Intro Physics (Each individual student will complete his or her own lab report)

Size: px
Start display at page:

Download "Intro Physics (Each individual student will complete his or her own lab report)"

Transcription

1 Intro Physics May/June 2016 Name (Each individual student will complete his or her own lab report) Bottle Rocket Lab - Target Launch Date: Group Members: Post Prototype Launch questions (max 8 points) Due date: Questions worth 2 points each based on accuracy and completeness Pre Launch questions (max 32 points) - Due date: launch date Questions 1-16 are worth 2 point each, (1 point for accuracy and 1 point for completeness) Challenge questions are worth 1 point each, based on effort and thought Construction and Design reflection (max 9 points) - Due date: launch date Content: 1 st paragraph: prototype round (3 points) o Explain your design o Include a labeled diagram of your design o Explains how the prototype performed Content: 2 nd paragraph: design (3 points) o Explain your design o o Include a labeled diagram of your design Explain how you implemented any improvements after the prototype round Format (3 points) o Make sure it is typed (all but the 2 diagrams) o Properly formatted (line spacing, font type, font size, proper diagrams) o Includes a title (other than the word TITLE) in bigger font and you name, block, and date Performance (max 9 points) You get 3 points for attaining each of the following: Looks like a rocket Launches Flies true (doesn t tumble or go out of control) Post Launch questions (max 8 points) Due date: Monday 6/15 Questions worth 2 points each based on accuracy and completeness In class work and focus (1 points each day) Max. 6 points When you work on the project make sure you: Stay focus in class (teacher doesn t have to call your attention to stay on task) Bring all necessary materials for the completion of the project Teacher will mark this rubric by the end of each day to take one or two points off if you need to improve record Day 1 research and build prototype rocket 1 Day 2 launch prototype and work on hand out 1 Day 3 work on hand out Day 4 build second and final rocket 1 Day 5 launch second and final rocket 1 1 Total : /

2 Water Rockets In 1919 Robert Goddard, a professor at Clark University in Worcester, Massachusetts, claimed that a multistage rocket weighing only ten tons could land on the Moon. After years of research, Goddard built the first liquid-fueled rocket, achieving a height of 90 feet before angry neighbors and local police ordered him to cease rocket experiments in Massachusetts. He moved to New Mexico where he continued his pioneering work in rocketry. It is difficult to say what is impossible, for the dream of yesterday is the hope of today and the reality of tomorrow -- Robert H. Goddard NASA The Introductory Physics students at NNHS are going to revive the Massachusetts tradition of rocket innovation by building and launching our own low-tech rockets, using 2-liter plastic soda bottles, cardboard, and water. We will use a bicycle pump rocket launcher and release the rockets in one of the fields outside.

3 Bottle Rocket Construction Procedure Materials (please bring plastic 2 liter soda bottles to school) One 2 liter bottle (Two 2-liter bottles if you are planning to make a taller rocket) Tape / glue Cardboard / poster board / manila folders Clay Optional for parachute (if you make a second rocket!) String Garbage Bag Rubber Bands Balloon Procedure (look at the diagram in the previous page) 1. Cut out nose cone from cardboard. Place a small handful of clay into tip of nose to vary the location of the center of mass. 2. Cut and tape fins onto nozzle end of bottle. Shape and orient the fins so that they will increase aerodynamic stability. 3. Optional: Using the top, bottom, or a cylindrical section of your second 2-liter bottle to make your rocket longer. Make sure you attach this extra part to the bottom of the intact bottle, leaving the opening of the intact bottle free (this will be used to pump air inside and pressurize the rocket) 4. Optional: Create an extra compartment for a parachute under the nosecone. Attach the nosecone with a string. As you build the rocket, be sure that the center of mass is above the center of pressure.

4 Bottle Rocket Pre Launch Questions: These questions should be answered before the launch day, individually. When Robert Goddard proposed a rocket to the Moon in 1919, the New York Times ridiculed the idea, claiming that a rocket could not possibly propel itself through the vacuum of space: after the rocket quits our air and really starts on its longer journey it will neither be accelerated nor maintained by the explosion [Professor Goddard] does not know of the relation of action to reaction and the need to have something better than a vacuum against which to react [He] only seems to lack the knowledge ladled out daily in high schools. The New York Times, Define Newton s Third Law (N3L): 2. Explain how N3L applies to rockets. 3. Explain why Goddard was correct and the New York Times was wrong.

5 4. Consider the following diagram of a V-2 rocket. Each part of the rocket has a specific function. The nose cone reduces drag. The fins add stability. Answer: what is the function of the propulsion system? 5. Draw the direction that the net force points in each part of the trajectory. Remember that net force implies acceleration: net force and motion in the same direction, motion speeds up; net force and motion in opposite directions, motion slows down.

