The Smart Motion Cheat Sheet

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "The Smart Motion Cheat Sheet"

Transcription

1 Srt otion "Cht" Sht 8.1 AutotionSolutions offrs full lin of otion control nd fctory utotion products nd srvics, ckd y n princd t of utotion nginrs. For ssistnc with your ppliction, cll to rch th AutotionSolutions offic nrst you or visit our wsit t: AutotionSolutions AutotionSolutions W k Tchnology Work Th Srt otion Cht Sht $10.00 Srt otion Systs r dfind, for our purposs, s otion systs whr spd, cclrtion rt, nd position (nd sotis torqu) cn digitlly progrd. Srt otion Systs consist of thr sic functionl locks: Brins, uscl, nd Lod. Th Brins (controls) slctd will dpnd significntly upon ppliction dtils, th fturs dsird y th syst dsignr or usr, nd prsonl prfrnc. Th Lod nd th otion chnis usd r dicttd y th ppliction rquirnts nd th chin dsignr. But th uscl (th otor & driv) is th ssntil lnt of Srt otion Syst whr it is possil for dgr of scinc to tk ovr. For n ppliction with givn Lod (nd chnis) with th ppropritly slctd Brins, s long s th torqu vill (t spd) fro th slctd otor-driv syst cds th torqu rquird to prfor th dsird otion, th ppliction should succss. Th Srt otion Cht Sht ws crtd to provid th syst dsignr th infortion ost coonly usd to proprly dtrin th uscl (torqu t spd) rquird y givn ppliction nd to giv so guidlins for slcting th ost pproprit otor-driv syst to dlivr tht rquird torqu t spd. Whil it is dsirl to hv sic knowldg of th diffrnt srt otion tchnologis currntly vill, it is not ssntil. Wht is ssntil is tht th ppliction rquirnts wll dfind, tht th torqu t spd rquirnts dtrind with fir dgr of ccurcy, nd tht th uscl (otor-driv) slctd sd upon its ility to roustly dlivr th rquird torqu t spd. Whil it y intrsting nd vn usful, it is not ssntil to know wht hppns insid givn srt otor or driv in ordr to proprly slct nd utiliz it. Hving sid tht, short discussion of th chrctristics of th jor corcilly vill uscl for srt otion systs is pproprit. Thr r two coonly usd clsss of srt uscl: stppr systs nd srvo systs. Stppr systs (otor & driv) r fundntlly opn-loop systs which ccpt digitl conds. Thy rspond to digitl stp & dirction inputs providd y n indr or otion controllr (Brin) which is siclly progrl puls gnrtor. This squnc of pulss is trnsltd into otion of th otor y th driv ( trnsltor ). Th rsult is vry costffctiv ll-digitl Srt otion Syst. PAGE 1 Stppr otors r rushlss otors tht includ prnnt gnt, vril rluctnc, nd hyrid typs. Within ths typs thr r ny diffrnt vritions of otor construction including -, 3-, 4-, nd 5-phs windings with ny diffrnt pol counts nd chnicl stp ngls. Ovrll, th function of th stppr driv is to squntilly rgult th currnt into th otor phs windings in ordr to produc th dsird otion. Th switching sch usd in driv (full-, hlf-, ini-, icro-stp) in cointion with th chnicl construction of th otor dtrins th syst rsolution (stps/rv). Whil ht considrtions ultitly liit th iu torqu fro givn otor/driv syst, th torqu t spd is lrgly function of th driv s ility to ovrco th inductnc of th windings nd push th iu currnt into th phs windings s quickly s possil without ovr-hting. Thr r ny diffrnt typs of drivs dsignd to ccoplish this tsk (L/R, uni-polr, i-polr, choppr, rcirculting choppr, tc.) ll of which hv dvntgs. Thr is discussion of ths in nufcturrs litrtur. For ost stppr drivs, ing opn loop y ntur, th currnt snt to th otor is th s, indpndnt of lod vritions. Whil ny drivs now provid rducd currnt lvl whn no otion is condd, sinc otor currnt is lwys high, ost gt vry hot, vn whn stoppd. Anothr rsult of switching (coutting) currnt twn windings without knowldg of th rotor vlocity or position is to produc rsonnc. Rsonnc is th culintion of th copl opn-loop dynic intrctions twn otor, driv, lod, nd th condd otion profil, nd cn rduc vill torqu significntly t so spds. An iportnt chrctristic of stppr systs (on frquntly isundrstood) is tht thir coonly pulishd torqu vs. spd curvs rprsnts th torqu t which syst will stll undr idl conditions. Du to th rsonnc ffcts ntiond ov, stppr syst will typiclly stll t 0-50% low this curv, dpnding upon spd. (S discussion on torqu vs. spd curvs on Pg 5.) Th Srt otion Cht Sht, crtd y Brd Grnt, P.E.; Copyright 1999 y AutotionSolutions Intntionl, LLC

