive effect on the emittance growth, and even leads to a decreasing bunch length. The intensity losses are dominated by luminosity burn off and the intensity loss from debunching is negligible in all cases. The relative intensity and emittance evolution is very similar for the 50 ns spaced beam and the special 25 ns spaced beam with shorter bunches. However, the 50 ns beam produces more luminosity thanks to the higher initial bunch intensity, even though the luminosity reduction due to the crossing angle is weaker for shorter bunches. Acknowledgements We thank several colleagues, in particular R. De Maria, S. Fartoukh and E. Métral for useful discussions and comments on this report. One of us (MS) is supported by the Gentner programme of the BMBF (Federal Ministry of Education and Research, Germany). This work was carried out in the frame of Task 2.4 Collective Effects of the HiLumi 28

29 LHC Work Package 2. The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement References [1] L. Rossi and O. Brüning, High Luminosity Large Hadron Collider - A description for the European Strategy Preparatory Group, Geneva, 2012, CERN-ATS [2] O. Brüning et al., LHC Design Report Vol. I, June 2004, CERN [3] Website of the HiLumi Parameter and Lay-out Committee: cern.ch/hilumi/plc/default.aspx. [4] O. Brüning and F. Zimmermann, Parameter Space for the LHC High-Luminosity Upgrade, Geneva, 2012, CERN-ATS [5] S. Fartoukh, An Achromatic Telescopic Squeezing (ATS) Scheme For The LHC Upgrade, Geneva, 2011, CERN-ATS [6] S. Fartoukh et al., The Achromatic Telescopic Squeezing Scheme: Basic Principles and First Demonstration at the LHC, Geneva, 2012, CERN-ATS [7] R. Bruce, M. Blaskiewicz, W. Fischer and J.M. Jowett, Time evolution of the luminosity of colliding heavy-ion beams in BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider, Phys. Rev. ST Accel. Beams 13, (2010). [8] R. Bruce, Beam loss mechanisms in relativistic heavy-ion colliders, 2009, at Lund University, Sweden, CERN-THESIS [9] [10] M. Schaumann and J.M. Jowett, Predictions of bunch intensity, emittance and luminosity evolution for p-p operation of the LHC in 2012, Geneva, 2012, CERN-ATS- Note PERF. [11] A repository for ATS optics compatible with the nominal hardware of the LHC, available under /afs/cern.ch/eng/lhc/optics/ats-v [12] A repository for the optics and layout of the HL-LHC with a 140 mm- 150 T/m inner triplet, available under /afs/cern.ch/eng/lhc/optics/slhcv3.1b. [13] S. Fartoukh and R. De Maria, Optics and Layout Solutions for HL-LHC with Large Aperture NB3SN and NB-TI Inner Triplets, presented at the 3rd International Particle Accelerator Conference, New Orleans, LA, USA, May 2012, CERN-ATS [14] J.D. Bjorken and S.K. Mtingwa, Intrabeam Scattering, Part. Acc. Vol. 13, pp (1983). 29

30 [15] F. Antoniou and F. Zimmermann, Revision of Intrabeam Scattering with Non- Ultrarelativistic Corrections and Vertical Dispersion for MAD-X, Geneva, 2012, CERN-ATS [16] S. Fartoukh, Towards the LHC Upgrade using the LHC well-characterized technology, Geneva, 2010, slhc Project Report [17] S. Nagaitsev, Intrabeam scattering formulas for fast numerical evaluation, Phys. Rev. ST Accel. Beams 8, (2005). [18] T. Mertens, Intrabeam scattering in the LHC, 2011, Porto University, Portugal, CERN-THESIS

DYNAMIC APERTURE STUDIES FOR HL-LHC V1.0 *

DYNAMIC APERTURE STUDIES FOR HL-LHC V1.0 * SLAC PUB 17366 December 2018 DYNAMIC APERTURE STUDIES FOR HL-LHC V1.0 * Y. Cai, R. De Maria, M. Giovannozzi, Y. Nosochkov, F.F. Van der Veken ;1 CERN, CH-1211 Geneva 23, Switzerland SLAC National Accelerator

More information

Overview of LHC Accelerator

Overview of LHC Accelerator Overview of LHC Accelerator Mike Syphers UT-Austin 1/31/2007 Large Hadron Collider ( LHC ) Outline of Presentation Brief history... Luminosity Magnets Accelerator Layout Major Accelerator Issues U.S. Participation