6 6. Draw a free body diagram of the bottle rocket at each of the following stages: At rest on launch pad, during launch, coasting ascent (still rising, but rockets are no longer firing), maximum altitude, coasting descent (rocket is falling, rocket is not firing). At rest During launch (engine firing) Coasting ascent (engine no longer firing) Maximum Altitude Coasting descent 7. Describe the gravitational potential energy and kinetic energy changes at each part of the trajectory. (Example: GPE is increasing/decreasing/zero and KE is increasing/decreasing/zero) At rest During launch (engine firing) Coasting ascent (engine no longer firing) Maximum Altitude Coasting descent 8. Describe how high would the rocket go on the moon compared to earth and use CER to explain why.

7 9. Define Newton s 2 nd Law (N2L) here. 10. If you want your rocket to go as fast and high as possible (to attain the maximum possible acceleration), explain what design decisions you should make. Support your design choices with N2L. 11. State the law of conservation of momentum. 12. Define what is your system. 13. Based on the law of conservation of momentum, the momentum that the rocket attains is equal and opposite to the momentum of the escaping fluid. Explain why we can achieve greater speed using a combination of water and air as opposed to just air.

8 Use the Forces on a Rocket Diagram on the right to answer the next 2 questions: 14. Describe how changing the mass would affect the flight of the rocket. 15. If the forces on the rocket are balanced, state what acceleration will the rocket experience. Explain your reasoning using one of Newton s three laws of motion. 16. Explain: how can we tell if the forces are balanced once the rocket is in flight? Challenge questions - If you want to answer these questions, you may do some research (see resources in the next page) or get together with a classmate to work on them, but your answer must be your own and you must cite your sources. I will not answer them for you! 17. Describe how the rocket would fly without a nose cone. Use CER to explain your answer.

9 18. Describe how the rocket would fly without fins. Use CER to explain your answer. 19. Explain how the function of the fins and nose cone would be different on the moon. 20. If you measure the time the rocket is in the air and assuming you do not use any device to slow down the descent. Can you calculate the how high the rocket went? How? (Only the equation) What else would you need to know to be able to determine the height? References: Most of the NASA pictures in this handout are taken from: More information on water bottle rockets (not all these links work properly)

10 Intro Physics June/May 2015 Name (Each individual student will complete his or her own lab report) Bottle Rocket Lab: After launch Questions (due by the end of class) Group Members: 1. Describe in detail how your group s rocket performed. Was it able to lift off the ground? How high did it go? What trajectory did it follow? Did it maintain stability? 2. How did your rocket compare with rockets made by your classmates (in terms of lifting, height, trajectory, and stability)? Did your rocket perform better than the first round rocket? How did your rocket compare with rockets made by your classmates? 3. Describe the one or two rockets from your class that performed the best, and the one or two worst. In what ways were they different from the others? 4. How could you improve your rocket to make it travel higher and farther? What are some specific things you would change/alter?

11 Intro Physics June/May 2015 Name (Each individual student will complete his or her own lab report) PROTOTYPE Bottle Rocket Lab: After launch Questions (due by the end of class) Group Members: 1. Describe in detail how your group s rocket performed. Was it able to lift off the ground? How high did it go? What trajectory did it follow? Did it maintain stability? 2. How did your rocket compare with rockets made by your classmates (in terms of lifting, height, trajectory, and stability)? How did your rocket compare with rockets made by your classmates? 3. Describe the one or two rockets from your class that performed the best, and the one or two worst. In what ways were they different from the others? 4. How could you improve your rocket to make it travel higher and farther? What are some specific things you would change/alter?

Intro Physics (Each individual student will complete his or her own lab report)

Intro Physics (Each individual student will complete his or her own lab report) Intro Physics May/June 204 Name (Each individual student will complete his or her own lab report) Bottle Rocket Lab - Target Launch Date: Group Members: Pre Launch questions (max 26 points) - Due date:

More information

Newton s 2 nd Law If an unbalanced (net) force acts on an object, that object will accelerate (or decelerate) in the direction of the force.

Newton s 2 nd Law If an unbalanced (net) force acts on an object, that object will accelerate (or decelerate) in the direction of the force. Bottle Rocket Lab Physics Concepts: Newton s 1 st Law - Every object in a state of uniform motion tends to remain in that state of motion unless an external force is applied to it. This we recognize as

More information

Name: Block: Date: / / Engineering Design Challenge: Balloon Rocket Race!