2 Srt otion "Cht" Sht 8. Srvo Systs: Whil stppr systs could clld typ of tchnology, srvo is or proprly tr, not dvic or tchnology. A srvo is y dfinition syst tht ks corrctions sd upon fdck. It is lso y dfinition closd-loop. In th following discussion, w will rfrring to srvos s th ny fors of lctric otors nd plifirs (p) usd s closd-loop systs. Thr r thr sic loops in Srt (positioning) lctric srvo syst: th torqu (currnt) loop; th vlocity loop; nd th position loop. Th currnt loop is intrnl to th p. Sinc thr is linr rltionship twn currnt nd torqu in (ost) srvo otors, th p knows th torqu ing dlivrd fro th otor sd upon th currnt it is snding. Snsors on th otor nd/or lod provid vlocity nd/or position infortion to th p nd/or Brin. Snsors coonly usd for oth spd nd position r ncodrs nd rsolvrs. Erlir, tchotrs wr usd for vlocity, ut dvncs in digitl lctronics llow driving th vlocity dt fro ncodrs nd rsolvrs. Also, lctroniclly couttd (rushlss) otors rquir couttion loop (fdck of rotor position in ordr to proprly coutt). Ultitly, th rsult of th otion conds coing fro th Brin is to chng th torqu (currnt) snt to th otor in rspons to dvition fro th dsird vlu of th surd spd nd/or position. How uch currnt (torqu) should th p snd? It dpnds upon th rror(s) twn th dsird spd nd/or position, nd upon th gins (ount of corrction rltiv to ount of rror) tht r st (ithr y nlog pots or digitl sttings) in th fdck loops. Th highr th gin stting, th lrgr th chng in th loop output for givn rror. To digrss into n utootiv nlogy: Your cr is srvo-syst. It hs otor (ngin), plifir (crurtor), nd Brin (cruis control & you or trip coputr). It lso hs torqu loop (within th crurtor: ngin output proportionl to gs flow), vlocity loop (spdotr nd you, or cruis control), nd position loop (odotr nd you, or trip coputr). Lik n lctric srvo, if th spd or position diffrs fro th dsird, chng in torqu is d. If you r high gin drivr (or if your crurtor nd cruis control gins r high), your syst cn high rspons. Howvr, s with n lctric srvo, whn th gins r too high for th lod nd otion profil, n unstl condition cn rsult (wrck). Action: d-tun. If your syst is sluggish for th lod nd th dsird otion, incrs th gins, or gt highr prfornc syst. ost corcilly vill srvos still us nlog intrfcs (not to confusd with nlog hrdwr) to rciv ithr vlocity or torqu conds fro Brin. Howvr, srvos r incrsingly coing vill with digitl intrfcs (not to confusd with digitl hrdwr) which ithr ult stppr otor intrfc (nd fro th Brin viwpoint, cn controlld opn-loop lik stppr otors), or which rciv torqu, vlocity, or position conds dirctly in digitl for. Siilr to stpprs, thr r vrity of iplnttions of lctric srvos, ch of which hv dvntgs. Th or coon distinguishing (or rkting) trs usd for th vrious typs of srvos includ: DC rushtyp; AC rushlss; DC rushlss; Vctor...; EC (lctroniclly couttd otors.... i.. rushlss), switchd rluctnc, synchronous srvo, induction srvo, tc. So trs rfr to otor construction; so to plifir chrctristics; so to oth. For or infortion on th diffrncs twn srvo nd stppr tchnologis, consult th nufcturrs litrtur, AIE, NEA PC Group, or ttnd lncd gnric clss on Srt otion. Agin, whil th dtils of givn tchnology y intrsting nd vn hlpful to know, s syst dsignr, your slction should not sd upon th tchnologis ployd, ut on thir rsult: i.., th torqu t spd thy roustly produc nd thir vlu (prfornc vs. cost) rltiv to your ppliction rquirnts. Whn you tk this pproch, gnrlly th ost pproprit tchnology will slct itslf. 1. Estlish otion Ojctivs 1.. Clcult Criticl otion Prtrs Spd Acclrtion Rt Itrt 3. Clcult Acclrtion Torqus. Dfin/Slct otion chnis.. Clcult Syst Inrtis (oving ojcts) 1. Estlish otion Ojctivs (ost Iportnt!): Ovrll distnc vs. ti rquirnts? Vlocity vs. Ti for ntir cycl? Worst-cs ov? (L distnc in t ti) Any iposd. spd constrints? Rquird ov rsolution? Rquird positioning rptility? Rquird positioning ccurcy? 1.. Clcult Criticl ov Prtrs:. ov spd ω?. ccl rt α?. Dfin/Slct otion chnis: Dirct Driv? Scrw? Tngntil Driv? Rducr? Typ?.. Clcult inrti of ll oving coponnts chnis coponnts; Rducr; Coupling Rflct inrti s to otor Srt otor Sizing/Slction Flow-Chrt Ecpt otor 4. Clcult Non-Inrtil Forcs Grvity? Friction? Pr-Lods? Push-Pull? Tool? 5. Clcult Totl Torqu (inus otor inrti) Rpt Procdur 6. k (nw) otor/driv Slction 3. Clcult Acclrtion Torqu t otor shft du to rflctd inrti (lod & chnis only) 4. Clcult ll non-inrtil forcs, torqus Forcs, torqus du to grvity? Torqus du to othr trnl forcs? Friction? Pr-lods? 5. Clcult Totl Torqu rflctd to otor Acclrtion/Inrtil (T=J L α) torqus Plus ll othr Torqus Pk torqu for worst cs ov Also rs torqu for ntir ov cycl 6. k (initil) otor/driv slction Torqu vill ust cd pk nd rs Rr, otor inrti hsn t n ddd 7. Clcult Torqu ddd y otor inrti Lrgr th ccl rt = > highr significnc Chck Assuptions Chck Units! Rdo Clcultions Chng chnis No Us Torqu vs. Spd Curvs! Not just Dt. 8. Torqu Avill > Rquird Torqu? 7. Add Torqu du to otor Inrti Ys 10. Try Agin! No 9. Pss Snity Tst? Ys Don! Good Jo. 8. Torqu Avill cds Torqu Rquird? At ll spds? Pk torqu during ccl? RS (continuous) ovr ntir cycl? Us Torqu vs. Spd Curvs, not just Dt! If No, rturn to 6, nd slct nw otor 9. If Ys, dos slction pss th Snity Tst? Snity Tst = Dos this k sns? Forgt th nurs... Us your coon sns, intuition & judgnt! If Ys, you r don! Good Jo! Iplnt! 10. If No, Try Agin... Rpt th procdur Doul-chck your ssuptions Rdo your clcultions Tripl-chck your units!! Try chnging your chnis dtils PAGE

3 Srt otion "Cht" Sht 8.3 T c T + T c = T Totl Torqu vs. Ti T c t t c t d t h t ttotl d Rottion vs. Ti Vlocity vs. Ti T d + T c d c Totl T H Ky otion Rltionships NOTE: Ths foruls r sily drivd knowing th r undr th vlocity vs. ti curv is distnc nd its slop is cclrtion. If you cn clcult th r of rctngls, tringls, nd th slop of lin (ris ovr run), you cn rr nd/or sily driv ths foruls!! Units Syol Dfinition SI English C G Circufrnc of Gr (or c) in (or ft) C P: 1,, 3 Circufrnc of Pullys, 1,, or 3 D Ditr of cylindr or... (or c) in (or ft) D G...(pitch di.) of Gr D PL...(pitch di.) of Pullys on Lod D P...(pitch di.) of Pullys on otor D P:1,, 3...(pitch di.) of Pullys 1,, or 3 fficincy of chnis or rducr % % F Forcs du to... N l F tr...friction (F fr = µw L cos γ) F g...grvity (F g = W L sin γ) F p...push or Pull forcs For Trpzoidl ovs t t d θ Totl = θ + θ c + θ d = ω + t c + θ Totl ω = t t ( + t d c + ) For Tringulr ovs (if t c = 0) t t θ d Totl = θ + θ d = ω ( + ) θ Totl θ Totl ω = t ; if t = t d, ω = t d t ( + ) Acclrtion (ω - ω o ) α = π t or d linr ccl or dcl rt -s - in-s - α ngulr cclrtion rt rd-s - rd-s - g grvity ccl constnt s in-s - J ss ont of inrti for... kg- l-in J B...Blt rflctd to otor or or J C...Coupling g-c oz-in J G...Gr tc. or J L...Lod in-l-s J L...Lod rflctd to otor or...otor in-oz-s J PL...Pully on th Lod tc. J P...Pully on th otor J PL...Pully on Lod rflctd to otor J P: 1,, 3...Pully or sprockt 1,, or 3 J r...rducr (or gro) J Totl...Totl of ll inrtis J S...ld Scrw N r Nur rtio of rducr non non N t Nur of tth on gr, pully, tc. P G Pitch of Gr, sprockt or pully tth/ tth/inch P S Pitch of ld Scrw rvs/ rvs/inch t ti... sc sc t, c, or d...for ccl, constnt spd or dcl t...for ov t Totl...for Totl Cycl t h...for hold ti (dwll ti) Syols & Dfinitions AutotionSolutions Uniforly Acclrtd Rotry otion Unknown Known Eqution θ ω o, t, α θ = ω o t + αt / (rdins) ω, ω o, t θ = (ω + ω o )t/ ω, ω o, α θ = (ω - ω o )/(α) ω, t, α θ = ω t - αt / ω ω o, t, α ω = ω o + αt (rd-sc -1 ) θ, ω o, t ω = θ/t - ω o θ, ω o, α ω = ω o + (αθ) θ, t, α ω = θ/t + αt/ ω o ω, t, α ω o = ω - αt (rd-sc -1 ) θ, ω, t ω o = θ/t - ω θ, ω, α ω o = ω - (αθ) θ, t, α ω = θ/t - αt/ t ω, ω o, α t = (ω - ω o )/α (sc) θ, ω, ω o, t = θ(ω + ω o ) α θ, ω, ω o α = (ω - ω o )/(θ) (rd-s - ) ω, ω o, t α = (ω - ω o )/t θ, ω o, t α = (θ/t - ω o /t) θ, ω, t α = (ω /t - θ/t ) Units Syol Dfinition SI English T Torqu...(for rquird Clcultions) N in-l T,c, or d...during ccl, constnt, or dcl or T CL...Constnt t Lod in-oz T C...Constnt rflctd to otor T H...Holding (whil otor stoppd) T L...t Lod (not yt rflctd to otor) T P...du to Prlod on scrw nut, tc. T RS...RS ( vrg ) ovr ntir cycl T Totl...totl fro ll forcs V L linr Vlocity of Lod -s -1 in-s -1 ω O initil ngulr/rottionl vlocity rd-s -1 rps or rp ω ngulr/rottionl vlocity of otor ω iu ngulr/rottionl vlocity W L Wight of Lod N (or kg) l W B Wight of Blt (or chin or cl) W T Wight of Tl (or rck & oving prts X L Distnc X trvld y Lod (or c) in (or ft) θ rottion... rdins rvs θ, c, or d...rottion during ccl, dcl, tc. θ L...rottion of Lod θ...rottion of otor θ Totl Totl rottion of otor during ov π PI = non non π rottionl unit convrsion (rds/rv) rd/rv rd/rv µ cofficint of friction non non γ lod ngl fro horizontl dgrs dgrs Th following Dfinitions pply to th Torqu vs. Spd Curvs...typicl torqu trs usd with srvos.. N in-l T PS Pk Torqu t Stll (zro spd) or T PR Pk Torqu t Rtd Spd in-oz T CS Torqu vill continuously t Stll T CR Continuous Torqu Rting rtd spd)...typicl torqu trs usd with Stpprs... T H Holding Torqu (t zro spd) ω R Rtd Spd (srvos) rd-s -1 rps or rp ω iu Spd (srvos & stpprs) ω 1 Spd t Pk Torqu (not coonly usd) ω H High spd...rl iu (not coon) PAGE 3

