Hypersonic flow: introduction

Size: px
Start display at page:

Download "Hypersonic flow: introduction"

Transcription

1 Hyersonic flow: introduction Van Dyke: Hyersonic flow is flow ast a body at high ach number, where nonlinearity is an essential feature of the flow. Also understood, for thin bodies, that if is the thickness-to-chord ratio of the body, is of order. Secial Features Thin shock layer: shock is very close to the body. The thin region between the shock and the body is called the Shock Layer. Entroy Layer: Shock curvature imlies that shock strength is different for different streamlines stagnation ressure and velocity gradients - rotational flow

2 The Hyersonic Tunnel For Airbreathing Proulsion htt://

3 Velocity-Altitude a For Re-Entry Altitude Tyical re-entry case: Very little deceleration until Vehicle reaches denser air (Deliberately so - to avoid large fluctuations in aerodynamic loads and landing oint ) Velocity

4 Atmoshere Trooshere: 0 < z < 0km Stratoshere: 0 < z < 50km esoshere: 50 < z < 80km Thermoshere: z > 80km Ionoshere 65 < 365 km Contains ions and free electrons 60 <z < 85 km NO + 85 <z < 40 km NO +, O + 40 <z < 00 km NO+, O +, O + Z> 00 km N +, O +

5 A Simle odel for Variation of density with altitude d gdz RT ˆ ˆ Neglect dissociation and ionization olecular weight is constant Assume isothermal (T = constant) oor assumtion d g ˆ dz RT ˆ g ˆ 0 loge RT ˆ z

6 High Angle of Attack Hyersonic Aerodynamics

7 htt://

8 Crocco s Theorem: Ts h 0 u Imlies vorticity in the shock layer. Viscous Layer: Thick boundary layer, merges with shock wave to roduce a merged shock-viscous layer. Couled analysis needed. High Temerature Effects: Very large range of roerties (temerature, density, ressure) in the flowfield, so that secific heats and mean molecular weight may not be constant. Low Density Flow: ost hyersonic flight (excet of hyervelocity rojectiles) occurs at very high altitudes Knudsen No. = L = ratio of ean Free Path to characteristic length Above 0 km, continuum assumtion is oor. Below 60 km, mean free ath is less than mm.

9 htt://

10 Summary of Theoretical Aroaches Newtonian Aerodynamics: Flow hits surface layer, and abrutly turns arallel to surface. omentum normal to the surface is transferred to normal force on the body. Normal force on body = drag of normal flow comonent. Normal force is decomosed into lift and drag. odified Newtonian Aerodynamics: Account for stagnation ressure dro across shock. Local Surface Inclination ethod : C at a oint is calculated from static ressure behind an oblique shock caused by local l surface sloe at freestream ach number. Tangent Cone aroach: similar to local surface sloe arguments. ach number indeendence: Shock/exansion relations and C become indeendent of ach number at very high ach number. Blast wave theory: Energy of Disturbance caused by hyersonic vehicle is like a detonation wave. Hyersonic similarity: Allows develoing equivalent shock tube exeriments for hyersonic aerodynamics.

11 Hyersonic Aerodynamics Roadma Suersonic Aero Hyersonic Small Disturbance: ach Number Indeendence Non-Equilibrium Gas Dynamics Stagnation Point: CFD Full shock-exansion method With real gas effects Blast Wave Theory Conical Flow / Waveriders Newtonian Aerodynamics Local Surface Inclination ethods Newton Buseman

12 Newtonian Aerodynamics: Flow hits surface layer, and abrutly turns arallel to surface. omentum normal to the surface is transferred to normal force on the body. Normal force on body = drag of normal flow comonent. Normal force is decomosed into lift and drag. D No info on shock. or viscous drag No influence of body shae L N

13 Local Surface Inclination ethods Aroximate methods over arbitrary configurations, in articular, where C is a function of local surface sloe. Newtonian Aerodynamics Newton (687) concet was that articles travel along straight lines without Interaction with other articles, let ellets from a shotgun. On striking a surface, they would lose all momentum erendicular to the surface, but retain all tangential momentum i.e., slide off the surface. Net rate of change of momentum C Sin In 3D flows we relace U n C U Shadow region: C 0 U Sin A U Sin with U n Shadow region is where U n 0

14 Remarks on Newtonian Theory: Poor in low seed flow. Predicts. C l () Works well as ach number gets large and secific heat ratio tends towards.0 Why? Because shock is close to surface, and velocity across the shock is very large most of the normal momentum is lost. () Tends to overredict c and c d (C D ) see (3) Works better in 3-D than in -D (4) In 3-D, works best for blunt bodies; not good for wedges, cones, wings etc.

15 odified Newtonian Was roosed by Lester Lees in 955, as a way of imroving Newtonian theory, and bringing in ach Number deendence. He roosed relacing with C max C C max sin C Here C max is the behind a Normal shock wave, at the stagnation oint. That is, 0 C max U

16 From Rankine-Hugoniot relations, 0 Then 4 0 c

17 In the limit as, We get c 4 4 c max. 839 As.4, As, c max Proosed by Newton

18 Hyersonic Shock & Exansion Relations Why?. Simler than exact exressions - for analysis. Key arameter is seen to be K where is the flow turning angle, for >> and << Oblique Shock Relations tan cot sin cos tan cot sin >>, small >>, small Pressure jum: >> sin sin

19 sin K K 4 4 K K K Defining ressure coefficient g C 4 4 K K C 4 Sin C

20 Next sin u u In the hyersonic limit, Also u u sin u sin Cot u u sin u

21 Density Jum Across Shock sin sin In the hyersonic limit, for large >>, finite Then the temerature jum is: sin T T C 4 Sin C

22 For large but finite, small and tan cot sin cos becomes 4 6 Works for finite values of = K

23 Hyersonic Exansion Wave Relations From Prandtl-eyer theory, tan tan For Also tan x From Taylor series tan x tan x x 3x 3 5x 5..