Name: Block: Date: / / Engineering Design Challenge: Balloon Rocket Race! Name: Block: Date: / / Engineering Design Challenge: Balloon Rocket Race! Introduction: In 1919 Robert Goddard, a professor at Clark University in Worcester, Massachusetts, claimed that a multistage rocket

More information

Model Rocketry. The Science Behind the Fun

Model Rocketry. The Science Behind the Fun Model Rocketry The Science Behind the Fun Topics History of Rockets Sir Isaac Newton Laws of Motion Rocket Principles Flight of a Model Rocket Rocket Propulsion Forces at Work History Rockets and rocket

More information

Principles of Rocketry

Principles of Rocketry 1-1 Principles of Rocketry 1-2 Water Rockets BASIC CONCEPTS 1-3 What is a Rocket? A chamber enclosing a gas under pressure. A balloon is a simple example of a rocket. Rubber walls compress the air inside.

More information

Class 4 Newton s laws of motion. I : Newton s laws of motion

Class 4 Newton s laws of motion. I : Newton s laws of motion Class 4 Newton s laws of motion Newton s laws of motion Momentum and a second way to look at Newton s laws Frames of reference, symmetry and (Galilean) relativity yet another way to look at Newton s law

More information

Fin design mission. Team Members

Fin design mission. Team Members Fin design mission Team Members Mission: Your team will determine the best fin design for a model rocket. You will compare highest altitude, flight characteristics, and weathercocking. You will report

More information

This IS Rocket Science - A Teaching Module Adaptable K 12. Dr. John F. Dilley, Senior Aerospace Consultant Aerospace Research Center (ARC) April, 2017

This IS Rocket Science - A Teaching Module Adaptable K 12. Dr. John F. Dilley, Senior Aerospace Consultant Aerospace Research Center (ARC) April, 2017 This IS Rocket Science - A Teaching Module Adaptable K 12 Dr. John F. Dilley, Senior Aerospace Consultant Aerospace Research Center (ARC) April, 2017 Background & Contents Background: This presentation

More information

Space Travel. 01/09/2016 V6.2 AZ Science Lab 1

Space Travel. 01/09/2016 V6.2 AZ Science Lab 1 Space Travel 01/09/2016 V6.2 AZ Science Lab 1 Rockets Up, Up, and Away!!! A Study of Forces, Newton s Laws of Motion, And Aerodynamics Institute Of Electrical And Electronic Engineers, Phoenix Section

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

How To Complete and Experiment and Write a Lab Report: Using Questions to Write a Hypothesis With Clear Independent and Dependent Variables

How To Complete and Experiment and Write a Lab Report: Using Questions to Write a Hypothesis With Clear Independent and Dependent Variables How To Complete and Experiment and Write a Lab Report: Using Questions to Write a Hypothesis With Clear Independent and Dependent Variables 1 I can How to Write a Hypothesis http://www.myteacherpages.com/webpages/jflynt/portfolio.cfm?subpage=1001394

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion 4-1 Force A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude of

More information

UC Irvine FOCUS! 5 E Lesson Plan

UC Irvine FOCUS! 5 E Lesson Plan UC Irvine FOCUS! 5 E Lesson Plan Title: Stomp Rockets Grade Level and Course: Pre-Algebra, Geometry, Grade 8 Physical Science, Grades 9-12 Physics (extension) - Trigonometry Materials: 1 stomp rocket per

More information

Michael Fowler, UVa Physics, 12/1/07. Momentum has Direction

Michael Fowler, UVa Physics, 12/1/07. Momentum has Direction Michael Fowler, UVa Physics, //07 Momentum has Direction As we discussed in the last lecture, even before Newton formulated his laws, Descartes, with a little help from Huygens, had discovered a deep dynamical

More information

Engage 1. When you exert a force on a balloon, what does the balloon exert on you?

Engage 1. When you exert a force on a balloon, what does the balloon exert on you? Unit 1: Phenomenon The Physics of Skydiving Lesson 3c Newton s Third Law of Motion California Standard Addressed PH1. Newton s laws predict the motion of most objects. As a basis for understanding this

More information

Lecture 4: Newton s Laws & Galilean Relativity

Lecture 4: Newton s Laws & Galilean Relativity Lecture 4: Newton s Laws & Galilean Relativity Newton s profound perspective Newton s Laws of Motion 3 ways Newton s Law of Gravitation 9/8/10 1 Newton s profound perspective Newton formulated a universal

More information

High-Power Rocketry. Calculating the motion of a rocket for purely vertical flight.