More information

HE-LHC Optics Development

HE-LHC Optics Development SLAC-PUB-17224 February 2018 HE-LHC Optics Development Yunhai Cai and Yuri Nosochkov* SLAC National Accelerator Laboratory, Menlo Park, CA, USA Mail to: yuri@slac.stanford.edu Massimo Giovannozzi, Thys

More information

LHC Luminosity and Energy Upgrade

LHC Luminosity and Energy Upgrade LHC Luminosity and Energy Upgrade Walter Scandale CERN Accelerator Technology department EPAC 06 27 June 2006 We acknowledge the support of the European Community-Research Infrastructure Activity under

More information

A Luminosity Leveling Method for LHC Luminosity Upgrade using an Early Separation Scheme

A Luminosity Leveling Method for LHC Luminosity Upgrade using an Early Separation Scheme LHC Project Note 03 May 007 guido.sterbini@cern.ch A Luminosity Leveling Method for LHC Luminosity Upgrade using an Early Separation Scheme G. Sterbini and J.-P. Koutchouk, CERN Keywords: LHC Luminosity

More information

HL-LHC OPERATIONAL SCENARIOS

HL-LHC OPERATIONAL SCENARIOS CERN-ACC-NOTE-2015-0009 2015-05-19 Elias.Metral@cern.ch HL-LHC OPERATIONAL SCENARIOS G. Arduini, N. Biancacci, O. Brüning, R. De Maria, M. Giovannozzi, W. Höfle, K. Li, E. Métral, J.E. Muller, Y. Papaphilippou,

More information

The Luminosity Upgrade at RHIC. G. Robert-Demolaize, Brookhaven National Laboratory

The Luminosity Upgrade at RHIC. G. Robert-Demolaize, Brookhaven National Laboratory The Luminosity Upgrade at RHIC G. Robert-Demolaize, Brookhaven National Laboratory RHIC accelerator complex: IPAC'15 - May 3-8, 2015 - Richmond, VA, USA 2 The Relativistic Heavy Ion Collider (RHIC) aims

More information

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side Frank Zimmermann LHCb Upgrade Workshop Edinburgh, 11 January 2007 Frank Zimmermann, LHCb Upgrade Workshop time scale of LHC upgrade

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Deliverable Report SIMULATION MODELS FOR ENERGY DEPOSITION

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Deliverable Report SIMULATION MODELS FOR ENERGY DEPOSITION CERN-ACC-2013-011 HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study Deliverable Report SIMULATION MODELS FOR ENERGY Redaelli, Stefano (CERN) 20 November 2012 The HiLumi LHC Design Study

More information

TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER

TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER B. Mikulec, A. Findlay, V. Raginel, G. Rumolo, G. Sterbini, CERN, Geneva, Switzerland Abstract In the near future, a new

More information

arxiv: v1 [physics.acc-ph] 21 Oct 2014

arxiv: v1 [physics.acc-ph] 21 Oct 2014 SIX-DIMENSIONAL WEAK STRONG SIMULATIONS OF HEAD-ON BEAM BEAM COMPENSATION IN RHIC arxiv:.8v [physics.acc-ph] Oct Abstract Y. Luo, W. Fischer, N.P. Abreu, X. Gu, A. Pikin, G. Robert-Demolaize BNL, Upton,

More information

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1 Beam Dynamics D. Brandt, CERN D. Brandt 1 Some generalities D. Brandt 2 Units: the electronvolt (ev) The electronvolt (ev)) is the energy gained by an electron travelling, in vacuum, between two points

More information

Tools of Particle Physics I Accelerators

Tools of Particle Physics I Accelerators Tools of Particle Physics I Accelerators W.S. Graves July, 2011 MIT W.S. Graves July, 2011 1.Introduction to Accelerator Physics 2.Three Big Machines Large Hadron Collider (LHC) International Linear Collider

More information

On behalf of: F. Antoniou, H. Bartosik, T. Bohl, Y. Papaphilippou (CERN), N. Milas, A. Streun (PSI/SLS), M. Pivi (SLAC), T.