24 Then K C ) (K f C Note that K K K C ), ( K f

25 ach Number Indeendence As freestream ach number becomes large, Why nondimensionalize by U sin U U Because ~O U sin And it allows cancellation of ach number Examine other relations for roerties downstream of the shock freestream ach number does not aear anywhere.

26 Non-lifting body moving at velocity U, which is inclined at angle to the x-axis: d x m dt d z m dt D DCos DSin mg U d z m U CDS sin mg dt m CDS is the Ballistic Parameter. Assuming that the drag force is >> weight and that is constant because gravitational force is too weak to change the flight ath much Log e U U e 0 CDS ex m sin gz RT

Module 4 : Lecture 1 COMPRESSIBLE FLOWS (Fundamental Aspects: Part - I)

Module 4 : Lecture 1 COMPRESSIBLE FLOWS (Fundamental Aspects: Part - I) Module 4 : Lecture COMPRESSIBLE FLOWS (Fundamental Asects: Part - I) Overview In general, the liquids and gases are the states of a matter that comes under the same category as fluids. The incomressible

More information

High speed wind tunnels 2.0 Definition of high speed. 2.1 Types of high speed wind tunnels

High speed wind tunnels 2.0 Definition of high speed. 2.1 Types of high speed wind tunnels Module Lectures 6 to 1 High Seed Wind Tunnels Keywords: Blow down wind tunnels, Indraft wind tunnels, suersonic wind tunnels, c-d nozzles, second throat diffuser, shocks, condensation in wind tunnels,

More information

a) Derive general expressions for the stream function Ψ and the velocity potential function φ for the combined flow. [12 Marks]

a) Derive general expressions for the stream function Ψ and the velocity potential function φ for the combined flow. [12 Marks] Question 1 A horizontal irrotational flow system results from the combination of a free vortex, rotating anticlockwise, of strength K=πv θ r, located with its centre at the origin, with a uniform flow

More information

16. CHARACTERISTICS OF SHOCK-WAVE UNDER LORENTZ FORCE AND ENERGY EXCHANGE

16. CHARACTERISTICS OF SHOCK-WAVE UNDER LORENTZ FORCE AND ENERGY EXCHANGE 16. CHARACTERISTICS OF SHOCK-WAVE UNDER LORENTZ FORCE AND ENERGY EXCHANGE H. Yamasaki, M. Abe and Y. Okuno Graduate School at Nagatsuta, Tokyo Institute of Technology 459, Nagatsuta, Midori-ku, Yokohama,

More information

SPC 407 Sheet 6 - Solution Compressible Flow Fanno Flow

SPC 407 Sheet 6 - Solution Compressible Flow Fanno Flow SPC 407 Sheet 6 - Solution Comressible Flow Fanno Flow 1. What is the effect of friction on flow velocity in subsonic and suersonic Fanno flow? Friction increases the flow velocity in subsonic Fanno flow,

More information

Lecture1: Characteristics of Hypersonic Atmosphere

Lecture1: Characteristics of Hypersonic Atmosphere Module 1: Hypersonic Atmosphere Lecture1: Characteristics of Hypersonic Atmosphere 1.1 Introduction Hypersonic flight has special traits, some of which are seen in every hypersonic flight. Presence of

More information

Week 8 lectures. ρ t +u ρ+ρ u = 0. where µ and λ are viscosity and second viscosity coefficients, respectively and S is the strain tensor:

Week 8 lectures. ρ t +u ρ+ρ u = 0. where µ and λ are viscosity and second viscosity coefficients, respectively and S is the strain tensor: Week 8 lectures. Equations for motion of fluid without incomressible assumtions Recall from week notes, the equations for conservation of mass and momentum, derived generally without any incomressibility

More information

AE301 Aerodynamics I UNIT A: Fundamental Concepts

AE301 Aerodynamics I UNIT A: Fundamental Concepts AE301 Aerodynamics I UNIT A: Fundamental Concets ROAD MAP... A-1: Engineering Fundamentals Reiew A-: Standard Atmoshere A-3: Goerning Equations of Aerodynamics A-4: Airseed Measurements A-5: Aerodynamic

More information

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential Chem 467 Sulement to Lectures 33 Phase Equilibrium Chemical Potential Revisited We introduced the chemical otential as the conjugate variable to amount. Briefly reviewing, the total Gibbs energy of a system

More information

Compressible Flow Introduction. Afshin J. Ghajar

Compressible Flow Introduction. Afshin J. Ghajar 36 Comressible Flow Afshin J. Ghajar Oklahoma State University 36. Introduction...36-36. he Mach Number and Flow Regimes...36-36.3 Ideal Gas Relations...36-36.4 Isentroic Flow Relations...36-4 36.5 Stagnation

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerosace Engineering Lecture slides hallenge the future Introduction to Aerosace Engineering Aerodynamics & Prof. H. Bijl ir. N. Timmer &. Airfoils and finite wings Anderson 5.9 end of

More information

Ideal Gas Law. September 2, 2014

Ideal Gas Law. September 2, 2014 Ideal Gas Law Setember 2, 2014 Thermodynamics deals with internal transformations of the energy of a system and exchanges of energy between that system and its environment. A thermodynamic system refers

More information

Steady waves in compressible flow

Steady waves in compressible flow Chapter Steady waves in compressible flow. Oblique shock waves Figure. shows an oblique shock wave produced when a supersonic flow is deflected by an angle. Figure.: Flow geometry near a plane oblique

More information

MODELING OF UNSTEADY AERODYNAMIC CHARACTERISTCS OF DELTA WINGS.

