About the gap between the optimal values of the integer and continuous relaxation one-dimensional cutting stock problem

Size: px
Start display at page:

Download "About the gap between the optimal values of the integer and continuous relaxation one-dimensional cutting stock problem"

Transcription

1 Operations Research Proceedings 1991, Springer-Verlag Berlin Heidelberg (1992) About the gap between the optimal values of the integer and continuous relaxation one-dimensional cutting stock problem Guntram Scheithauer and Johannes Terno Dresden University of Technology Abstract: The purpose of this paper is to show that the gap is possibly smaller than 2. Some helpful results are summarized. Zusammenfassung: Es werden Ergebnisse vorgestellt und diskutiert, die bei der Untersuchung der maximalen Differenz zwischen den Optimalwerten des ganzzahligen und stetigen eindimensionalen Zuschnittproblems erhalten wurden. 1 Introduction The well-known one-dimensional cutting stock problem arises when larger stock length are to cut into shorter piece length. The standard linear programming formulation given by Gilmore and Gomory (1961) is the following. Let be given the stock length L and the piece lengths l i, i = 1,..., m, not larger than L, and order quantities b i of piece i, i = 1,..., m. A cutting pattern is a combination of pieces having a total length not larger than L. It can be represented by a nonnegative integer vector a j = (a 1j,..., a mj ) T. The objective is to minimize the number of stock lengths needed to fulfill the order demands. Hence, z(x) = e T x = min (1) Ax = b (2) x 0 (3) x integer (4) 1

2 where the cutting patterns a j, j = 1,..., n, are the columns of A and b = (b 1,..., b m ) T, e = (1,..., 1) T, x = (x 1,..., x n ) T. Relaxing the integrality constraint leads to a linear program having an optimal solution x c. x c is in general fractionally. Let x int denotes an optimal integer solution. Diegel (1988) suggests the following proposition: the gap between z(x int ) and z(x c ) is less than 1. Two examples and some motivations seem to verify this proposition. But Fieldhouse (1990) presents counterexamples with z(x int ) z(x c ) = In the paper we show for some special cases that z(x int ) z(x c ) + 1 (5) where a denotes the smallest integer not smaller than a. Furthermore a defines the largest integer not larger than a and {a} is the fractional part of a. 2 Results 2.1 Problemreduction The continuous solution x c can be dissected according to integer and fractional parts of its components, hence x c = x c + {x c }. With α = e T x c and β = e T {x c } one has z(x c ) = α + β. Rounding down yields residual order quantities b = b A x c. If there exists an integer solution x red for (1) - (4) with right hand side b fulfilling then z(x red ) β + 1 x c + x red is an integer solution of the initial problem which performs the assertion (5). Hence, it is only necessary to consider right hand sides b which yield to continuous solutions having components less than 1. 2

3 2.2 Fundamental statements According to the previous section we may assume in the following that the components of solutions of the relaxation problem (1) - (3) have values less than 1. For abbreviation we set = L l i, i = 1,..., m. (6) A cutting pattern a j = (a 1j,..., a mj ) T is called elementary if Let = { ki if i = j, 0 if i j. γ = m b i (7) be the objective function value using only elementary patterns. In general, the optimal function value β is less than γ, i.e. β γ. (8) Lemma 1 Let be given positive integers and b i, i = 1,..., m, with b i, i = 1,..., m,. Then there exist γ + 1 nonnegative integer vectors a j = (a 1j,..., a mj ) T with γ +1 m = b i, i = 1,..., m, 1, j = 1,..., γ + 1. (9) Proof: The proof is done by induction. The proposition is fulfilled for n = 1 with a 11 = b 1, a 12 = 0. Let n b i γ n =. (10) Case a): Let be k n+1 = k r for one r with 1 r n. Then one can define b (1) r = b r + b n+1. If b (1) r k r all is done, otherwise we have b (1) r 2k r and with b (2) r := b (1) r k r, b (2) r k r, we get n,i r b i + b(2) r = γ n+1 1. k r Since b i for all i r and b (2) r k r there exist γ n+1 nonnegative integer vectors a j and with a r,γn+1 +1 := k r, a i,γn+1 +1 := 0, i r, it follows the statement. 3