On behalf of: F. Antoniou, H. Bartosik, T. Bohl, Y. Papaphilippou (CERN), N. Milas, A. Streun (PSI/SLS), M. Pivi (SLAC), T. On behalf of: F. Antoniou, H. Bartosik, T. Bohl, Y. Papaphilippou (CERN), N. Milas, A. Streun (PSI/SLS), M. Pivi (SLAC), T. Demma (LAL) HB2010, Institute of High Energy Physics, Beijing September 17-21

More information

Introduction to particle accelerators

Introduction to particle accelerators Introduction to particle accelerators Walter Scandale CERN - AT department Lecce, 17 June 2006 Introductory remarks Particle accelerators are black boxes producing either flux of particles impinging on

More information

SIMULATION STUDY FOR MEIC ELECTRON COOLING*

SIMULATION STUDY FOR MEIC ELECTRON COOLING* SIMULATION STUDY FOR MEIC ELECTRON COOLING* He Zhang #, Yuhong Zhang, JLab, Newport News, VA 23606, USA Abstract Electron cooling of the ion beams is one critical R&D to achieve high luminosities in JLab

More information

INITIAL ESTIMATES OF DYNAMIC APERTURE AND FIELD QUALITY SPECIFICATIONS *

INITIAL ESTIMATES OF DYNAMIC APERTURE AND FIELD QUALITY SPECIFICATIONS * SLAC PUB 16087 September 2014 INITIAL ESTIMATES OF DYNAMIC APERTURE AND FIELD QUALITY * Y. Nosochkov, Y. Cai, M.-H. Wang SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA S. Fartoukh, M.

More information

Compressor Lattice Design for SPL Beam

Compressor Lattice Design for SPL Beam EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN A&B DIVISION AB-Note-27-34 BI CERN-NUFACT-Note-153 Compressor Lattice Design for SPL Beam M. Aiba Abstract A compressor ring providing very short proton

More information

Lattice Design and Performance for PEP-X Light Source

Lattice Design and Performance for PEP-X Light Source Lattice Design and Performance for PEP-X Light Source Yuri Nosochkov SLAC National Accelerator Laboratory With contributions by M-H. Wang, Y. Cai, X. Huang, K. Bane 48th ICFA Advanced Beam Dynamics Workshop

More information

BEAM DYNAMICS STUDIES FOR HILUMI LHC

BEAM DYNAMICS STUDIES FOR HILUMI LHC BEAM DYNAMICS STUDIES FOR HILUMI LHC BARBARA DALENA IN COLLABORATION WITH: J. PAYET, A. CHANCÉ, O. GABOUEV The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded

More information

Beam-Beam DA Simulations for HL-LHC

Beam-Beam DA Simulations for HL-LHC Beam-Beam DA Simulations for HL-LHC N. Karastathis G. Arduini, X. Buffat, S. Fartoukh, R. de Maria, Y. Papaphilippou on behalf of the HiLumi LHC WP2 Outline: Brief recap of baseline scenario at collisions

More information

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23,

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23, PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23, 2007 As each working day, since the beginning of the

More information

Transverse beam stability and Landau damping in hadron colliders

Transverse beam stability and Landau damping in hadron colliders Work supported by the Swiss State Secretariat for Educa6on, Research and Innova6on SERI Transverse beam stability and Landau damping in hadron colliders C. Tambasco J. Barranco, X. Buffat, T. Pieloni Acknowledgements:

More information

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 CapaciBes Specific Programme, Grant Agreement

More information

Aperture Measurements and Implications

Aperture Measurements and Implications Aperture Measurements and Implications H. Burkhardt, SL Division, CERN, Geneva, Switzerland Abstract Within short time, the 2/90 optics allowed to reach similar luminosity performance as the 90/60 optics,

More information

Gianluigi Arduini CERN - Beams Dept. - Accelerator & Beam Physics Group

Gianluigi Arduini CERN - Beams Dept. - Accelerator & Beam Physics Group Gianluigi Arduini CERN - Beams Dept. - Accelerator & Beam Physics Group Acknowledgements: O. Brüning, S. Fartoukh, M. Giovannozzi, G. Iadarola, M. Lamont, E. Métral, N. Mounet, G. Papotti, T. Pieloni,

More information

RF System Calibration Using Beam Orbits at LEP

RF System Calibration Using Beam Orbits at LEP EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN SL DIVISION CERN-SL-22-28 OP LEP Energy Working Group 2/1 RF System Calibration Using Beam Orbits at LEP J. Wenninger Abstract The target for beam energy

More information

The HL-LHC Accelerator Physics Challenges

The HL-LHC Accelerator Physics Challenges Chapter 4 The HL-LHC Accelerator Physics Challenges S. Fartoukh and F. Zimmermann CERN, BE Department, Genève 23, CH-1211, Switzerland The conceptual baseline of the HL-LHC project is reviewed, putting

More information

Longitudinal Dynamics

Longitudinal Dynamics Longitudinal Dynamics F = e (E + v x B) CAS Bruges 16-25 June 2009 Beam Dynamics D. Brandt 1 Acceleration The accelerator has to provide kinetic energy to the charged particles, i.e. increase the momentum