MODELING OF UNSTEADY AERODYNAMIC CHARACTERISTCS OF DELTA WINGS. IAS00 ONGRESS MODEING OF UNSTEADY AERODYNAMI HARATERISTS OF DETA WINGS. Jouannet hristoher, rus Petter inköings Uniersity eywords: Delta wings, Unsteady, Modeling, Preliminary design, Aerodynamic coefficient.

More information

Liquid water static energy page 1/8

Liquid water static energy page 1/8 Liquid water static energy age 1/8 1) Thermodynamics It s a good idea to work with thermodynamic variables that are conserved under a known set of conditions, since they can act as assive tracers and rovide

More information

FUGACITY. It is simply a measure of molar Gibbs energy of a real gas.

FUGACITY. It is simply a measure of molar Gibbs energy of a real gas. FUGACITY It is simly a measure of molar Gibbs energy of a real gas. Modifying the simle equation for the chemical otential of an ideal gas by introducing the concet of a fugacity (f). The fugacity is an

More information

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath Welcome to High Speed Aerodynamics 1 Lift, drag and pitching moment? Linearized Potential Flow Transformations Compressible Boundary Layer WHAT IS HIGH SPEED AERODYNAMICS? Airfoil section? Thin airfoil

More information

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 4

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 4 Atmoshere, Ocean and Climate Dynamics Answers to Chater 4 1. Show that the buoyancy frequency, Eq.(4.22), may be written in terms of the environmental temerature rofile thus N 2 = g µ dte T E dz + Γ d

More information

ESCI 342 Atmospheric Dynamics I Lesson 10 Vertical Motion, Pressure Coordinates

ESCI 342 Atmospheric Dynamics I Lesson 10 Vertical Motion, Pressure Coordinates Reading: Martin, Section 4.1 PRESSURE COORDINATES ESCI 342 Atmosheric Dynamics I Lesson 10 Vertical Motion, Pressure Coordinates Pressure is often a convenient vertical coordinate to use in lace of altitude.

More information

Simplifications to Conservation Equations

Simplifications to Conservation Equations Chater 5 Simlifications to Conservation Equations 5.1 Steady Flow If fluid roerties at a oint in a field do not change with time, then they are a function of sace only. They are reresented by: ϕ = ϕq 1,

More information

Weather and Climate Laboratory Spring 2009

Weather and Climate Laboratory Spring 2009 MIT OenCourseWare htt://ocw.mit.edu 12.307 Weather and Climate Laboratory Sring 2009 For information about citing these materials or our Terms of Use, visit: htt://ocw.mit.edu/terms. Thermal wind John

More information

Notes on pressure coordinates Robert Lindsay Korty October 1, 2002

Notes on pressure coordinates Robert Lindsay Korty October 1, 2002 Notes on ressure coordinates Robert Lindsay Korty October 1, 2002 Obviously, it makes no difference whether the quasi-geostrohic equations are hrased in height coordinates (where x, y,, t are the indeendent

More information

Given the water behaves as shown above, which direction will the cylinder rotate?

Given the water behaves as shown above, which direction will the cylinder rotate? water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

More information

The Second Law: The Machinery

The Second Law: The Machinery The Second Law: The Machinery Chater 5 of Atkins: The Second Law: The Concets Sections 3.7-3.9 8th Ed, 3.3 9th Ed; 3.4 10 Ed.; 3E 11th Ed. Combining First and Second Laws Proerties of the Internal Energy

More information

FE FORMULATIONS FOR PLASTICITY

FE FORMULATIONS FOR PLASTICITY G These slides are designed based on the book: Finite Elements in Plasticity Theory and Practice, D.R.J. Owen and E. Hinton, 1970, Pineridge Press Ltd., Swansea, UK. 1 Course Content: A INTRODUCTION AND

More information

Setting up the Mathematical Model Review of Heat & Material Balances

Setting up the Mathematical Model Review of Heat & Material Balances Setting u the Mathematical Model Review of Heat & Material Balances Toic Summary... Introduction... Conservation Equations... 3 Use of Intrinsic Variables... 4 Well-Mixed Systems... 4 Conservation of Total

More information

9 The Theory of Special Relativity

9 The Theory of Special Relativity 9 The Theory of Secial Relativity Assign: Read Chater 4 of Carrol and Ostlie (2006) Newtonian hysics is a quantitative descrition of Nature excet under three circumstances: 1. In the realm of the very

More information

Statics and dynamics: some elementary concepts

Statics and dynamics: some elementary concepts 1 Statics and dynamics: some elementary concets Dynamics is the study of the movement through time of variables such as heartbeat, temerature, secies oulation, voltage, roduction, emloyment, rices and