High-Power Rocketry. Calculating the motion of a rocket for purely vertical flight. High-Power Rocketry Calculating the motion of a rocket for purely vertical flight. Phase I Boost phase: motor firing (rocket losing mass), going upwards faster and faster (accelerating upwards) Phase II

More information

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

Can anyone think of an example of an action-reaction pair? [jumping, rowing...]

Can anyone think of an example of an action-reaction pair? [jumping, rowing...] Newton s Laws of Motion (cont d) Astronomy Lesson 17 Newton proposed that whenever one object exerts a force on a second object, the second object exerts a force back on the first. The force exerted by

More information

Technology of Rocket

Technology of Rocket Technology of Rocket Parts of Rocket There are four major parts of rocket Structural system Propulsion system Guidance system Payload system Structural system The structural system of a rocket includes

More information

ESTESTM EDUCATOR SCIENCE AND MODEL ROCKETS

ESTESTM EDUCATOR SCIENCE AND MODEL ROCKETS F m Sm X 0 Nm ESTESTM EDUCATOR SCIENCE AND MODEL ROCKETS N m A Curriculum for GRADES 5, 6, 7, 8 Written by SYLVIA NOLTE, Ed. D. Based on NANCY STOOPS Model Rocketry Course Outline Edited by Ann Grimm Copyright

More information

Science 10. Unit 4:Physics. Block: Name: Book 1: Kinetic & Potential Energy

Science 10. Unit 4:Physics. Block: Name: Book 1: Kinetic & Potential Energy Science 10 Unit 4:Physics Book 1: Kinetic & Potential Energy Name: Block: 1 Brainstorm: Lesson 4.1 Intro to Energy + Kinetic Energy What is WORK? What is ENERGY? "in physics, we say that if you have done

More information

have tried with your racer that are working well? you would like to make to your car?

have tried with your racer that are working well? you would like to make to your car? 1. What is energy? 2. What are some things you have tried with your racer that are working well? 3. What are some changes you would like to make to your car? Chapter 5 Section 1 Energy is the ability to

More information

Year 10 Physics - Forces and Energy - Test

Year 10 Physics - Forces and Energy - Test Year 10 Physics - Forces and Energy - Test Name Information: / 34 marks Use the following formulae where they are relevant to questions: v = d t a = v t v = u + at F = m a (also: Weight = m g) Work done

More information

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: No Push No Go No Push No Stop No Push No Speed Up No Push No Slow Down

More information

Thank you for your purchase!

Thank you for your purchase! Thank you for your purchase! Please be sure to save a copy this document to your local computer. This activity is copyrighted by the AIMS Education Foundation. All rights reserved. No part of this work

More information

ROCKET LABTM. Up and Down and All Around with Newton

ROCKET LABTM. Up and Down and All Around with Newton Science 1. LEARN (15 minutes) STEP Up and Down and All Around with Newton Objectives Students will gain knowledge of Newton s Three Laws of Motion. Students will demonstrate how all Three Laws of Motion

More information

Projectiles: Target Practice Teacher Version

Projectiles: Target Practice Teacher Version Projectiles: Target Practice Teacher Version In this lab you will shoot a chopstick across the room with a rubber band and measure how different variables affect the distance it flies. You will use concepts

More information

Physics Final Practice Exam Part 1

Physics Final Practice Exam Part 1 Physics Final Practice Exam Part 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which one of the following problems would NOT be a part of physics?

More information

ideas with idea packet Kaboom... Up, Up, and Away IMPACT

ideas with idea packet Kaboom... Up, Up, and Away IMPACT ideas with 2014-2015 IMPACT idea packet Kaboom... Up, Up, and Away Kaboom.Up Up and Away (Estes Educator Series) (Science & Model Series, Modified) Presenter Contact Information: Bridgit Coley Renaissance

More information

CO2 Powered Bottle Rocket Lab Report Chemistry Period 3. Crater School of BIS March 2 nd, 2016 Mallory Heard, Griffin Hokanson & Joshua Idiart

CO2 Powered Bottle Rocket Lab Report Chemistry Period 3. Crater School of BIS March 2 nd, 2016 Mallory Heard, Griffin Hokanson & Joshua Idiart CO2 Powered Bottle Rocket Lab Report Chemistry Period 3 Crater School of BIS March 2 nd, 206 Mallory Heard, Griffin Hokanson & Joshua Idiart Introduction: The purpose of this lab was to design and create

More information

8. The graph below shows a beetle s movement along a plant stem.

8. The graph below shows a beetle s movement along a plant stem. Name: Block: Date: Introductory Physics: Midyear Review 1. Motion and Forces Central Concept: Newton s laws of motion and gravitation describe and predict the motion of most objects. 1.1 Compare and contrast