4 Srt otion "Cht" Sht 8.4 Ky chnis Rltd Equtions otion chnis nd otion Equtions Gring, J GL, NtL J G, N t L, L, T L N r = N tl N t θ = N r θ L ω = N r ω L T L N r Inrti, Torqu Equtions J Totl = + J G + J GL + J L J GL = 1 J GL J L = 1 () N r () N r J L Othr Fctors To Considr Luricnt viscosity (oil or grs hs jor ffct on drg torqu!) Bcklsh Efficincy Rducr, L, L, T L θ N r = = θ L θ = N r θ L ω ω L J Totl = + J r + J L () J L = 1 J L T L N r N r Coupling inrti Gr nd/or rflctd rducr inrti J r, Nr, r J L ω = N r ω L J r = inrti of rducr rflctd to input Tiing Blt N TL D PL Rck & Pinion X L, V L, F p, F g Convyor X L, V L, F p, Fg Ldscrw J F fr J C W L, W L X L, V L, F p, Fg J PL, rpl W T, J P, rp W L W B, F fr, L, L, T L D G W T Ffr J P, D J P1, D1 J L J G, P G J S, P S W B J P3, D 3 N r = = N t θ = N r θ L ω = N r ω L C G = π D G = θ = P S X L ω = P S V L D P C P1 = π D P1 = N t P G θ = θ = X L C G ω = V L C G X L C P1 ω = V L C P1 N t P G J Totl = + J P + J PL + J B + J L () J PL = 1 J PL W J B = B D P N r g () J L = 1 J L N r J Totl = + J G + J L J L = F g = (W L + W T ) sinγ F fr = µ (W L + W T ) cosγ F g = (W L + W B ) sinγ T L N r D J Totl = + J P1 + P1 J P D + P1 J P3 + J D L P D P3 J L = (W L + W B ) g F P + F g + F fr D ( P1 ) F fr = µ (W L + W B ) cosγ D ( P1 ) J Totl = + J C + J S + J L (W J L = L + W T ) 1 g ( π P S ) F g = (W L + W T ) sinγ F fr = µ (W L + W T ) cosγ (W L + W T ) g F P + F g + F fr F P + F g + F fr π P S D G D ( G ) + T P Pully inrtis Inrti is proportionl to r 4! Blt/chin inrti Bcklsh Pinion inrti Bring friction Countr-lnc vrticl lods if possil Brk on vrticl lods Linr ring spd liit Pully inrtis Blt/chin inrti Countr-lnc vrticl lods if possil Brk on vrticl lods Linr ring spd liit Scrw inrti Coupling inrti Nut prlod Bring friction Ldscrw whip. ll spd. ring spd Typicl Friction Cofficints (F fr = µw L cosγ) tril Dnsitis chnis Efficincis trils µ chnis µ tril g/c 3 l/in 3 Ac-scrw w/rss nut ~ Stl on Stl ~0.58 Bll Bushings <.001 Aluinu ~.66 ~0.096 Ac-scrw w/plstic nut ~ Stl. On Stl. (grsd) ~0.15 Linr Brings <.001 Brss ~8.30 ~0.300 Bll-scrw ~ Aluinu on Stl ~0.45 Dov-Til Slids ~0.++ Bronz ~8.17 ~0.95 Prlodd Bll-Scrw ~ Coppr on Stl ~0.30 Gi Wys ~0.5++ Coppr ~8.91 ~0.3 Spur or Bvl Grs ~0.90 Brss on Stl ~0.35 Plstic ~1.11 ~0.040 Tiing Blts ~ Plstic on Stl ~ Stl ~7.75 ~0.80 Chin & Sprockt ~ Hrd Wood ~0.80 ~0.09 Wor Grs ~ PAGE 4