More information

NUMERICAL AND THEORETICAL INVESTIGATIONS ON DETONATION- INERT CONFINEMENT INTERACTIONS

NUMERICAL AND THEORETICAL INVESTIGATIONS ON DETONATION- INERT CONFINEMENT INTERACTIONS NUMERICAL AND THEORETICAL INVESTIGATIONS ON DETONATION- INERT CONFINEMENT INTERACTIONS Tariq D. Aslam and John B. Bdzil Los Alamos National Laboratory Los Alamos, NM 87545 hone: 1-55-667-1367, fax: 1-55-667-6372

More information

Where: Where: f Wave s frequency (Hz) c Speed of light ( ms -1 ) Wavelength (m)

Where: Where: f Wave s frequency (Hz) c Speed of light ( ms -1 ) Wavelength (m) in a direction to both of the fields as shown in Figure 1. In wave model, the electromagnetic radiation is commonly associated with wavelength and frequency, exressed mathematically as: c f...(1) f Wave

More information

AE301 Aerodynamics I UNIT A: Fundamental Concepts

AE301 Aerodynamics I UNIT A: Fundamental Concepts AE3 Aerodynamics I UNIT A: Fundamental Concets ROAD MAP... A-: Engineering Fundamentals Review A-: Standard Atmoshere A-3: Governing Equations of Aerodynamics A-4: Airseed Measurements A-5: Aerodynamic

More information

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines.

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines. Question Given a stream function for a cylinder in a uniform flow with circulation: R Γ r ψ = U r sinθ + ln r π R a) Sketch the flow pattern in terms of streamlines. b) Derive an expression for the angular

More information

Introduction to Landau s Fermi Liquid Theory

Introduction to Landau s Fermi Liquid Theory Introduction to Landau s Fermi Liquid Theory Erkki Thuneberg Deartment of hysical sciences University of Oulu 29 1. Introduction The rincial roblem of hysics is to determine how bodies behave when they

More information

SELF-SIMILAR FLOW OF A MIXTURE OF A NON-IDEAL GAS AND SMALL SOLID PARTICLES WITH INCREASING ENERGY BEHIND A SHOCK WAVE UNDER A GRAVITATIONAL FIELD

SELF-SIMILAR FLOW OF A MIXTURE OF A NON-IDEAL GAS AND SMALL SOLID PARTICLES WITH INCREASING ENERGY BEHIND A SHOCK WAVE UNDER A GRAVITATIONAL FIELD SELF-SIMILAR FLOW OF A MIXTURE OF A NON-IDEAL GAS AND SMALL SOLID PARTICLES WITH INCREASING ENERGY BEHIND A SHOCK WAVE UNDER A GRAVITATIONAL FIELD Vishwakarma J.P. and Prerana Pathak 1 Deartment of Mathematics

More information

Entry Aerodynamics MARYLAND U N I V E R S I T Y O F. Entry Aerodynamics. ENAE Launch and Entry Vehicle Design

Entry Aerodynamics MARYLAND U N I V E R S I T Y O F. Entry Aerodynamics. ENAE Launch and Entry Vehicle Design Atmospheric Regimes on Entry Basic fluid parameters Definition of Mean Free Path Rarified gas Newtonian flow Continuum Newtonian flow (hypersonics) 2014 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

Chapter 7 Energy Principle

Chapter 7 Energy Principle Chater 7: Energy Princile By Dr Ali Jawarneh Hashemite University Outline In this chater we will: Derive and analyse the Energy equation. Analyse the flow and shaft work. Derive the equation for steady

More information

Newtonian Analysis of Rarified Flows

Newtonian Analysis of Rarified Flows Atmospheric Regimes on Entry Basic fluid parameters Definition of Mean Free Path Rarified gas Newtonian flow Continuum Newtonian flow (hypersonics) SphereConeAero so ware 2012 David L. Akin - All rights

More information

When solving problems involving changing momentum in a system, we shall employ our general problem solving strategy involving four basic steps:

When solving problems involving changing momentum in a system, we shall employ our general problem solving strategy involving four basic steps: 10.9 Worked Examles 10.9.1 Problem Solving Strategies When solving roblems involving changing momentum in a system, we shall emloy our general roblem solving strategy involving four basic stes: 1. Understand

More information

Chapter 1 Fundamentals

Chapter 1 Fundamentals Chater Fundamentals. Overview of Thermodynamics Industrial Revolution brought in large scale automation of many tedious tasks which were earlier being erformed through manual or animal labour. Inventors

More information

CET PHYSICS 2011 VERSION CODE: A 4

CET PHYSICS 2011 VERSION CODE: A 4 dislacement CET PHYSICS 0 VERSION CODE: 4. If C be the caacitance and V be the electric otential, then the dimensional formula of CV is ) M L T ) M 0 L T 0 ) M L T 4) M L T 0 CV Energy The dimentional

More information

Module 3: Laminar Premixed Flames

Module 3: Laminar Premixed Flames Module 3: aminar Premixed Flames Objectives Scoe Reading Assignments Assignment Schedule Objectives By the end of this module, students should be able to: Define what is meant by Premixed Flame Understand

More information

4. A Brief Review of Thermodynamics, Part 2

4. A Brief Review of Thermodynamics, Part 2 ATMOSPHERE OCEAN INTERACTIONS :: LECTURE NOTES 4. A Brief Review of Thermodynamics, Part 2 J. S. Wright jswright@tsinghua.edu.cn 4.1 OVERVIEW This chater continues our review of the key thermodynamics

More information

GEF2200 vår 2017 Løsningsforslag sett 1

GEF2200 vår 2017 Løsningsforslag sett 1 GEF2200 vår 2017 Løsningsforslag sett 1 A.1.T R is the universal gas constant, with value 8.3143JK 1 mol 1. R is the gas constant for a secic gas, given by R R M (1) where M is the molecular weight of

More information

Adiabatic Shear Bands in Simple and Dipolar Plastic Materials

Adiabatic Shear Bands in Simple and Dipolar Plastic Materials Adiabatic Shear Bands in Simle and Diolar Plastic Materials T W \-1RIGHT us Army Ballistic Research Laboratory Aberdeen Proving Ground, MD 215 R C BATRA University of Missouri-Rolla Rolla, Missouri 6541

More information

Casimir Force Between the Two Moving Conductive Plates.