More information

Conservation of Momentum in One Dimension

Conservation of Momentum in One Dimension Conservation of Momentum in One Dimension 5.2 Imagine standing at rest on skates on essentially frictionless ice, and throwing a basketball forward (Figure 1). As the ball moves in one direction, you move

More information

Projectiles: Target Practice Student Advanced Version

Projectiles: Target Practice Student Advanced Version Projectiles: Target Practice Student Advanced Version In this lab you will shoot a chopstick across the room with a rubber band and measure how different variables affect the distance it flies. You will

More information

Newton's Laws of Motion

Newton's Laws of Motion Newton's Laws of Motion 1 Newton's Laws of Motion: First Law Law of Inertia An object at rest remains at rest unless acted upon by an outside force. - provides a qualitative definition of force. 2 An object

More information

Kinematics 2D ~ Lab. Part 1: Type 1 Projectile Launch. BCLN PHYSICS - Rev. Sept/2011

Kinematics 2D ~ Lab. Part 1: Type 1 Projectile Launch. BCLN PHYSICS - Rev. Sept/2011 Kinematics 2D ~ Lab Name: Instructions: Using a pencil, answer the following questions. The lab is marked based on clarity of responses, completeness, neatness, and accuracy. Do your best! Part 1: Type

More information

Projectiles: Target Practice Teacher Advanced Version

Projectiles: Target Practice Teacher Advanced Version Projectiles: Target Practice Teacher Advanced Version In this lab you will shoot a chopstick across the room with a rubber band and measure how different variables affect the distance it flies. You will

More information

Practice Honors Physics Test: Newtons Laws

Practice Honors Physics Test: Newtons Laws Name: Class: Date: Practice Honors Physics Test: Newtons Laws Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Acceleration is defined as the CHANGE in

More information

Isaac Newton. What is the acceleration of the car? "If I have seen further it is by standing on the shoulders of giants" Isaac Newton to Robert Hooke

Isaac Newton. What is the acceleration of the car? If I have seen further it is by standing on the shoulders of giants Isaac Newton to Robert Hooke Aim: What did Isaac Newton teach us about motion? Do Now: 1. A 2009 Ford Mustang convertible is travelling at constant velocity on Interstate 95 south from Philadelphia to Wilmington Delaware. It passes

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are primarily conceptual questions that are designed to see if you have understood the main concepts of the chapter. Treat all balls with mass as point masses. 1.

More information

Physics Mid-Term Practice Exam

Physics Mid-Term Practice Exam Physics Mid-Term Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Which one of the following problems would NOT be a part of physics? a.

More information

Engage 1. When you exert a force on a balloon, what does the balloon exert on you?

Engage 1. When you exert a force on a balloon, what does the balloon exert on you? Unit 1 Forces and Motion Lesson 2.c Newton s Third Law of Motion Student Performance Outcomes Students know that when one object exerts a force on a second object, the second object always exerts a force

More information

Newton s Laws Pre-Test

Newton s Laws Pre-Test Newton s Laws Pre-Test 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

PHY131H1F - Class 9. Today, finishing Chapter 5: Kinetic Friction Static Friction Rolling without slipping (intro) Drag

PHY131H1F - Class 9. Today, finishing Chapter 5: Kinetic Friction Static Friction Rolling without slipping (intro) Drag PHY131H1F - Class 9 Today, finishing Chapter 5: Kinetic Friction Static Friction Rolling without slipping (intro) Drag Microscopic bumps and holes crash into each other, causing a frictional force. Kinetic

More information

Physical Science Capstone Instructional Segment This is a two-week summative designed to give students an opportunity to review and re-examine the

Physical Science Capstone Instructional Segment This is a two-week summative designed to give students an opportunity to review and re-examine the Physical Science Capstone Instructional Segment This is a two-week summative designed to give students an opportunity to review and re-examine the concepts covered in this course. Student Science Performance

More information

Station 1 Block, spring scale

Station 1 Block, spring scale Station 1 Block, spring scale Place the wooden block on Surface A with the metal loop facing you. Hook the green force gauge to the metal loop on the block. With the force gauge held horizontal, pull it

More information

Newton Car. Rocket Activity

Newton Car. Rocket Activity Rocket Activity Newton Car Objective To investigate the relationship between mass, acceleration, and force as described in Newton s second law of motion. National Science Content Standards: Unifying Concepts

More information

Newton Car Lab. Newton s 1 st Law - Every object in a state of uniform motion

Newton Car Lab. Newton s 1 st Law - Every object in a state of uniform motion Newton Car Lab Physics Concepts: Newton s 1 st Law - Every object in a state of uniform motion tends to remain in that state of motion unless an external force is applied to it. This we recognize as Galileo

More information

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

More information

For each of the following questions, give clear and complete evidence for your choice in the space provided.