5 Srt otion "Cht" Sht 8.5 Fundntl uscl Slction Rltionships AutotionSolutions Th fundntl rltionship tht ust t for succssful srt otion ppliction is tht th Torqu Avill (t ll spds) fro th srt uscl (otor-driv syst) ust Grtr Thn th Torqu Rquird y th ppliction. T Avill > T Rquird (t ll spds) Thus, th procdur to follow is to first dtrin th totl torqu rquird (oth Pk nd Continuous or RS), thn copr it to th torqu vill fro th otor-driv systs ing considrd. For vill torqu, us th otor-driv torqu vs. spd prfornc curvs whnvr possil!! 1) T Pk (Rquird) = T TOTAL = T + T c : Totl Rquird Torqu (N or in-l) = Acclrtion Torqu (N or in-l) + Constnt Torqus (N or in-l). T = J Totl * α : Acclrtion Torqu (N or in-l) = Torqu Inrti (kg- or in-l-s ) * Acclrtion Rt (rdins-sc - ) 1. J Totl = otor inrti plus chnis inrtis rflctd to otor (s foruls on Pg 4). α = ω /t * π : Angulr Acclrtion (rdins-sc - ) = (or chng in) Spd/ccl ti (rps/sc) * unit convrsion (π rd/rv). T C = Torqu du to ll othr non-inrtil forcs such s grvity, friction, prlods, tool, nd othr push-pull forcs (VERY IPORTANT: Us Consistnt Units!! S unit convrsions on Pg 6) ) T RS (Rquird) = Root n Squrd : (~vrg) torqu ovr ntir cycl (rfr to figurs on pg 3. Not: Wtch your signs... As vctor quntity, T d = -T ) T PS T PR T CS T CR T 0 Typicl Torqu vs. Spd for Srvos (Aint Tp = 40 C) Intrittnt Duty Zon Continuous Torqu Lin Continuous Duty Zon 0 R T RS = Intrprttion of Srvo & Stppr Torqu vs. Spd Curvs Pk Torqu Lin (T = T c ) t + T c t c + (T d + T c ) t d + T h t h t + t c + t d + t h Srvos: Th figur t lft rprsnts typicl torqu vs. spd curvs for oth rush nd rushlss lctric srvo systs. Srvos typiclly hv two zons: on in which continuous oprtion is possil; th scond in which oprtion is possil only on n intrittnt sis (fro.05 to 30+ sc., dpnding on th nufcturr). Srvos typiclly hv pk torqu (ithr stll T PS or rtd T PR ) tht is to 3 tis highr thn th continuous torqu (ithr stll T CS or rtd T CR ). ost krs list iu spd ω (usully 3000 to 6000 rp) which would th spd t full voltg nd no lod (T 0 ). So krs list rtd torqus, which r th intrsction of th Pk nd Continuous Torqu curvs with rtd spd ω R (coonly rp). Sinc srvos r closd-loop y dfinition, s long s th pk torqu rquird is low th Pk Torqu (vill) Lin nd th rs torqu rquird dos not cd th Continuous Torqu Lin, oprtion up to th Pk Torqu Lin is possil without fr of stlling or fulting. Ky Considrtions whn copring curvs twn vrious nufcturrs with spcific ppliction includ: Alwys try to us th torqu vs. spd curvs! If only tulr dt is vill, clrly undrstnd wht th dt points rprsnt. For pl, is T t 0 spd or t. spd? Etc... Is th curv for th otor nd driv tht you will using? Wht int tprtur is ssud (5 vs. 40 C ks significnt diffrnc in rl prfornc!)? Also, wht voltg is ssud (vill voltg ffcts th top spd)? T H T 0 Typicl Torqu vs. Spd for Stpprs (Aint Tp = 40 C, otor Cs Tp < 100 C) Rlistic Oprting Zon (~0-50%) Stll Torqu Lin Rlistic Oprting Torqu Lin 0 1 H Stpprs: Stppr otor-driv systs r usd vry succssfully in ny offic nd industril utotion pplictions. Proprly pplid thy r typiclly th ost cost-ffctiv solution to Srt otion ppliction. If thir chrctristics r is-undrstood nd thy r is-pplid, costly pplictions filurs frquntly rsult. Th Stll Torqu Lin t lft rprsnts th typicl idl prfornc curv pulishd y krs of stppr otors nd driv systs. This curv ust intrprtd vry diffrntly thn srvo curvs. Du to th opnloop ntur of stppr systs nd th copl dynic intrctions twn otor, driv, lod, nd otion profil, stppr otor will frquntly stll wll for rching this idl stll torqu lin. And unlss fdck is providd, th control syst will not l to rspond. Also, vn th idl torqu flls off rpidly ov ω 1 (typiclly rp) to only 5-10% of holding torqu T H t ω H (typiclly <3000 rp). Thus, whn slcting stppr otor-driv systs, unlss n ppliction is trly wll dfind nd th lods do not significntly vry, it is rcondd tht th usr us rducd torqu spd curv siilr to th Rlistic Oprting Lin shown t th lft (which is sowht ritrrily dfind s 50% of th Stll Torqu Lin). Th rsulting slctions will uch or roust nd your ppliction will usully uch or succssful. T PS T PR T H T CS T CR T Srvo nd Stppr Coprison Torqu t Spd Epls A. Stppr Oky B. Stppr Qustionl C. Srvo Rquird H, R Stpprs vs. Srvos: If stppr syst will roustly prfor n ppliction, it will gnrlly lowr cost thn coprl srvo. Th prol is dfining vlid, consistnt sis on which to copr th. Th figur t lft illustrts on sis on which to copr th. It is n ovr-ly of torqu vs. spd curvd. Also shown r th torqu vs., spd rquirnts for 3 diffrnt ppliction pls. Not tht th holding torqu T H for th stppr syst is ovr twic s uch s th rtd torqu T CR of th srvo. Also not tht th iu spd for th stppr ω is grtr thn th rtd spd of th srvo ω R. Study of this figur will show tht slction sd upon zro-spd torqu lon (T H vs. T CS or T CR, which is vry coon) will ld to rronous conclusions. Appliction A shows tht stppr would ttr choic for low spd pplictions rquiring firly high continuous nd/or pk torqu. Appliction B illustrts tht vn t odrt spds stppr y not hv th torqu to do th s ppliction tht th srvo shown cn do vn without utilizing th srvo s intrittnt torqu. Appliction C is t highr spd nd rquirs srvo, vn though it rquirs lss thn third of T H nd is t spd lss thn ω H of th stppr. It cn not ovr-phsizd tht coprisons of ll systs should don on th sis of rlistic torqu vs. spd infortion, not just holding or rtd torqu dt! PAGE 5