More information

LHC operation in 2015 and prospects for the future

LHC operation in 2015 and prospects for the future LHC operation in 2015 and prospects for the future Moriond Workshop La Thuile March 2016 Jörg Wenninger CERN Beams Department Operation group / LHC For the LHC commissioning and operation teams 1 Moriond

More information

Conceptual design of an accumulator ring for the Diamond II upgrade

Conceptual design of an accumulator ring for the Diamond II upgrade Journal of Physics: Conference Series PAPER OPEN ACCESS Conceptual design of an accumulator ring for the Diamond II upgrade To cite this article: I P S Martin and R Bartolini 218 J. Phys.: Conf. Ser. 167

More information

MEASUREMENT AND SIMULATION OF LUMINOSITY LEVELING IN LHC VIA BEAM SEPARATION

MEASUREMENT AND SIMULATION OF LUMINOSITY LEVELING IN LHC VIA BEAM SEPARATION MEASUREMENT AND SIMULATION OF LUMINOSITY LEVELING IN LHC VIA BEAM SEPARATION Stefan Paret, Ji Qiang, LBNL, Berkeley, USA Reyes Alemany-Fernandez, Rama Calaga, Rossano Giachino, Werner Herr, Delphine Jacquet,

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

Accelerator Physics Final Exam pts.

Accelerator Physics Final Exam pts. Accelerator Physics Final Exam - 170 pts. S. M. Lund and Y. Hao Graders: C. Richard and C. Y. Wong June 14, 2018 Problem 1 P052 Emittance Evolution 40 pts. a) 5 pts: Consider a coasting beam composed of

More information

OTHER MEANS TO INCREASE THE SPS 25 ns PERFORMANCE TRANSVERSE PLANE

OTHER MEANS TO INCREASE THE SPS 25 ns PERFORMANCE TRANSVERSE PLANE OTHER MEANS TO INCREASE THE SPS 25 ns PERFORMANCE TRANSVERSE PLANE H. Bartosik, G. Arduini, A. Blas, C. Bracco, T. Bohl, K. Cornelis, H. Damerau, S. Gilardoni, S. Hancock, B. Goddard, W. Höfle, G. Iadarola,

More information

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU J. W. Xia, Y. F. Wang, Y. N. Rao, Y. J. Yuan, M. T. Song, W. Z. Zhang, P. Yuan, W. Gu, X. T. Yang, X. D. Yang, S. L. Liu, H.W.Zhao, J.Y.Tang, W. L. Zhan, B.

More information

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Chin-Cheng Kuo On behalf of the TPS Lattice Design Team Ambient Ground Motion and Civil Engineering for Low Emittance Electron Storage Ring Workshop

More information

Introduction to Transverse Beam Dynamics

Introduction to Transverse Beam Dynamics Introduction to Transverse Beam Dynamics B.J. Holzer CERN, Geneva, Switzerland Abstract In this chapter we give an introduction to the transverse dynamics of the particles in a synchrotron or storage ring.

More information

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1 Accelerators for Newcomers D. Brandt, CERN D. Brandt 1 Why this Introduction? During this school, you will learn about beam dynamics in a rigorous way but some of you are completely new to the field of

More information

Progress on the Large Hadron electron Collider. O. Brüning, E. Nissen, D. Pellegrini, D. Schulte, A. Valloni, F. Zimmermann 1

Progress on the Large Hadron electron Collider. O. Brüning, E. Nissen, D. Pellegrini, D. Schulte, A. Valloni, F. Zimmermann 1 O. Brüning, E. Nissen, D. Pellegrini, D. Schulte, A. Valloni, F. Zimmermann 1 CERN Meyrin, Switzerland E-mail: oliver.bruning@cern.ch, edward.nissen@cern.ch, dario.pellegrini@cern.ch, daniel.schulte@cern.ch,

More information

Raising intensity of the LHC beam in the SPS - longitudinal plane

Raising intensity of the LHC beam in the SPS - longitudinal plane SL-Note-- MD Raising intensity of the LHC beam in the SPS - longitudinal plane Ph. Baudrenghien, T. Bohl, T. Linnecar, E. Shaposhnikova Abstract Different aspects of the LHC type beam capture and acceleration

More information

PUBLICATION. Consolidated EIR design baseline: Milestone M3.6

PUBLICATION. Consolidated EIR design baseline: Milestone M3.6 CERN-ACC-2018-0039 Future Circular Collider PUBLICATION Consolidated EIR design baseline: Milestone M3.6 Tomas Garcia, Rogelio (CERN) et al. 01 November 2018 The European Circular Energy-Frontier Collider