Casimir Force Between the Two Moving Conductive Plates. Casimir Force Between the Two Moving Conductive Plates. Jaroslav Hynecek 1 Isetex, Inc., 95 Pama Drive, Allen, TX 751 ABSTRACT This article resents the derivation of the Casimir force for the two moving

More information

Evolution of Compression Processes in Aero-Engine Thermal Cycles

Evolution of Compression Processes in Aero-Engine Thermal Cycles The Oen Aerosace Engineering Journal, 2008,, -7 Evolution of Comression Processes in Aero-Engine Thermal Cycles Y. Daren, T. Jingfeng * and B. Wen School of Energy Science and Engineering, Harbin Institute

More information

An-Najah National University Civil Engineering Departemnt. Fluid Mechanics. Chapter [2] Fluid Statics

An-Najah National University Civil Engineering Departemnt. Fluid Mechanics. Chapter [2] Fluid Statics An-Najah National University Civil Engineering Deartemnt Fluid Mechanics Chater [2] Fluid Statics 1 Fluid Statics Problems Fluid statics refers to the study of fluids at rest or moving in such a manner

More information

Unit C-1: List of Subjects

Unit C-1: List of Subjects Unit C-: List of Subjects The elocity Field The Acceleration Field The Material or Substantial Derivative Steady Flow and Streamlines Fluid Particle in a Flow Field F=ma along a Streamline Bernoulli s

More information

The Role of Water Vapor. atmosphere (we will ignore the solid phase here) Refer to the phase diagram in the web notes.

The Role of Water Vapor. atmosphere (we will ignore the solid phase here) Refer to the phase diagram in the web notes. The Role of Water Vaor Water can exist as either a vaor or liquid in the atmoshere (we will ignore the solid hase here) under a variety of Temerature and ressure conditions. Refer to the hase diagram in

More information

Analytical Methods for Determination of Heat Transfer Fields from TSP Measurements in Hypersonic Tunnels

Analytical Methods for Determination of Heat Transfer Fields from TSP Measurements in Hypersonic Tunnels Analytical Methods for Determination of Heat Transfer Fields from TSP Measurements in Hyersonic Tunnels Tianshu Liu, Z. Cai & J. Lai Western Michigan University, Kalamazoo, MI 49008 J. Rubal & J. P. Sullivan

More information

AE 2020: Low Speed Aerodynamics. I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson

AE 2020: Low Speed Aerodynamics. I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson AE 2020: Low Speed Aerodynamics I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson Text Book Anderson, Fundamentals of Aerodynamics, 4th Edition, McGraw-Hill, Inc.

More information

ONE. The Earth-atmosphere system CHAPTER

ONE. The Earth-atmosphere system CHAPTER CHAPTER ONE The Earth-atmoshere system 1.1 INTRODUCTION The Earth s atmoshere is the gaseous enveloe surrounding the lanet. Like other lanetary atmosheres, it figures centrally in transfers of energy between

More information

Maximum Entropy and the Stress Distribution in Soft Disk Packings Above Jamming

Maximum Entropy and the Stress Distribution in Soft Disk Packings Above Jamming Maximum Entroy and the Stress Distribution in Soft Disk Packings Above Jamming Yegang Wu and S. Teitel Deartment of Physics and Astronomy, University of ochester, ochester, New York 467, USA (Dated: August

More information

Aerothermodynamics of high speed flows

Aerothermodynamics of high speed flows Aerothermodynamics of high speed flows AERO 0033 1 Lecture 6: D potential flow, method of characteristics Thierry Magin, Greg Dimitriadis, and Johan Boutet Thierry.Magin@vki.ac.be Aeronautics and Aerospace

More information

Focal Waveform of a Prolate-Spheroidal IRA

Focal Waveform of a Prolate-Spheroidal IRA Sensor and Simulation Notes Note 59 February 6 Focal Waveform of a Prolate-Sheroidal IRA Carl E. Baum University of New Mexico Deartment of Electrical and Comuter Engineering Albuquerque New Mexico 873

More information

Speed of sound measurements in liquid Methane at cryogenic temperature and for pressure up to 10 MPa

Speed of sound measurements in liquid Methane at cryogenic temperature and for pressure up to 10 MPa LNGII - raining Day Delft, August 07 Seed of sound measurements in liquid Methane at cryogenic temerature and for ressure u to 0 MPa Simona Lago*, P. Alberto Giuliano Albo INRiM Istituto Nazionale di Ricerca

More information

Synoptic Meteorology I: The Geostrophic Approximation. 30 September, 7 October 2014

Synoptic Meteorology I: The Geostrophic Approximation. 30 September, 7 October 2014 The Equations of Motion Synotic Meteorology I: The Geostrohic Aroimation 30 Setember, 7 October 2014 In their most general form, and resented without formal derivation, the equations of motion alicable