6 Srt otion "Cht" Sht 8.6 L L Rctngulr Block L r h Solid Cylindr ro Hollow Cylindr w ri Ars, Volus, nd Inrtis for Sipl Shps A nd = h w; A sid = L h; V = L h w J - = 1 ( h + w ) J - = 1 ( 4L + w ) (if short) J - = 3 ( L ) (if h & w <<L) A nd = π r ; V = A L r Wr πlρr 4 J - = = = g g J - = ( 3r + L ) 1 J - = r 0 + r ( i ) A nd = π r 0 r i ; V = A L πlρ W = g r 0 + r i = g r 4 0 r 4 i J - = 3r 0 + 3r i + L 1 Coon Enginring Unit Convrsions Prtr Syst Intn s (SI) Units Coon English/Aricn Units N Syol Unit N Unit N Bsic Units ss kg kilogr l pound ss lngth (distnc) L tr ft (or in) foot (or inch) ti t s scond s scond currnt l A Apr A Apr Drivd Units Forc (wight) F (W) N Nwton lf (or oz) pound (or ounc) Torqu T N Nwton-tr ft-l (or in-l) foot-pound Work (nrgy) W (E) J Joul ft-l (or in-l) foot-pound Powr P W Wtt hp (or W) horspowr Voltg, EF V V Volt V Volt Rsistnc R Ω ohs Ω ohs Inrti J kg- kilogr-tr in-l-s (+othrs) inch-pound-scond pln ngl α, β, γ, tc. rd rdin dg or rd dgr or rdin rottion θ rv rvolution rv rvolution vlocity (linr) v -s -1 tr pr sc. in-s -1 inch pr scond cclrtion -s - tr pr sc. in-s - inch pr scond vlocity (ngulr) ω rd-s -1 rd pr scond rd-s -1 rd pr scond vlocity (rottionl) ω rp rv pr inut rp rv pr inut ccl (ngulr) α rd-s - rd pr scond rd-s - rd pr scond Bsic Dfinitions & Forul Dfinition/Forul Syst Intn l (SI) Units English/Aricn Units Forc (ccl) F = * 1 N = 1 kg * 1 -s - 1 lf = 1 lf/(386 in-s - ) * 386 in-s - Torqu (ccl) T = J * α 1 N = 1 kg- * 1 rd-s - 1 in-l = 1 in-l-s * 1 rd-s - Voltg (EF) V = I * R 1 V = 1 A * 1 Ω 1 V = 1 A * 1 Ω Work (Enrgy) E = F * L 1 J = 1 N * 1 1 in-l =.113 N =.113 Ws =.113 J Enrgy (lct.) E = V * l * t 1 J = 1 V * 1 A*1 s 1 J = 1 V * 1 A * 1 s Powr P = F * v 1 W = 1 N * 1 -s -1 1 hp = 550 ft-l-s -1 = W or P = T * ω 1 W = 1 N * 1 rd-s -1 (not: rdins r unitlss vlus) or P = V * I 1 W = 1 V * 1 A 1 W = 1 V * 1 A or P = E * t -1 1 W = 1 J * 1 s -1 1 W = 1 J * 1 s -1 or P = I * R 1 W = 1 A * 1 Ω 1 W = 1 A * 1 Ω otor Constnts Torqu Const. K t = T/I K t = N/A K t = in-l/a Voltg Const. K = V/ω K = V/(rd/s) K = V/krp T = 0) K = (V/(rd/s)) = K t (N/A) K (V/krp) = K t (in-l/a) Srvo otor Forul Currnt Drw I = T * K -1 t 1 A = 1 N * (N/A) -1 1 A = 1 in-l * (in-l/a) -1 Voltg Rq d V = IR + K * ω 1 V = AΩ +V/(rd/s)*(rd/s) 1 V = AΩ +V/(krp)*(krp) PAGE 6 Coon Units Syol Dfinition SI A/English L Lngth of solid or c in or ft w width of solid or c in or ft h hight of solid or c in or ft A Ar of shp or c in or ft V Volu of solid 3 or c 3 in 3 or ft 3 W Wight of solid N lf ss of solid kg l = lf / g J -, - Inrti out is -, - kg- in-l=s (& othrs) r, r 0 outr rdius or c in or ft r i innr rdius or c in or ft g ccl or grvity, s lvl s in-s - ρ ss dnsity of tril g-c -3 l-in -3 / g Gnrl Forul: ss: = Wight / grvity (y dfinition, 1 N = 1 kg--s - ) (kg) = W (9.81 N) / g (9.81 -s - ) (l) = (lf-s /386 in) = W (lf) / g (386 in-s - ) (s lvl) Wight: W = Volu * dnsity (t s lvl) W (N) = V (c 3 ) * ρ (g-c -3 ) * (.001 kg/g * s - ) W (l) = V (in 3 ) * ρ (l-in -3 /g) * (386 in-s - ) Wight: W = * grvity (t s lvl) W (N) = (.10 kg) * g (9.81 -s - ) W (l) = (l/386 in-s - ) * g (386 in-s - ) Coon Unit Convrsions Lngth 1 in = in =.54 c = in = 5,400 µ (icrons) 1 µ = * 10-6 in 1 ft =.3048 ; 1 = in 1 il = 580 ft 1 il = k ss, Wight, Forc 1 l = kg 1 l = N 1 l = 16 oz 1 kg = 9.81 N Grvity Constnt g (s lvl) g = 386 in-s - = 3.1 ft-s - = s - Torqu 1 in-l = 16 in-oz =.113 N 1 ft-l = 1 in-l = N 1 ft-l =.138 kg- 1 in-oz = N Inrti 1 l-in =.93*10-4 kg- 1 in-l-s = kg- 1 oz-in = 1.83*10-5 kg- 1 in-oz-s = 7.06*10-3 kg- 1 l-ft = 4.1*10 - kg- 1 ft-l-s = kg- 1 kg-c = 10-4 kg- Rottion 1 rv = 360 dg 1 rv = π rdins 1 rv = 1,600 rc-in 1 rv = 1.96*10 6 rc-sc Enrgy 1 in-l =.113 N =.113 J 1 BTU = 1055 J 1 BTU = 5 cloris Powr 1 hp ~ 746 W = 746 J-s -1 1 hp = 550 ft-l-s -1 1 hp ~ 550 ft-l-rp SI Prfis & ultipls Tr T 10 1 Gig G 10 9 g 10 6 kilo k 10 3 hcto h 10 dk d 10 1 dci d 10-1 cnti c 10 - illi 10-3 icro µ 10-6 nno n 10-9 pico ρ 10-1 To Convrt Units ultiply y 1 if 1 l = 16 oz, thn 1 = 16 oz/l or 1 =.065 l/oz Epl: 5 l =? oz... 5 l * (16 oz/l) = 80 oz Convrting Inrti Don t confus ss inrti with wight inrti. ss inrti is wight inrti dividd y grvity constnt g... in-l-s (ss inrti) = l-in /(386in/s ) Not: rdins r unitlss vlus! Hint: convrt to SI units nd ll will co out corrctly!

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Maxwellian Collisions

Maxwellian Collisions Maxwllian Collisions Maxwll ralizd arly on that th particular typ of collision in which th cross-sction varis at Q rs 1/g offrs drastic siplifications. Intrstingly, this bhavior is physically corrct for

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

UNIT # 08 (PART - I)

UNIT # 08 (PART - I) . r. d[h d[h.5 7.5 mol L S d[o d[so UNIT # 8 (PRT - I CHEMICL INETICS EXERCISE # 6. d[ x [ x [ x. r [X[C ' [X [[B r '[ [B [C. r [NO [Cl. d[so d[h.5 5 mol L S d[nh d[nh. 5. 6. r [ [B r [x [y r' [x [y r'

More information

Theoretical Study on the While Drilling Electromagnetic Signal Transmission of Horizontal Well

Theoretical Study on the While Drilling Electromagnetic Signal Transmission of Horizontal Well 7 nd ntrntionl Confrnc on Softwr, Multimdi nd Communiction Enginring (SMCE 7) SBN: 978--6595-458-5 Thorticl Study on th Whil Drilling Elctromgntic Signl Trnsmission of Horizontl Wll Y-huo FAN,,*, Zi-ping

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Definition1: The ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions.

Definition1: The ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions. Dirctivity or Dirctiv Gain. 1 Dfinition1: Dirctivity Th ratio of th radiation intnsity in a givn dirction from th antnna to th radiation intnsity avragd ovr all dirctions. Dfinition2: Th avg U is obtaind

More information

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator. Exam N a m : _ S O L U T I O N P U I D : I n s t r u c t i o n s : It is important that you clarly show your work and mark th final answr clarly, closd book, closd nots, no calculator. T i m : h o u r

More information

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l h 4D, 4th Rank, Antisytric nsor and th 4D Equivalnt to th Cross Product or Mor Fun with nsors!!! Richard R Shiffan Digital Graphics Assoc 8 Dunkirk Av LA, Ca 95 rrs@isidu his docunt dscribs th four dinsional

More information

Gradebook & Midterm & Office Hours

Gradebook & Midterm & Office Hours Your commnts So what do w do whn on of th r's is 0 in th quation GmM(1/r-1/r)? Do w nd to driv all of ths potntial nrgy formulas? I don't undrstand springs This was th first lctur I actually larnd somthing

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

The pn junction: 2 Current vs Voltage (IV) characteristics

The pn junction: 2 Current vs Voltage (IV) characteristics Th pn junction: Currnt vs Voltag (V) charactristics Considr a pn junction in quilibrium with no applid xtrnal voltag: o th V E F E F V p-typ Dpltion rgion n-typ Elctron movmnt across th junction: 1. n

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

IVE(TY) Department of Engineering E&T2520 Electrical Machines 1 Miscellaneous Exercises

IVE(TY) Department of Engineering E&T2520 Electrical Machines 1 Miscellaneous Exercises TRANSFORMER Q1 IE(TY) Dpartmnt of Enginring E&T50 Elctrical Machins 1 Miscllanous Exrciss Q Q3 A singl phas, 5 ka, 0/440, 60 Hz transformr gav th following tst rsults. Opn circuit tst (440 sid opn): 0

More information

On the Hamiltonian of a Multi-Electron Atom

On the Hamiltonian of a Multi-Electron Atom On th Hamiltonian of a Multi-Elctron Atom Austn Gronr Drxl Univrsity Philadlphia, PA Octobr 29, 2010 1 Introduction In this papr, w will xhibit th procss of achiving th Hamiltonian for an lctron gas. Making

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Push trolley capacities from 1 2 through 10 Ton Geared trolley capacities from 1 2 through 100 Ton

Push trolley capacities from 1 2 through 10 Ton Geared trolley capacities from 1 2 through 100 Ton H o i s t n T r o l l y C o m i n t i o n s Push trolly cpcitis from 2 through 0 Ton Gr trolly cpcitis from 2 through 00 Ton CB n CF hn chin hoists cn suspn from ithr PT push trollys or GT gr trollys.