More information

Introduction to Accelerators

Introduction to Accelerators Introduction to Accelerators D. Brandt, CERN CAS Platja d Aro 2006 Introduction to Accelerators D. Brandt 1 Why an Introduction? The time where each accelerator sector was working alone in its corner is

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

COMBINER RING LATTICE

COMBINER RING LATTICE CTFF3 TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, April 4, 21 Note: CTFF3-2 COMBINER RING LATTICE C. Biscari 1. Introduction The 3 rd CLIC test facility, CTF3, is foreseen to check the feasibility

More information

Introduction to Collider Physics

Introduction to Collider Physics Introduction to Collider Physics William Barletta United States Particle Accelerator School Dept. of Physics, MIT The Very Big Picture Accelerators Figure of Merit 1: Accelerator energy ==> energy frontier

More information

Correction of β-beating due to beam-beam for the LHC and its impact on dynamic aperture

Correction of β-beating due to beam-beam for the LHC and its impact on dynamic aperture Correction of β-beating due to beam-beam for the LHC and its impact on dynamic aperture WEOAB2 Luis Medina1,2, R. Toma s2, J. Barranco3, X. Buffat1, Y. Papaphilippou1, T. Pieloni3 1 Universidad de Guanajuato,

More information

Bernhard Holzer, CERN-LHC

Bernhard Holzer, CERN-LHC Bernhard Holzer, CERN-LHC * Bernhard Holzer, CERN CAS Prague 2014 x Liouville: in reasonable storage rings area in phase space is constant. A = π*ε=const x ε beam emittance = woozilycity of the particle

More information

Study of Alternative Optics for the NLC Prelinac Collimation section

Study of Alternative Optics for the NLC Prelinac Collimation section LCC 0057 03/01 Linear Collider Collaboration Tech Notes Study of Alternative Optics for the NLC Prelinac Collimation section March 2001 Yuri Nosochkov, Pantaleo Raimondi, Tor Raubenheimer Stanford Linear

More information

F. Zimmermann and M.-P. Zorzano, CERN, Geneva, Switzerland

F. Zimmermann and M.-P. Zorzano, CERN, Geneva, Switzerland LHC Project Note 244 11.12.2000 Touschek Scattering in HERA and LHC F. Zimmermann and M.-P. Zorzano, CERN, Geneva, Switzerland Keywords: Touschek effect, beam loss, coasting beam Summary We estimate the

More information

Practical Lattice Design

Practical Lattice Design Practical Lattice Design Dario Pellegrini (CERN) dario.pellegrini@cern.ch USPAS January, 15-19, 2018 1/17 D. Pellegrini - Practical Lattice Design Lecture 5. Low Beta Insertions 2/17 D. Pellegrini - Practical

More information

6 Bunch Compressor and Transfer to Main Linac

6 Bunch Compressor and Transfer to Main Linac II-159 6 Bunch Compressor and Transfer to Main Linac 6.1 Introduction The equilibrium bunch length in the damping ring (DR) is 6 mm, too long by an order of magnitude for optimum collider performance (σ

More information

On-axis injection into small dynamic aperture

On-axis injection into small dynamic aperture On-axis injection into small dynamic aperture L. Emery Accelerator Systems Division Argonne National Laboratory Future Light Source Workshop 2010 Tuesday March 2nd, 2010 On-Axis (Swap-Out) injection for

More information

COLLECTIVE EFFECTS IN THE LHC AND ITS INJECTORS

COLLECTIVE EFFECTS IN THE LHC AND ITS INJECTORS COLLECTIVE EFFECTS IN THE LHC AND ITS INJECTORS E. Métral, G. Arduini, R. Assmann, H. Bartosik, P. Baudrenghien, T. Bohl, O. Bruning, X. Buffat, H. Damerau, S. Fartoukh, S. Gilardoni, B. Goddard, S. Hancock,

More information

MD Landau Damping: Beam Transfer Functions and diffusion mechanisms

MD Landau Damping: Beam Transfer Functions and diffusion mechanisms CERN-ACC-NOTE-2017-0026 25-04-2017 claudia.tambasco@cern.ch MD 1407 - Landau Damping: Beam Transfer Functions and diffusion mechanisms C. Tambasco, J. Barranco *, A. Boccardi, X. Buffat, M. Crouch, M.