For each of the following questions, give clear and complete evidence for your choice in the space provided. Name (printed) First Day Stamp For each of the following questions, give clear and complete evidence for your choice in the space provided. 1. An astronomer observes that a certain heavenly body is moving

More information

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1 Newton s Wagon Overview: The natural state of objects is to follow a straight line. In fact, Newton s First Law of Motion states that objects in motion will tend to stay in motion unless they are acted

More information

Activity One Force, Mass, and Acceleration

Activity One Force, Mass, and Acceleration Steps Activity One Force, Mass, and Acceleration This activity may be done alone or with a partner. FOR THIS ACTIVITY, you will need: Rocks of different sizes. (Use rocks that are all the same kind of

More information

Forces & Newton s Laws FR Practice Problems

Forces & Newton s Laws FR Practice Problems 1) A drag-racing car speeds up from rest to 22 m/s in 2 s. The car has mass 800 kg; the driver has mass 80 kg. a) Calculate the acceleration of the car. b) Calculate the net force on the car. c) Which

More information

Forces and Motion in One Dimension

Forces and Motion in One Dimension Nicholas J. Giordano www.cengage.com/physics/giordano Forces and Motion in One Dimension Applications of Newton s Laws We will learn how Newton s Laws apply in various situations We will begin with motion

More information

Newton s Laws of Motion Lynn Cominsky and Kevin McLin NASA Education and Public Outreach Sonoma State University

Newton s Laws of Motion Lynn Cominsky and Kevin McLin NASA Education and Public Outreach Sonoma State University Newton s Laws of Motion Lynn Cominsky and Kevin McLin NASA Education and Public Outreach Sonoma State University NASA at SSU Who are we? Education and Public Outreach at Sonoma State University in northern

More information

Conservation of Energy Lab Packet

Conservation of Energy Lab Packet Conservation of Energy Lab Packet Unit # 3 Main Topic: Pendulum Duration: 10 days NAME: Contents/Page Number Day 2 (2/1/16): The Pendulum Lab Day 1 (2/2/16): The Physics of Pendulum Day 3 (2/3/16): The

More information

Rocket Propulsion. Combustion chamber Throat Nozzle

Rocket Propulsion. Combustion chamber Throat Nozzle Rocket Propulsion In the section about the rocket equation we explored some of the issues surrounding the performance of a whole rocket. What we didn t explore was the heart of the rocket, the motor. In

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

Forces and Newton s Laws

Forces and Newton s Laws chapter 3 Forces and Newton s Laws section 3 Using Newton s Laws Before You Read Imagine riding on a sled, or in a wagon, or perhaps a school bus that stops quickly or suddenly. What happens to your body

More information

Circular Motion Ch. 10 in your text book

Circular Motion Ch. 10 in your text book Circular Motion Ch. 10 in your text book Objectives Students will be able to: 1) Define rotation and revolution 2) Calculate the rotational speed of an object 3) Calculate the centripetal acceleration

More information

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

More information

A Collection of Learning Experiences on ROCKETRY

A Collection of Learning Experiences on ROCKETRY 11152 ELEMENTARY SCIENCE PROGRAM MATH, SCIENCE & TECHNOLOGY EDUCATION A Collection of Learning Experiences on ROCKETRY CATTARAUGUS ALLEGANY BOCES GRADES 5/6 TABLE OF CONTENTS Unit Overview...3 Format &

More information

WEATHER ON WHEELS Middle School Program

WEATHER ON WHEELS Middle School Program WEATHER ON WHEELS Middle School Program MAST ACADEMY OUTREACH Post-Site Activities Miami-Dade County Public Schools Miami, Florida MAST ACADEMY OUTREACH WEATHER ON WHEELS POST-SITE PACKAGE TABLE OF CONTENTS

More information

F = ma W = mg v = D t

F = ma W = mg v = D t Forces and Gravity Car Lab Name: F = ma W = mg v = D t p = mv Part A) Unit Review at D = f v = t v v Please write the UNITS for each item below For example, write kg next to mass. Name: Abbreviation: Units:

More information

Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity?

Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity? Lab Exercise: Gravity (Report) Your Name & Your Lab Partner s Name Due Date Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity? 2. What are several advantage of

More information

Using the computer simulation, be able to define and apply vectors appropriately.