More information

INC 693, 481 Dynamics System and Modelling: Linear Graph Modeling II Dr.-Ing. Sudchai Boonto Assistant Professor

INC 693, 481 Dynamics System and Modelling: Linear Graph Modeling II Dr.-Ing. Sudchai Boonto Assistant Professor INC 69, 48 Dynamics Systm and Modlling: Linar Graph Modling II Dr.-Ing. Sudchai Boonto Assistant Profssor Dpartmnt of Control Systm and Instrumntation Enginring King Mongkut s Unnivrsity of Tchnology Thonuri

More information

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12 Enginring Bautiful HW #1 Pag 1 of 6 5.1 Two componnts of a minicomputr hav th following joint pdf for thir usful liftims X and Y: = x(1+ x and y othrwis a. What is th probability that th liftim X of th

More information

MEASURING HEAT FLUX FROM A COMPONENT ON A PCB

MEASURING HEAT FLUX FROM A COMPONENT ON A PCB MEASURING HEAT FLUX FROM A COMPONENT ON A PCB INTRODUCTION Elctronic circuit boards consist of componnts which gnrats substantial amounts of hat during thir opration. A clar knowldg of th lvl of hat dissipation

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 71: Eqution (.3) should rd B( R) = θ R 1 x= [1 G( x)] pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1

More information

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM Fr Est Journl o Mthtil Sins (FJMS) Volu 6 Nur Pgs 8- Pulish Onlin: Sptr This ppr is vill onlin t http://pphjo/journls/jsht Pushp Pulishing Hous DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF MATRICES

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Notes on Finite Automata Department of Computer Science Professor Goldberg Textbooks: Introduction to the Theory of Computation by Michael Sipser

Notes on Finite Automata Department of Computer Science Professor Goldberg Textbooks: Introduction to the Theory of Computation by Michael Sipser Nots on Finit Automt Dprtmnt of Computr Scinc Profssor Goldrg Txtooks: Introduction to th Thory of Computtion y Michl Sipsr Elmnts of th Thory of Computtion y H. Lwis nd C. Ppdimitriou Ths nots contin

More information

Steady-state tracking & sys. types

Steady-state tracking & sys. types Sty-tt trcking & y. ty Unity fck control: um CL tl lnt r C y - r - o.l. y y r ol ol o.l. m m n n n N N N N N, N,, ut N N, m, ol.. clo-loo: y r ol.. trcking rror: r y r ty-tt trcking: t r ol.. ol.. For

More information

CS 6353 Compiler Construction, Homework #1. 1. Write regular expressions for the following informally described languages:

CS 6353 Compiler Construction, Homework #1. 1. Write regular expressions for the following informally described languages: CS 6353 Compilr Construction, Homwork #1 1. Writ rgular xprssions for th following informally dscribd languags: a. All strings of 0 s and 1 s with th substring 01*1. Answr: (0 1)*01*1(0 1)* b. All strings

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

1997 AP Calculus AB: Section I, Part A

1997 AP Calculus AB: Section I, Part A 997 AP Calculus AB: Sction I, Part A 50 Minuts No Calculator Not: Unlss othrwis spcifid, th domain of a function f is assumd to b th st of all ral numbrs for which f () is a ral numbr.. (4 6 ) d= 4 6 6

More information

Design Guidelines for Quartz Crystal Oscillators. R 1 Motional Resistance L 1 Motional Inductance C 1 Motional Capacitance C 0 Shunt Capacitance

Design Guidelines for Quartz Crystal Oscillators. R 1 Motional Resistance L 1 Motional Inductance C 1 Motional Capacitance C 0 Shunt Capacitance TECHNICAL NTE 30 Dsign Guidlins for Quartz Crystal scillators Introduction A CMS Pirc oscillator circuit is wll known and is widly usd for its xcllnt frquncy stability and th wid rang of frquncis ovr which

More information

A 1 A 2. a) Find the wavelength of the radio waves. Since c = f, then = c/f = (3x10 8 m/s) / (30x10 6 Hz) = 10m.

A 1 A 2. a) Find the wavelength of the radio waves. Since c = f, then = c/f = (3x10 8 m/s) / (30x10 6 Hz) = 10m. 1. Young s doubl-slit xprint undrlis th instrunt landing syst at ost airports and is usd to guid aircraft to saf landings whn th visibility is poor. Suppos that a pilot is trying to align hr plan with

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Exam 2 Thursday (7:30-9pm) It will cover material through HW 7, but no material that was on the 1 st exam.

Exam 2 Thursday (7:30-9pm) It will cover material through HW 7, but no material that was on the 1 st exam. Exam 2 Thursday (7:30-9pm) It will covr matrial through HW 7, but no matrial that was on th 1 st xam. What happns if w bash atoms with lctrons? In atomic discharg lamps, lots of lctrons ar givn kintic

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

ME311 Machine Design

ME311 Machine Design ME311 Machin Dsign Lctur 4: Strss Concntrations; Static Failur W Dornfld 8Sp017 Fairfild Univrsit School of Enginring Strss Concntration W saw that in a curvd bam, th strss was distortd from th uniform

More information

Pipe flow friction, small vs. big pipes

Pipe flow friction, small vs. big pipes Friction actor (t/0 t o pip) Friction small vs larg pips J. Chaurtt May 016 It is an intrsting act that riction is highr in small pips than largr pips or th sam vlocity o low and th sam lngth. Friction

More information

Lecture 6 Thermionic Engines

Lecture 6 Thermionic Engines Ltur 6 hrmioni ngins Rviw Rihrdson formul hrmioni ngins Shotty brrir nd diod pn juntion nd diod disussion.997 Copyright Gng Chn, MI For.997 Dirt Solr/hrml to ltril nrgy Convrsion WARR M. ROHSOW HA AD MASS

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS Intrnational Journal Of Advanc Rsarch In Scinc And Enginring http://www.ijars.com IJARSE, Vol. No., Issu No., Fbruary, 013 ISSN-319-8354(E) PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS 1 Dharmndra

More information

11: Echo formation and spatial encoding

11: Echo formation and spatial encoding 11: Echo formation and spatial ncoding 1. What maks th magntic rsonanc signal spatiall dpndnt? 2. How is th position of an R signal idntifid? Slic slction 3. What is cho formation and how is it achivd?