More information

The LHC: the energy, cooling, and operation. Susmita Jyotishmati

The LHC: the energy, cooling, and operation. Susmita Jyotishmati The LHC: the energy, cooling, and operation Susmita Jyotishmati LHC design parameters Nominal LHC parameters Beam injection energy (TeV) 0.45 Beam energy (TeV) 7.0 Number of particles per bunch 1.15

More information

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y. Accelerator Physics Second Edition S. Y. Lee Department of Physics, Indiana University Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE Contents Preface Preface

More information

Operational Experience with HERA

Operational Experience with HERA PAC 07, Albuquerque, NM, June 27, 2007 Operational Experience with HERA Joachim Keil / DESY On behalf of the HERA team Contents Introduction HERA II Luminosity Production Experiences with HERA Persistent

More information

Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron

Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron Urschütz Peter (AB/ABP) CLIC meeting, 29.10.2004 1 Overview General Information on the PS Booster Synchrotron Motivation

More information

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN OVERVIEW OF THE LHEC DESIGN STUDY AT CERN 1 CERN CH-1211 Geneve 23, Switzerland E-mail: Oliver.bruning@cern.ch Abstract The Large Hadron electron Collider (LHeC) offers the unique possibility of exploring

More information

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman Accelerator Physics of PEP-1 Lecture #7 March 13,1998 Dr. John Seeman Accelerator Physics of PEPJ John Seeman March 13,1998 1) What is PEP-? Lecture 1 2) 3) Beam parameters for an luminosity of 3~1~~/cm~/sec

More information

Physics 610. Adv Particle Physics. April 7, 2014

Physics 610. Adv Particle Physics. April 7, 2014 Physics 610 Adv Particle Physics April 7, 2014 Accelerators History Two Principles Electrostatic Cockcroft-Walton Van de Graaff and tandem Van de Graaff Transformers Cyclotron Betatron Linear Induction

More information

FY04 Luminosity Plan. SAG Meeting September 22, 2003 Dave McGinnis

FY04 Luminosity Plan. SAG Meeting September 22, 2003 Dave McGinnis FY04 Luminosity Plan SAG Meeting September 22, 2003 Dave McGinnis FY03 Performance Accelerator Issues TEV Pbar Main Injector Reliability Operations Study Strategy Shot Strategy Outline FY04 Luminosity

More information

PBL SCENARIO ON ACCELERATORS: SUMMARY

PBL SCENARIO ON ACCELERATORS: SUMMARY PBL SCENARIO ON ACCELERATORS: SUMMARY Elias Métral Elias.Metral@cern.ch Tel.: 72560 or 164809 CERN accelerators and CERN Control Centre Machine luminosity Transverse beam dynamics + space charge Longitudinal

More information

The Large Hadron Collider Lyndon Evans CERN

The Large Hadron Collider Lyndon Evans CERN The Large Hadron Collider Lyndon Evans CERN 1.9 K 2.728 K T The coldest ring in the universe! L.R. Evans 1 The Large Hadron Collider This lecture. LHC Technologies Magnets Cryogenics Radiofrequency Vacuum

More information

FCC-hh Final-Focus for Flat-Beams: Parameters and Energy Deposition Studies

FCC-hh Final-Focus for Flat-Beams: Parameters and Energy Deposition Studies FCC-hh Final-Focus for Flat-Beams: Parameters and Energy Deposition Studies Jose L. Abelleira, Leon Van Riesen Haupt, Andrei Seryi, Emilia Cruz Alaniz (JAI-FCC team) Thanks to the CERN FLUKA team 10 th

More information

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education Introduction Outline CESR Overview CESR Layout Injector Wigglers

More information

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Deliverable Report. Corrector magnets specifications

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Deliverable Report. Corrector magnets specifications CERN-ACC-2014-0296 HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study Deliverable Report Corrector magnets specifications Fartoukh, S (CERN) et al 28 November 2014 The HiLumi LHC Design

More information

SBF Accelerator Principles

SBF Accelerator Principles SBF Accelerator Principles John Seeman SLAC Frascati Workshop November 11, 2005 Topics The Collision Point Design constraints going backwards Design constraints going forward Parameter relations Luminosity

More information

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST SPPC Study and R&D Planning Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST Main topics Pre-conceptual design study Studies on key technical issues R&D

More information

The TESLA Dogbone Damping Ring

The TESLA Dogbone Damping Ring The TESLA Dogbone Damping Ring Winfried Decking for the TESLA Collaboration April 6 th 2004 Outline The Dogbone Issues: Kicker Design Dynamic Aperture Emittance Dilution due to Stray-Fields Collective