Using the computer simulation, be able to define and apply vectors appropriately. Using the computer simulation, be able to define and apply vectors appropriately. Please visit the vector addition site at: http://phet.colorado.edu/en/simulation/vector-addition Before you begin these

More information

Investigating the Factors Affecting the Speed of a Car After Freewheeling Down a Slope (Annotate this article)

Investigating the Factors Affecting the Speed of a Car After Freewheeling Down a Slope (Annotate this article) Investigating the Factors Affecting the Speed of a Car After Freewheeling Down a Slope (Annotate this article) Sir Isaac Newton formulated three Laws relating to the motion of objects. A moving object

More information

6 TH GRADE ACCURATE PLANET SIZES AND DISTANCE FROM THE SUN ACTIVITY

6 TH GRADE ACCURATE PLANET SIZES AND DISTANCE FROM THE SUN ACTIVITY 6 TH GRADE ACCURATE PLANET SIZES AND DISTANCE FROM THE SUN ACTIVITY Summary: Accurate planet size and distance from the Sun is studied in this lesson. Each student constructs a correctly scaled diagram

More information

Overview The Laws of Motion

Overview The Laws of Motion Directed Reading for Content Mastery Overview The Laws of Motion Directions: Fill in the blanks using the terms listed below. force inertia momentum sliding conservation of momentum gravitational ma mv

More information

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life Some of the topics we will explore: How do we describe motion? (Speed,

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

Unit 5 ICM/AB Applications of the Derivative Fall Nov 10 Learn Velocity and Acceleration: HW p P ,103 p.

Unit 5 ICM/AB Applications of the Derivative Fall Nov 10 Learn Velocity and Acceleration: HW p P ,103 p. Unit 5 ICM/AB Applications of the Derivative Fall 2016 Nov 4 Learn Optimization, New PS up on Optimization, HW pg. 216 3,5,17,19,21,23,25,27,29,33,39,41,49,50 a,b,54 Nov 7 Continue on HW from Nov 4 and

More information

Physics Lesson 1 to Prepare for UIL Physics Portion of Science Test

Physics Lesson 1 to Prepare for UIL Physics Portion of Science Test Physics Lesson 1 to Prepare for UIL Physics Portion of Science Test Lesson Plan Title: Free-Body Diagram Lesson Plan Physics EOC (End of Course) objective 2D The student demonstrates an understanding of

More information

Tim Martin Spacecraft Engineer, Propulsion Lead, Juno. Chapter 7 Rocket Propulsion Physics

Tim Martin Spacecraft Engineer, Propulsion Lead, Juno. Chapter 7 Rocket Propulsion Physics The rocket equation is critical in that we use that to determine number one, how big our engines should be, and number two, how much propellant we load based on data we have on available choices of propulsion

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 3: EQUILIBRIUM AND LINEAR MOTION This lecture will help you understand: Aristotle on Motion Galileo s Concept of Inertia Mass A Measure of Inertia Net Force The

More information

WSGC Collegiate Rocket Competition Design Analysis Team ChlAM. Max Strassman, Chloe Tinius, Andrew Udelhoven

WSGC Collegiate Rocket Competition Design Analysis Team ChlAM. Max Strassman, Chloe Tinius, Andrew Udelhoven WSGC Collegiate Rocket Competition Design Analysis Team ChlAM Max Strassman, Chloe Tinius, Andrew Udelhoven University of Wisconsin Madison Department of Engineering Physics ABSTRACT The WSGC Collegiate

More information

Gravity: How fast do objects fall? Teacher Advanced Version (Grade Level: 8 12)

Gravity: How fast do objects fall? Teacher Advanced Version (Grade Level: 8 12) Gravity: How fast do objects fall? Teacher Advanced Version (Grade Level: 8 12) *** Experiment with Audacity and Excel to be sure you know how to do what s needed for the lab*** Kinematics is the study

More information

Rockets and Range Teacher Notes

Rockets and Range Teacher Notes Earth is only one of the eight planets orbiting our Sun. Many of these have their own moons orbiting them. The distances between them are pretty large so we use the Astronomical Unit (AU) as the base measurement.

More information

AP Physics C 2015 Summer Assignment

AP Physics C 2015 Summer Assignment AP Physics C 2015 Summer Assignment College Board (the people in charge of AP exams) recommends students to only take AP Physics C if they have already taken a 1 st year physics course and are currently

More information

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219 Previously Remember From Page 218 Forces are pushes and pulls that can move or squash objects. An object s speed is the distance it travels every second; if its speed increases, it is accelerating. Unit

More information

Forces. A force is a push or a pull on an object

Forces. A force is a push or a pull on an object Forces Forces A force is a push or a pull on an object Arrows are used to represent forces. The direction of the arrow represent the direction the force that exist or being applied. Forces A net force