More information

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES EZ SERVO EZSV17 WIRING DIAGRAM FOR BLDC MOTOR

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES EZ SERVO EZSV17 WIRING DIAGRAM FOR BLDC MOTOR 0V TO 0V SUPPLY GROUN +0V TO +0V RS85 ONVRTR 9 TO OM PORT ON P TO P OM PORT US 9600 U 8IT, NO PRITY, STOP, NO FLOW TRL. OPTO SNSOR # GROUN +0V TO +0V GROUN RS85 RS85 OPTO SNSOR # PHOTO TRNSISTOR TO OTHR

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

Continuous Random Variables: Basics

Continuous Random Variables: Basics Continuous Rndom Vrils: Bsics Brlin Chn Dprtmnt o Computr Scinc & Inormtion Enginring Ntionl Tiwn Norml Univrsit Rrnc: - D.. Brtss, J. N. Tsitsilis, Introduction to roilit, Sctions 3.-3.3 Continuous Rndom

More information

Observer Bias and Reliability By Xunchi Pu

Observer Bias and Reliability By Xunchi Pu Obsrvr Bias and Rliability By Xunchi Pu Introduction Clarly all masurmnts or obsrvations nd to b mad as accuratly as possibl and invstigators nd to pay carful attntion to chcking th rliability of thir

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

Chapter 11 Calculation of

Chapter 11 Calculation of Chtr 11 Clcultion of th Flow Fild OUTLINE 11-1 Nd for Scil Procdur 11-2 Som Rltd Difficultis 11-3 A Rmdy : Th stggrd Grid 11-4 Th Momntum Equtions 11-5 Th Prssur nd Vlocity Corrctions 11-6 Th Prssur-Corrction

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

Cross-section section of DC motor. How does a DC Motor work? 2 Commutator Bars N X. DC Motors 26.1

Cross-section section of DC motor. How does a DC Motor work? 2 Commutator Bars N X. DC Motors 26.1 DC Motors 26.1 How does DC Motor work? Crosssection section of DC motor Mgnetic field vector, B oft Iron Core (otor) Wire length vector, dl Force vector, df Current, i Permnent Mgnet (ttor) Crosssection

More information

CHAPTER 1. Introductory Concepts Elements of Vector Analysis Newton s Laws Units The basis of Newtonian Mechanics D Alembert s Principle

CHAPTER 1. Introductory Concepts Elements of Vector Analysis Newton s Laws Units The basis of Newtonian Mechanics D Alembert s Principle CHPTER 1 Introductory Concpts Elmnts of Vctor nalysis Nwton s Laws Units Th basis of Nwtonian Mchanics D lmbrt s Principl 1 Scinc of Mchanics: It is concrnd with th motion of matrial bodis. odis hav diffrnt

More information

The SuperFET: A High-Performance GaAs Voltage-Controlled Current Source for Cryogenic Applications

The SuperFET: A High-Performance GaAs Voltage-Controlled Current Source for Cryogenic Applications The SuperFT: High-Perormace Gas Voltage-Cotrolled Curret Source or Cryogeic pplicatios.v.cami, G.Pessia,.Previtali ad P. Ramaioli*. ipartimeto di Fisica dell'uiversita' ad Istituto Nazioale di Fisica Nucleare,

More information

15. Stress-Strain behavior of soils

15. Stress-Strain behavior of soils 15. Strss-Strain bhavior of soils Sand bhavior Usually shard undr draind conditions (rlativly high prmability mans xcss por prssurs ar not gnratd). Paramtrs govrning sand bhaviour is: Rlativ dnsity Effctiv

More information

IXBT22N300HV IXBH22N300HV

IXBT22N300HV IXBH22N300HV High Voltag, High Gain BIMOSFT TM Monolithic Bipolar MOS Transistor Advanc Tchnical Information IXBTNHV IXBHNHV V CS = V = A V C(sat). TO-6HV (IXBT) Symbol Tst Conditions Maximum Ratings V CS = 5 C to

More information

5.4 The Quarter-Wave Transformer

5.4 The Quarter-Wave Transformer 4//9 5_4 Th Qurtr Wv Trnsformr.doc / 5.4 Th Qurtr-Wv Trnsformr Rdg Assignmnt: pp. 73-76, 4-43 By now you v noticd tht qurtr-wv lngth of trnsmission l ( λ 4, β π ) pprs oftn microwv ngrg prolms. Anothr

More information

2. Laser physics - basics

2. Laser physics - basics . Lasr physics - basics Spontanous and stimulatd procsss Einstin A and B cofficints Rat quation analysis Gain saturation What is a lasr? LASER: Light Amplification by Stimulatd Emission of Radiation "light"

More information

Preliminary Fundamentals

Preliminary Fundamentals 1.0 Introduction Prliminary Fundamntals In all of our prvious work, w assumd a vry simpl modl of th lctromagntic torqu T (or powr) that is rquird in th swing quation to obtain th acclrating torqu. This

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

CHAPTER 3 MECHANISTIC COMPARISON OF WATER CONING IN OIL AND GAS WELLS

CHAPTER 3 MECHANISTIC COMPARISON OF WATER CONING IN OIL AND GAS WELLS CHAPTER 3 MECHANISTIC COMPARISON OF WATER CONING IN OIL AND GAS WELLS Wtr coning in gs lls hs n undrstood s phnomnon similr to tht in oil ll. In contrst to oil lls, rltivly f studis hv n rportd on spcts

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Model neurons!!the membrane equation!

Model neurons!!the membrane equation! Modl nurons!!th bran quation! Suggstd rading:! Chaptr 5.1-5.3 in Dayan, P. & Abbott, L., Thortical Nuroscinc, MIT Prss, 2001.! Modl nurons: Th bran quation! Contnts:!!!!!! Ion channls Nnst quation Goldan-Hodgkin-Katz

More information

Seebeck and Peltier Effects

Seebeck and Peltier Effects Sbck and Pltir Effcts Introduction Thrmal nrgy is usually a byproduct of othr forms of nrgy such as chmical nrgy, mchanical nrgy, and lctrical nrgy. Th procss in which lctrical nrgy is transformd into

More information

Module 2 Motion Instructions

Module 2 Motion Instructions Moul 2 Motion Instrutions CAUTION: Bor you strt this xprimnt, unrstn tht you r xpt to ollow irtions EXPLICITLY! Tk your tim n r th irtions or h stp n or h prt o th xprimnt. You will rquir to ntr t in prtiulr

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

3 Finite Element Parametric Geometry

3 Finite Element Parametric Geometry 3 Finit Elmnt Paramtric Gomtry 3. Introduction Th intgral of a matrix is th matrix containing th intgral of ach and vry on of its original componnts. Practical finit lmnt analysis rquirs intgrating matrics,

More information

Tap Changer Type MHZ Specification, Assembly and Materials

Tap Changer Type MHZ Specification, Assembly and Materials Tap Changr Typ MH Spcification, ssmbly and Matrials Dscriptions Gnral Spcifications Rmarks availabl in on, two or thr phas application multi layr typs upon rqust shaft lngth availabl in variabl sizs driving

More information

The Mathematics of Harmonic Oscillators

The Mathematics of Harmonic Oscillators Th Mhcs of Hronc Oscllors Spl Hronc Moon In h cs of on-nsonl spl hronc oon (SHM nvolvng sprng wh sprng consn n wh no frcon, you rv h quon of oon usng Nwon's scon lw: con wh gvs: 0 Ths s sos wrn usng h

More information

PHA 5127 Answers Homework 2 Fall 2001

PHA 5127 Answers Homework 2 Fall 2001 PH 5127 nswrs Homwork 2 Fall 2001 OK, bfor you rad th answrs, many of you spnt a lot of tim on this homwork. Plas, nxt tim if you hav qustions plas com talk/ask us. Thr is no nd to suffr (wll a littl suffring