More information

A Special Case Solution to the Perspective 3-Point Problem William J. Wolfe California State University Channel Islands

A Special Case Solution to the Perspective 3-Point Problem William J. Wolfe California State University Channel Islands A Secial Case Solution to the Persective -Point Problem William J. Wolfe California State University Channel Islands william.wolfe@csuci.edu Abstract In this aer we address a secial case of the ersective

More information

On Optimization of Power Coefficient of HAWT

On Optimization of Power Coefficient of HAWT Journal of Power and Energy Engineering, 14,, 198- Published Online Aril 14 in Scies htt://wwwscirorg/journal/jee htt://dxdoiorg/1436/jee1448 On Otimization of Power Coefficient of HAWT Marat Z Dosaev

More information

ASSESSMENT OF FREE STREAM SEEDER PERFORMANCE FOR VELOCIMETRY IN A SCRAMJET COMBUSTOR

ASSESSMENT OF FREE STREAM SEEDER PERFORMANCE FOR VELOCIMETRY IN A SCRAMJET COMBUSTOR ASSESSMENT OF FREE STREAM SEEDER PERFORMANCE FOR VELOCIMETRY IN A SCRAMJET COMBUSTOR Jason Howison Advisor: Christoher P. Goyne Deartment of Mechanical and Aerosace Engineering University of Virginia Abstract

More information

OPTIMUM TRANSONIC WING DESIGN USING CONTROL THEORY

OPTIMUM TRANSONIC WING DESIGN USING CONTROL THEORY OPTIMUM TRANSONIC WING DESIGN USING CONTROL THEORY Thomas V. Jones Professor of Engineering, Deartment of Aeronautics and Astronautics Stanford University, Stanford, CA 9435-435 jamesonbaboon.stanford.edu

More information

Paper C Exact Volume Balance Versus Exact Mass Balance in Compositional Reservoir Simulation

Paper C Exact Volume Balance Versus Exact Mass Balance in Compositional Reservoir Simulation Paer C Exact Volume Balance Versus Exact Mass Balance in Comositional Reservoir Simulation Submitted to Comutational Geosciences, December 2005. Exact Volume Balance Versus Exact Mass Balance in Comositional

More information

Explosion Protection of Buildings

Explosion Protection of Buildings 1 Exlosion Protection of Buildings Author: Miroslav Mynarz 2 Exlosion Protection of Buildings Exlosion of a Condensed Exlosive and Calculation of Blast Wave Parameters Theory of exlosion of condensed exlosive

More information

Chapter 5 Mass, Momentum, and Energy Equations

Chapter 5 Mass, Momentum, and Energy Equations 57:00 Mechanics of Fluids and Transort Processes Chater 5 Professor Fred Stern Fall 006 Chater 5 Mass, Momentum, and Energy Equations Flow Rate and Conservation of Mass. cross-sectional area oriented normal

More information

A Closed-Form Solution to the Minimum V 2

A Closed-Form Solution to the Minimum V 2 Celestial Mechanics and Dynamical Astronomy manuscrit No. (will be inserted by the editor) Martín Avendaño Daniele Mortari A Closed-Form Solution to the Minimum V tot Lambert s Problem Received: Month

More information

Previously, we examined supersonic flow over (sharp) concave corners/turns. What happens if: AE3450

Previously, we examined supersonic flow over (sharp) concave corners/turns. What happens if: AE3450 Preiously, we examined supersonic flow oer (sharp) concae corners/turns oblique shock allows flow to make this (compression) turn What happens if: turn is conex (expansion) already shown expansion shock

More information

δq T = nr ln(v B/V A )

δq T = nr ln(v B/V A ) hysical Chemistry 007 Homework assignment, solutions roblem 1: An ideal gas undergoes the following reversible, cyclic rocess It first exands isothermally from state A to state B It is then comressed adiabatically

More information

Classical gas (molecules) Phonon gas Number fixed Population depends on frequency of mode and temperature: 1. For each particle. For an N-particle gas

Classical gas (molecules) Phonon gas Number fixed Population depends on frequency of mode and temperature: 1. For each particle. For an N-particle gas Lecture 14: Thermal conductivity Review: honons as articles In chater 5, we have been considering quantized waves in solids to be articles and this becomes very imortant when we discuss thermal conductivity.

More information

R g. o p2. Lecture 2: Buoyancy, stability, convection and gravity waves

R g. o p2. Lecture 2: Buoyancy, stability, convection and gravity waves Lecture : Clarifications of lecture 1: Hydrostatic balance: Under static conditions, only gravity will work on the fluid. Why doesn't all the fluid contract to the ground? Pressure builds u and resists

More information

CEE 452/652. Week 11, Lecture 2 Forces acting on particles, Cyclones. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute

CEE 452/652. Week 11, Lecture 2 Forces acting on particles, Cyclones. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute CEE 452/652 Week 11, Lecture 2 Forces acting on articles, Cyclones Dr. Dave DuBois Division of Atmosheric Sciences, Desert Research Institute Today s toics Today s toic: Forces acting on articles control

More information

Physics 2A (Fall 2012) Chapters 11:Using Energy and 12: Thermal Properties of Matter

Physics 2A (Fall 2012) Chapters 11:Using Energy and 12: Thermal Properties of Matter Physics 2A (Fall 2012) Chaters 11:Using Energy and 12: Thermal Proerties of Matter "Kee in mind that neither success nor failure is ever final." Roger Ward Babson Our greatest glory is not in never failing,

More information

Chapter 3 Weight estimation - 2 Lecture 7 Topics

Chapter 3 Weight estimation - 2 Lecture 7 Topics Chater-3 Chater 3 eight estimation - 2 ecture 7 Toics 3.5 Estimation o uel raction ( / 0 ) 3.5.1 Mission roile 3.5.2 eight ractions or various segments o mission 3.5.3 Fuel raction or warm u, taxing and

More information

Ducted Wind/Water Turbines and Propellers Revisited By Michael, J. Werle, PhD 1 and Walter M. Presz, Jr., PhD 2 FLODESIGN, INC. WILBRAHAM, MA.