4 Case b): Because of case a) we may assume 1 k 1 < k 2 <... < k n+1. Hence k n+1 n + 1. Because of γ n γ n+1 there exist γ n nonnegative integer n-dimensional vectors a j = (a 1j,..., a nj ) T with and n = b i, i = 1,..., n, 1, j = 1,..., γ n Now we consider these vectors as (n + 1)-dimensional vectors setting Hence According to (10) we have a n+1,j := (1 n )k n+1. (11) 1 1 n+1 < 1, j = 1,..., γ n k n+1 ) n b i b n+1 k n+1 (γ n+1. Hence, b n+1 a n+1,j k n+1 γ n+1 1 n b i a n+1,j k n+1 = k n+1 γ n+1 1 n a n+1,j 1 k n+1 n+1 = k n+1 γ n+1 ( < k n+1 (γ n+1 (γ n+1 + 1) 1 1 )) k n+1 ( = k n γ n ) k n+1 k n+1 1. Because of the integrality of b n+1 and the a n+1,j it follows a n+1,j b n+1 4

5 and we can choose suitable nonnegative integers a n+1,j, j = 1,..., γ n+1 + 1, with This completes the proof. a n+1,j a n+1,j and a n+1,j = b n+1. Lemma 2 Let be given positive integers and b i, i = 1,..., m. Then there exist γ + 1 nonnegative integer vectors a j = (a 1j,..., a mj ) T with γ +1 m = b i, i = 1,..., m, 1, j = 1,..., γ + 1. Proof: Let α i := b i and β i := b i α i. It holds γ = m b i = m m α i + β i =: Γ 1 + Γ 2 Because of Lemma 1 there exist Γ nonnegative integer vectors a j with and m Γ 2 +1 = β i, i = 1,..., m, 1, j = 1,..., Γ Using α i times the corresponding elementary patterns the assertion is proved. Theorem 1 Let β be the optimal function value of problem (1) - (3) and γ be defined according to (7). If β = γ then there exists an integer solution of problem (1) - (4) with objective function value not larger than β + 1. Proof: Because of Lemma 1 resp. 2 there exist γ + 1 = β + 1 nonnegative integer vectors a j which fulfill condition (2). Since the a j represent feasible cutting patterns the assertion is proved. 5

6 2.3 Generalizations Let κ := j sign(x j ). If x corresponds to a continuous solution then obviously κ m. Lemma 3 If β = 1 or β κ 1 then the assertion (5) is fulfilled. Proof: For β 1 j a j {x j } is by itself a cutting pattern. In the other case we get κ patterns by rounding up. The difference m 1 seems to be an essential characterization for a cutting pattern and also for instances of cutting problems. Generally holds Lemma 4 If γ β = i i / 1 1 x j j j x j = j x j ( i ) 1 for all columns j then (5) is fulfilled. (12) Proof: Formula (12) yields γ β 0. Together with (8) the premises of the theorem are fulfilled. Remark: In general, there is max { i : i l i L, a j = (a 1j,..., a mj ) Z m + } 1.7. This follows from a Lemma given in Coffman et al. (1980). In the following an example with β < γ is described. i l i b i a 1 a 2 a Let L = With the continuous solution x 1 = 0.5, x 2 = 0.5, x 3 = 0.9 one has β = 1.9 < 2 < γ = It is to denote that there exists optimal integer solutions with only 2 patterns. It is remarkable that all patterns in the example with L i l i > l 3 have the property i 1. 6

7 2.4 The largest gap found The following example enlarges the gap given by Fieldhouse(1990). i l i b i Let L = Here we have β = γ = = = There exists no integer solution with 2 patterns. Hence, the gap equals The same gap arises if the pieces with length 33 are replaced by pieces of lengths 66 and 33 each having order quantity 1. References [1] E.G.Coffmann,jr., M.R.Garey, D.S.Johnson, R.E.Targon, Performance bounds for level oriented two-dimensional packing algorithms, SIAM J.Comput. 9 (1980)p [2] A.Diegel, Integer LP solution for large trim problems, Working Paper 1988 University of Natal, South Africa. [3] M.Fieldhouse, The duality gap in trim problems, SICUP-Bulletin No. 5,1990. [4] P.C.Gilmore, R.E.Gomory, A linear Programming approach to the cutting stock problem, Op. Res. 9(1961)p [5] J.Terno, R.Lindemann, G.Scheithauer, Zuschnittprobleme und ihre praktische Lösung, Verlag Harry Deutsch Thun und Frankfurt/Main

The Modified Integer Round-Up Property of the One-Dimensional Cutting Stock Problem