More information

AP PHYSICS 1. Energy 2016 EDITION

AP PHYSICS 1. Energy 2016 EDITION AP PHYSICS 1 Energy 2016 EDITION Copyright 2016 National Math + Initiative, Dallas, Texas. All rights reserved. Visit us online at www.nms.org. 1 Pre-Assessment Questions Consider a system which could

More information

Lab 2. Projectile Motion

Lab 2. Projectile Motion Lab 2. Projectile Motion Goals To determine the launch speed of a projectile and its uncertainty by measuring how far it travels horizontally before landing on the floor (called the range) when launched

More information

Physics for Scientists and Engineers. Chapter 5 Force and Motion

Physics for Scientists and Engineers. Chapter 5 Force and Motion Physics for Scientists and Engineers Chapter 5 Force and Motion Spring, 2008 Ho Jung Paik Force Forces are what cause any change in the velocity of an object The net force is the vector sum of all the

More information

Time (s) Velocity (m/s)

Time (s) Velocity (m/s) Physics 02_16 Remediation Packet Name A toy rocket was launched into the air from ground height. After the rocket reached its maximum height, it fell back to Earth. As it was falling, data was recorded

More information

The Tech Museum of Innovation 201 South Market Street, San Jose, CA Phone:

The Tech Museum of Innovation 201 South Market Street, San Jose, CA Phone: DESIGN A BOBSLED Description: Students explore the effects of gravity, friction and air resistance upon acceleration when they design their own bobsleds. Grade Levels: 3-8 Educational Outcomes: 1) Students

More information

MAT 145: Test #4 Part II (30 points)

MAT 145: Test #4 Part II (30 points) MAT 45: Test #4 Part II (30 points) Part : Calculator OK! Name Calculator Used Score 9. Lauren calculated the exact value of 3 x3 dx using the Fundamental Theorem of Calculus. She also calculated a Riemann

More information

Why Do Birds of Prey Fly in Circles? Does the Eagle Make It? p. 1/3

Why Do Birds of Prey Fly in Circles? Does the Eagle Make It? p. 1/3 Why Do Birds of Prey Fly in Circles? Does the Eagle Make It? p. 1/3 Does the Eagle Make It? p. 1/3 Why Do Birds of Prey Fly in Circles? To find food. Does the Eagle Make It? p. 1/3 Why Do Birds of Prey

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train.

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train. VELOCITY Q1. A train travels from town A to town B. Figure 1 shows the route taken by the train. Figure 1 has been drawn to scale. Figure 1 (a) The distance the train travels between A and B is not the

More information

Science in the Schoolyard Guide: FOSS Air and Weather

Science in the Schoolyard Guide: FOSS Air and Weather Air and Weather Air and Weather > Investigation 1: Exploring Air > Part 3: Parachutes, page 17 Parachutes Repeat Part 3, taking students outside to fly the parachutes. Students will compare the flights

More information

POP ROCKET TRASH TO TREASURE

POP ROCKET TRASH TO TREASURE POP ROCKET TRASH TO TREASURE Connie Stammen, 2nd-grade teacher North Star Elementary North Star, OH Lesson Summary for Grades 2 5 Students design a paper rocket propelled by an effervescent antacid tablet

More information

Lecture Outline Chapter 29. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 29. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 29 Physics, 4 th Edition James S. Walker Chapter 29 Relativity Units of Chapter 29 The Postulates of Special Relativity The Relativity of Time and Time Dilation The Relativity of

More information

3 Using Newton s Laws

3 Using Newton s Laws 3 Using Newton s Laws What You ll Learn how Newton's first law explains what happens in a car crash how Newton's second law explains the effects of air resistance 4(A), 4(C), 4(D), 4(E) Before You Read

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

Unit 1: Equilibrium and Center of Mass

Unit 1: Equilibrium and Center of Mass Unit 1: Equilibrium and Center of Mass FORCES What is a force? Forces are a result of the interaction between two objects. They push things, pull things, keep things together, pull things apart. It s really

More information

Please turn on your clickers

Please turn on your clickers Please turn on your clickers HW #1, due 1 week from today Quiz in class Wednesday Sections meet in Planetarium Honors meeting tonight in my office Sterling 5520 at 5:30-6pm Newton s First Law An object

More information

Catalysts. The effect of various catalysts on the rate of decomposition of hydrogen peroxide (H 2 O 2 )

Catalysts. The effect of various catalysts on the rate of decomposition of hydrogen peroxide (H 2 O 2 ) Catalysts The effect of various catalysts on the rate of decomposition of hydrogen peroxide (H 2 ) This content is aimed at KS3/4 students and is a two lesson worksheet (including a practical demonstration)

More information