Ducted Wind/Water Turbines and Propellers Revisited By Michael, J. Werle, PhD 1 and Walter M. Presz, Jr., PhD 2 FLODESIGN, INC. WILBRAHAM, MA. Introduction Ducted Wind/Water Turbines and roellers Revisited By Michael, J. Werle, hd and Walter M. resz, Jr., hd FLODEIGN, IN. WILBRAHAM, MA. 0095 There has been considerable effort and discussion in

More information

Economics 101. Lecture 7 - Monopoly and Oligopoly

Economics 101. Lecture 7 - Monopoly and Oligopoly Economics 0 Lecture 7 - Monooly and Oligooly Production Equilibrium After having exlored Walrasian equilibria with roduction in the Robinson Crusoe economy, we will now ste in to a more general setting.

More information

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 2012 Brasov, May 2012

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 2012 Brasov, May 2012 HENRI OANDA AIR FORE AADEMY ROMANIA INTERNATIONAL ONFERENE of SIENTIFI AER AFASES Brasov, 4-6 Ma ENERAL M.R. STEFANIK ARMED FORES AADEMY SLOAK REUBLI A MATHEMATIAL MODEL FOR OMUTIN THE TRAJETORIES OF ROKETS

More information

Theory of turbomachinery. Chapter 1

Theory of turbomachinery. Chapter 1 Theory of turbomachinery Chater Introduction: Basic Princiles Take your choice of those that can best aid your action. (Shakeseare, Coriolanus) Introduction Definition Turbomachinery describes machines

More information

Last Time. A new conjugate pair: chemical potential and particle number. Today

Last Time. A new conjugate pair: chemical potential and particle number. Today Last Time LECTURE 9 A new conjugate air: chemical otential and article number Definition of chemical otential Ideal gas chemical otential Total, Internal, and External chemical otential Examle: Pressure

More information

Feedback-error control

Feedback-error control Chater 4 Feedback-error control 4.1 Introduction This chater exlains the feedback-error (FBE) control scheme originally described by Kawato [, 87, 8]. FBE is a widely used neural network based controller

More information

Q ABS (x,t s ) = S o /4 S(x)a p (x,t s ).

Q ABS (x,t s ) = S o /4 S(x)a p (x,t s ). Lecture 14 ICE The feedback of exanding and contracting ice sheets has often been offered as a lausible exlanation for how the contrasting climates of the glacialinterglacial times can be both (relatively)

More information

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics PHYS1001 PHYSICS 1 REGULAR Module Thermal Physics Chater 17 First Law of Thermodynamics References: 17.1 to 17.9 Examles: 17.1 to 17.7 Checklist Thermodynamic system collection of objects and fields. If

More information

Efficiencies. Damian Vogt Course MJ2429. Nomenclature. Symbol Denotation Unit c Flow speed m/s c p. pressure c v. Specific heat at constant J/kgK

Efficiencies. Damian Vogt Course MJ2429. Nomenclature. Symbol Denotation Unit c Flow speed m/s c p. pressure c v. Specific heat at constant J/kgK Turbomachinery Lecture Notes 1 7-9-1 Efficiencies Damian Vogt Course MJ49 Nomenclature Subscrits Symbol Denotation Unit c Flow seed m/s c Secific heat at constant J/kgK ressure c v Secific heat at constant

More information

Chapter 8 Internal Forced Convection

Chapter 8 Internal Forced Convection Chater 8 Internal Forced Convection 8.1 Hydrodynamic Considerations 8.1.1 Flow Conditions may be determined exerimentally, as shown in Figs. 7.1-7.2. Re D ρumd μ where u m is the mean fluid velocity over

More information

Thin airfoil theory. Chapter Compressible potential flow The full potential equation

Thin airfoil theory. Chapter Compressible potential flow The full potential equation hapter 4 Thin airfoil theory 4. ompressible potential flow 4.. The full potential equation In compressible flow, both the lift and drag of a thin airfoil can be determined to a reasonable level of accuracy

More information

The Bernoulli Equation

The Bernoulli Equation The Bernoulli Equation The most used and the most abused equation in fluid mechanics. Newton s Second Law: F = ma In general, most real flows are 3-D, unsteady (x, y, z, t; r,θ, z, t; etc) Let consider

More information

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments The lifting surfaces of a vehicle generally include the wings, the horizontal and vertical tail, and other surfaces such

More information

ATM The thermal wind Fall, 2016 Fovell

ATM The thermal wind Fall, 2016 Fovell ATM 316 - The thermal wind Fall, 2016 Fovell Reca and isobaric coordinates We have seen that for the synotic time and sace scales, the three leading terms in the horizontal equations of motion are du dt