More information

LHC accelerator status and prospects. Frédérick Bordry Higgs Hunting nd September Paris

LHC accelerator status and prospects. Frédérick Bordry Higgs Hunting nd September Paris LHC accelerator status and prospects 2 nd September 2016 - Paris LHC (Large Hadron Collider) 14 TeV proton-proton accelerator-collider built in the LEP tunnel Lead-Lead (Lead-proton) collisions 1983 :

More information

Longitudinal Top-up Injection for Small Aperture Storage Rings

Longitudinal Top-up Injection for Small Aperture Storage Rings Longitudinal Top-up Injection for Small Aperture Storage Rings M. Aiba, M. Böge, Á. Saá Hernández, F. Marcellini and A. Streun Paul Scherrer Institut Introduction Lower and lower horizontal emittances

More information

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics ThomX Machine Advisory Committee (LAL Orsay, March 20-21 2017) Ring Beam Dynamics A. Loulergue, M. Biagini, C. Bruni, I. Chaikovska I. Debrot, N. Delerue, A. Gamelin, H. Guler, J. Zang Programme Investissements

More information

Simulations of HL-LHC Crab Cavity Noise using HEADTAIL

Simulations of HL-LHC Crab Cavity Noise using HEADTAIL Simulations of HL-LHC Crab Cavity Noise using HEADTAIL A Senior Project presented to the Faculty of the Physics Department California Polytechnic State University, San Luis Obispo In Partial Fulfillment

More information

LIS section meeting. PS2 design status. Y. Papaphilippou. April 30 th, 2007

LIS section meeting. PS2 design status. Y. Papaphilippou. April 30 th, 2007 LIS section meeting PS2 design status Y. Papaphilippou April 30 th, 2007 Upgrade of the injector chain (R. Garoby, PAF) Proton flux / Beam power 50 MeV 160 MeV Linac2 Linac4 1.4 GeV ~ 5 GeV PSB SPL RCPSB

More information

Emittance preservation in TESLA

Emittance preservation in TESLA Emittance preservation in TESLA R.Brinkmann Deutsches Elektronen-Synchrotron DESY,Hamburg, Germany V.Tsakanov Yerevan Physics Institute/CANDLE, Yerevan, Armenia The main approaches to the emittance preservation

More information

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals Chapter 2 Main machine layout and performance 2.1 Performance goals The aim of the LHC is to reveal the physics beyond the Standard Model with centre of mass collision energies of up to 14 TeV. The number

More information

Luminosity Goals, Critical Parameters

Luminosity Goals, Critical Parameters CAS Zürich 22 nd February 2018 Luminosity Goals, Critical Parameters Bruno Muratori, STFC Daresbury Laboratory & Cockcroft Institute Werner Herr, CERN Goals At the end of this lecture you should be able

More information

Transverse Beam Dynamics II

Transverse Beam Dynamics II Transverse Beam Dynamics II II) The State of the Art in High Energy Machines: The Theory of Synchrotrons: Linear Beam Optics The Beam as Particle Ensemble Emittance and Beta-Function Colliding Beams &

More information

Beam-induced heat loads on the beam screens of the inner triplets for the HL-LHC

Beam-induced heat loads on the beam screens of the inner triplets for the HL-LHC CERN-ACC-2018-0009 Galina.Skripka@cern.ch Beam-induced heat loads on the beam screens of the inner triplets for the HL-LHC G. Skripka and G. Iadarola CERN, Geneva, Switzerland Keywords: LHC, HL-LHC, heat

More information

Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002

Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002 Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002 Linac Booster o 4.5-4.8e12 ppp at 0.5 Hz o Space charge (30% loss in the first 5 ms) o Main magnet field quality

More information

Linear Collider Collaboration Tech Notes

Linear Collider Collaboration Tech Notes LCC 0035 07/01/00 Linear Collider Collaboration Tech Notes More Options for the NLC Bunch Compressors January 7, 2000 Paul Emma Stanford Linear Accelerator Center Stanford, CA Abstract: The present bunch

More information

S9: Momentum Spread Effects and Bending S9A: Formulation

S9: Momentum Spread Effects and Bending S9A: Formulation S9: Momentum Spread Effects and Bending S9A: Formulation Except for brief digressions in S1 and S4, we have concentrated on particle dynamics where all particles have the design longitudinal momentum at

More information

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings CERN Accelerator School Intermediate Accelerator Physics Course Chios, Greece, September 2011 Low Emittance Rings Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