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

Waves in cavities such as vehicle compartments, rooms or ducts

Waves in cavities such as vehicle compartments, rooms or ducts 7.1 Wavs in cavitis such as vhicl compartmnts, rooms or ducts Sound propagation from sourcs into th fr fild is rlativly simpl. At a rciving position in a distanc to th sourc th sound will arriv dlayd by

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Motion. Acceleration. Part 2: Constant Acceleration. October Lab Phyiscs. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Acceleration. Part 2: Constant Acceleration. October Lab Phyiscs. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Motion ccelertion Prt : Constnt ccelertion ccelertion ccelertion ccelertion is the rte of chnge of elocity. = - o t = Δ Δt ccelertion = = - o t chnge of elocity elpsed time ccelertion is ector, lthough

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

DIS-Parity. Search for New Physics Through Parity Violation In Deep Inelastic Electron Scattering. The Physics Case

DIS-Parity. Search for New Physics Through Parity Violation In Deep Inelastic Electron Scattering. The Physics Case DIS-Parity Sarch for Nw Physics Through Parity Violation In Dp Inlastic Elctron Scattring Th Physics Cas R. Arnold for th DIS-Parity Collaboration Exprimnt Plan by Stv Rock will follow 12 Jun 2003 DIS-Parity

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Physics 312 First Pledged Problem Set

Physics 312 First Pledged Problem Set Physics 31 First Pldgd Problm St 1. Th ground stat of hydrogn is dscribd by th wavfunction whr a is th Bohr radius. (a) Comput th charg dnsity à (r) = 1 p ¼ µ 1 a 3 r=a ; ½ (r) = jã (r)j : and plot 4¼r

More information

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph.

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph. nlyzing Dmped Oscilltions Prolem (Medor, exmple 2-18, pp 44-48): Determine the eqution of the following grph. The eqution is ssumed to e of the following form f ( t) = K 1 u( t) + K 2 e!"t sin (#t + $

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Split-plot Experiments and Hierarchical Data

Split-plot Experiments and Hierarchical Data Split-plot Exprimnts nd Hirrchicl Dt Introduction Alx Stlzlni invstigtd th ffcts of fding rgim for bf nimls nd muscl typ on th tndrnss of mt. H ssignd ight nimls to ch of thr trtmnts. Th trtmnts wr th

More information

What are those βs anyway? Understanding Design Matrix & Odds ratios

What are those βs anyway? Understanding Design Matrix & Odds ratios Ral paramtr stimat WILD 750 - Wildlif Population Analysis of 6 What ar thos βs anyway? Undrsting Dsign Matrix & Odds ratios Rfrncs Hosmr D.W.. Lmshow. 000. Applid logistic rgrssion. John Wily & ons Inc.

More information

System variables. Basic Modeling Concepts. Basic elements single and. Power = effort x flow. Power = F x v. Power = V x i. Power = T x w.

System variables. Basic Modeling Concepts. Basic elements single and. Power = effort x flow. Power = F x v. Power = V x i. Power = T x w. Basic Modling Concpts Basic lmnts singl and multiport t dvics Systm variabls v m F V i Powr F x v T w Powr T x w Powr V x i P Q Powr P x Q Powr ort x low Eort & low ar powr variabls Eorts t... Flows...

More information

Calculus concepts derivatives

Calculus concepts derivatives All rasonabl fforts hav bn mad to mak sur th nots ar accurat. Th author cannot b hld rsponsibl for any damags arising from th us of ths nots in any fashion. Calculus concpts drivativs Concpts involving

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpnCoursWar http://ocw.mit.du 5.80 Small-Molcul Spctroscopy and Dynamics Fall 008 For information about citing ths matrials or our Trms of Us, visit: http://ocw.mit.du/trms. Lctur # 3 Supplmnt Contnts

More information

SUMMER 17 EXAMINATION

SUMMER 17 EXAMINATION (ISO/IEC - 7-5 Crtifid) SUMMER 7 EXAMINATION Modl wr jct Cod: Important Instructions to aminrs: ) Th answrs should b amind by ky words and not as word-to-word as givn in th modl answr schm. ) Th modl answr

More information

MTH 505: Number Theory Spring 2017

MTH 505: Number Theory Spring 2017 MTH 505: Numer Theory Spring 207 Homework 2 Drew Armstrong The Froenius Coin Prolem. Consider the eqution x ` y c where,, c, x, y re nturl numers. We cn think of $ nd $ s two denomintions of coins nd $c

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

1 General boundary conditions in diffusion

1 General boundary conditions in diffusion Gnral boundary conditions in diffusion Πρόβλημα 4.8 : Δίνεται μονοδιάτατη πλάκα πάχους, που το ένα άκρο της κρατιέται ε θερμοκραία T t και το άλλο ε θερμοκραία T 2 t. Αν η αρχική θερμοκραία της πλάκας

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Integration by Parts

Integration by Parts Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

More information

Chapter 6: Polarization and Crystal Optics

Chapter 6: Polarization and Crystal Optics Chaptr 6: Polarization and Crystal Optics * P6-1. Cascadd Wav Rtardrs. Show that two cascadd quartr-wav rtardrs with paralll fast axs ar quivalnt to a half-wav rtardr. What is th rsult if th fast axs ar

More information

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases.

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases. Homwork 5 M 373K Solutions Mark Lindbrg and Travis Schdlr 1. Prov that th ring Z/mZ (for m 0) is a fild if and only if m is prim. ( ) Proof by Contrapositiv: Hr, thr ar thr cass for m not prim. m 0: Whn

More information

CO-ORDINATION OF FAST NUMERICAL RELAYS AND CURRENT TRANSFORMERS OVERDIMENSIONING FACTORS AND INFLUENCING PARAMETERS

CO-ORDINATION OF FAST NUMERICAL RELAYS AND CURRENT TRANSFORMERS OVERDIMENSIONING FACTORS AND INFLUENCING PARAMETERS CO-ORDINATION OF FAST NUMERICAL RELAYS AND CURRENT TRANSFORMERS OVERDIMENSIONING FACTORS AND INFLUENCING PARAMETERS Stig Holst ABB Automation Products Swdn Bapuji S Palki ABB Utilitis India This papr rports

More information

This chapter will show you. What you should already know. 1 Write down the value of each of the following. a 5 2

This chapter will show you. What you should already know. 1 Write down the value of each of the following. a 5 2 1 Direct vrition 2 Inverse vrition This chpter will show you how to solve prolems where two vriles re connected y reltionship tht vries in direct or inverse proportion Direct proportion Inverse proportion

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10 University of Wshington Deprtment of Chemistry Chemistry 45 Winter Qurter Homework Assignment 4; Due t 5p.m. on // We lerned tht the Hmiltonin for the quntized hrmonic oscilltor is ˆ d κ H. You cn obtin

More information

SP490/SP491. Full Duplex RS-485 Transceivers. Now Available in Lead Free Packaging

SP490/SP491. Full Duplex RS-485 Transceivers. Now Available in Lead Free Packaging SP490/SP491 Full uplx RS-485 Transcivrs FTURS +5V Only Low Powr icmos rivr/rcivr nal (SP491) RS-485 and RS-422 rivrs/rcivrs Pin Compatil with LTC490 and SN75179 (SP490) Pin Compatil with LTC491 and SN75180

More information