More information

Fundamentals of Aerodynamits

Fundamentals of Aerodynamits Fundamentals of Aerodynamits Fifth Edition in SI Units John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland

More information

Characteristics of Beam-Based Flexure Modules

Characteristics of Beam-Based Flexure Modules Shorya Awtar e-mail: shorya@mit.edu Alexander H. Slocum e-mail: slocum@mit.edu Precision Engineering Research Grou, Massachusetts Institute of Technology, Cambridge, MA 039 Edi Sevincer Omega Advanced

More information

FUNDAMENTALS OF AERODYNAMICS

FUNDAMENTALS OF AERODYNAMICS *A \ FUNDAMENTALS OF AERODYNAMICS Second Edition John D. Anderson, Jr. Professor of Aerospace Engineering University of Maryland H ' McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas

More information

THE FIRST LAW OF THERMODYNAMICS

THE FIRST LAW OF THERMODYNAMICS THE FIRST LA OF THERMODYNAMIS 9 9 (a) IDENTIFY and SET UP: The ressure is constant and the volume increases (b) = d Figure 9 Since is constant, = d = ( ) The -diagram is sketched in Figure 9 The roblem

More information

Determination of Pressure Losses in Hydraulic Pipeline Systems by Considering Temperature and Pressure

Determination of Pressure Losses in Hydraulic Pipeline Systems by Considering Temperature and Pressure Paer received: 7.10.008 UDC 61.64 Paer acceted: 0.04.009 Determination of Pressure Losses in Hydraulic Pieline Systems by Considering Temerature and Pressure Vladimir Savi 1,* - Darko Kneževi - Darko Lovrec

More information

THERMAL ANALYSIS OF CHARRING MATERIALS BASED ON PYROLYSIS INTERFACE MODEL

THERMAL ANALYSIS OF CHARRING MATERIALS BASED ON PYROLYSIS INTERFACE MODEL THERMA SCIENCE, Year 14, Vol. 18, No. 5,. 1591-1596 1591 THERMA ANAYSIS OF CHARRING MATERIAS BASED ON PYROYSIS INTERFACE MODE by Hai-Ming HUANG *a, Wei-Jie I a, and Hai-ingYU b a Institute of Engineering

More information

Carbuncle Phenomena and Other Shock Anomalies in Three Dimensions

Carbuncle Phenomena and Other Shock Anomalies in Three Dimensions Carbuncle Phenomena and Other Shock Anomalies in Three Dimensions Keiichi Kitamura * and Eiji Shima Jaan Aerosace Exloration Agency (JAXA) Sagamihara Kanagawa 5-50 Jaan and Phili. oe University of ichigan

More information

Quasi-Three-Dimensional Simulation of Viscoelastic Flow through a Straight Channel with a Square Cross Section

Quasi-Three-Dimensional Simulation of Viscoelastic Flow through a Straight Channel with a Square Cross Section Article Nihon Reoroji Gakkaishi Vol.34, No.2, 105~113 (Journal of the Society of Rheology, Jaan) 2006 The Society of Rheology, Jaan Quasi-Three-Dimensional Simulation of Viscoelastic Flow through a Straight

More information

OPTIMIZATION OF EARTH FLIGHT TEST TRAJECTORIES TO QUALIFY PARACHUTES FOR USE ON MARS

OPTIMIZATION OF EARTH FLIGHT TEST TRAJECTORIES TO QUALIFY PARACHUTES FOR USE ON MARS OPTIMIZATION OF EARTH FLIGHT TEST TRAJECTORIES TO QUALIFY PARACHUTES FOR USE ON MARS Christoher L. Tanner (1) (1) Sace Systems Design Laboratory, Daniel Guggenheim School of Aerosace Engineering Georgia

More information

Applied Statistical Mechanics Lecture Note - 4 Quantum Mechanics Molecular Structure

Applied Statistical Mechanics Lecture Note - 4 Quantum Mechanics Molecular Structure Alied Statistical Mechanics Lecture Note - 4 Quantum Mechanics Molecular Structure Jeong Won Kang Deartment of Chemical Engineering Korea University Subjects Structure of Comlex Atoms - Continued Molecular

More information

Chapter 10: Flow Flow in in Conduits Conduits Dr Ali Jawarneh

Chapter 10: Flow Flow in in Conduits Conduits Dr Ali Jawarneh Chater 10: Flow in Conduits By Dr Ali Jawarneh Hashemite University 1 Outline In this chater we will: Analyse the shear stress distribution across a ie section. Discuss and analyse the case of laminar

More information

The standard atmosphere I

The standard atmosphere I The standard atmoshere I Introduction to eronautical Engineering Prof. dr. ir. Jacco Hoekstra M.T. Salam - CC - BY - S Joe Kittinger ugust 16 th, 1960 31 333 m Felix Baumgartner October 14 th, 2012 38

More information

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS HET, ORK, ND THE FIRST L OF THERMODYNMIS 8 EXERISES Section 8. The First Law of Thermodynamics 5. INTERPRET e identify the system as the water in the insulated container. The roblem involves calculating

More information

Developing A Deterioration Probabilistic Model for Rail Wear

Developing A Deterioration Probabilistic Model for Rail Wear International Journal of Traffic and Transortation Engineering 2012, 1(2): 13-18 DOI: 10.5923/j.ijtte.20120102.02 Develoing A Deterioration Probabilistic Model for Rail Wear Jabbar-Ali Zakeri *, Shahrbanoo

More information