HL-LHC ALTERNATIVES SCENARIOS

HL-LHC ALTERNATIVES SCENARIOS Proceedings of Chamonix 4 Workshop on LHC Performance HL-LHC ALTERNATIVES SCENARIOS R. Tomás, G. Arduini, D. Banfi, J. Barranco, H. Bartosik, O. Brüning, R. Calaga, O. Dominguez, H. Damerau, S. Fartoukh,

More information

TRANSVERSE DAMPER. W. Höfle, CERN, Geneva, Switzerland. Abstract INTRODUCTION AND HIGHLIGHTS IN Controlled Transverse Blow-up

TRANSVERSE DAMPER. W. Höfle, CERN, Geneva, Switzerland. Abstract INTRODUCTION AND HIGHLIGHTS IN Controlled Transverse Blow-up TRANSVERSE DAMPER W. Höfle, CERN, Geneva, Switzerland Abstract Plans for the operation of the transverse damper in 2012 at bunch spacings of 50 ns and 25 ns and at increased collision energy will be reviewed.

More information

The FAIR Accelerator Facility

The FAIR Accelerator Facility The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC SIS100 HESR pbar target SuperFRS goals: higher intensity (low charge states) higher energy (high charge states) production of

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics. LHC Accelerator R&D and Upgrade Scenarios. Francesco Ruggiero

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics. LHC Accelerator R&D and Upgrade Scenarios. Francesco Ruggiero EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 666 LHC Accelerator R&D and Upgrade Scenarios Francesco Ruggiero Abstract

More information

Notes on the HIE-ISOLDE HEBT

Notes on the HIE-ISOLDE HEBT EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH HIE-ISOLDE-PROJECT-Note-13 Notes on the HIE-ISOLDE HEBT M.A. Fraser Abstract The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental

More information

HL-LHC: parameter space, constraints & possible options

HL-LHC: parameter space, constraints & possible options HL-LHC: parameter space, constraints & possible options Many thanks to R. Assmann, C. Bhat, O. Brüning, R. Calaga, R. De Maria, S. Fartoukh, J.-P. Koutchouk, S. Myers, L. Rossi, W. Scandale, E. Shaposhnikova,

More information

An Introduction to Particle Accelerators. v short

An Introduction to Particle Accelerators. v short An Introduction to Particle Accelerators v1.42 - short LHC FIRST BEAM 10-sep-2008 Introduction Part 1 Particle accelerators for HEP LHC: the world biggest accelerator, both in energy and size (as big as

More information

The 2015 erhic Ring-Ring Design. Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory

The 2015 erhic Ring-Ring Design. Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory The 2015 erhic Ring-Ring Design Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory The Relativistic Heavy Ion Collider RHIC Two superconducting storage rings 3833.845 m circumference

More information

Beam losses versus BLM locations at the LHC

Beam losses versus BLM locations at the LHC Geneva, 12 April 25 LHC Machine Protection Review Beam losses versus BLM locations at the LHC R. Assmann, S. Redaelli, G. Robert-Demolaize AB - ABP Acknowledgements: B. Dehning Motivation - Are the proposed

More information

BEAM-BEAM EFFECTS IN RHIC

BEAM-BEAM EFFECTS IN RHIC Proceedings of HB212, Beijing, China THO1A1 BEAM-BEAM EFFECTS IN RHIC Y. Luo, M. Bai, W. Fischer, C. Montag, S. White, Brookhaven National Laboratory, Upton, NY 11973, USA Abstract In this article we review

More information

Accelerators. Lecture V. Oliver Brüning. school/lecture5

Accelerators. Lecture V. Oliver Brüning.  school/lecture5 Accelerators Lecture V Oliver Brüning AB/ABP http://bruening.home.cern.ch/bruening/summer school/lecture5 V) LEP, LHC + more LEP LHC Other HEP Projects Future Projects What else? LEP Precision Experiment:

More information

ILC Damping Ring Alternative Lattice Design **

ILC Damping Ring Alternative Lattice Design ** ILC Damping Ring Alternative Lattice Design ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 1 Institute of High Energy Physics, CAS, Beijing 2 Key Laboratory of Heavy Ion Physics, Peking University, Beijing

More information

Muon Front-End without Cooling

Muon Front-End without Cooling EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Muon Front-End without Cooling CERN-Nufact-Note-59 K. Hanke Abstract In this note a muon front-end without cooling is presented. The muons are captured, rotated

More information

Low Emittance Machines

Low Emittance Machines CERN Accelerator School Advanced Accelerator Physics Course Trondheim, Norway, August 2013 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information