The Modified Integer Round-Up Property of the One-Dimensional Cutting Stock Problem EJOR 84 (1995) 562 571 The Modified Integer Round-Up Property of the One-Dimensional Cutting Stock Problem Guntram Scheithauer and Johannes Terno Institute of Numerical Mathematics, Dresden University

More information

A BRANCH&BOUND ALGORITHM FOR SOLVING ONE-DIMENSIONAL CUTTING STOCK PROBLEMS EXACTLY

A BRANCH&BOUND ALGORITHM FOR SOLVING ONE-DIMENSIONAL CUTTING STOCK PROBLEMS EXACTLY APPLICATIONES MATHEMATICAE 23,2 (1995), pp. 151 167 G. SCHEITHAUER and J. TERNO (Dresden) A BRANCH&BOUND ALGORITHM FOR SOLVING ONE-DIMENSIONAL CUTTING STOCK PROBLEMS EXACTLY Abstract. Many numerical computations

More information

LINEAR INTERVAL INEQUALITIES

LINEAR INTERVAL INEQUALITIES LINEAR INTERVAL INEQUALITIES Jiří Rohn, Jana Kreslová Faculty of Mathematics and Physics, Charles University Malostranské nám. 25, 11800 Prague, Czech Republic 1.6.1993 Abstract We prove that a system

More information

Integer Solutions to Cutting Stock Problems

Integer Solutions to Cutting Stock Problems Integer Solutions to Cutting Stock Problems L. Fernández, L. A. Fernández, C. Pola Dpto. Matemáticas, Estadística y Computación, Universidad de Cantabria, 39005 Santander, Spain, laura.fernandezfern@alumnos.unican.es,

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective 1 / 24 Cutting stock problem 2 / 24 Problem description

More information

A Node-Flow Model for 1D Stock Cutting: Robust Branch-Cut-and-Price

A Node-Flow Model for 1D Stock Cutting: Robust Branch-Cut-and-Price A Node-Flow Model for 1D Stock Cutting: Robust Branch-Cut-and-Price Gleb Belov University of Dresden Adam N. Letchford Lancaster University Eduardo Uchoa Universidade Federal Fluminense August 4, 2011

More information

Carathéodory Bounds for Integer Cones

Carathéodory Bounds for Integer Cones Carathéodory Bounds for Integer Cones Friedrich Eisenbrand, Gennady Shmonin Max-Planck-Institut für Informatik Stuhlsatzenhausweg 85 66123 Saarbrücken Germany [eisen,shmonin]@mpi-inf.mpg.de 22nd September

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective Vehicle routing problem 1 / 33 Cutting stock

More information

Cutting Plane Methods I

Cutting Plane Methods I 6.859/15.083 Integer Programming and Combinatorial Optimization Fall 2009 Cutting Planes Consider max{wx : Ax b, x integer}. Cutting Plane Methods I Establishing the optimality of a solution is equivalent

More information

Relations between capacity utilization and minimal bin number

Relations between capacity utilization and minimal bin number Als Manuskript gedruckt Technische Universität Dresden Herausgeber: Der Rektor A note on Relations between capacity utilization and minimal bin number Torsten Buchwald and Guntram Scheithauer MATH-NM-05-01

More information

The Number of Setups (Different Patterns) in One-Dimensional Stock Cutting

The Number of Setups (Different Patterns) in One-Dimensional Stock Cutting G. Belov and G. Scheithauer. Setup Minimization in 1D Stock Cutting 1 The Number of Setups (Different Patterns) in One-Dimensional Stock Cutting G. Belov and G. Scheithauer Dresden University Institute

More information

Column Generation I. Teo Chung-Piaw (NUS)

Column Generation I. Teo Chung-Piaw (NUS) Column Generation I Teo Chung-Piaw (NUS) 21 st February 2002 1 Outline Cutting Stock Problem Slide 1 Classical Integer Programming Formulation Set Covering Formulation Column Generation Approach Connection

More information

Integer Programming: Cutting Planes

Integer Programming: Cutting Planes OptIntro 1 / 39 Integer Programming: Cutting Planes Eduardo Camponogara Department of Automation and Systems Engineering Federal University of Santa Catarina October 2016 OptIntro 2 / 39 Summary Introduction

More information

DONG QUAN NGOC NGUYEN

DONG QUAN NGOC NGUYEN REPRESENTATION OF UNITS IN CYCLOTOMIC FUNCTION FIELDS DONG QUAN NGOC NGUYEN Contents 1 Introduction 1 2 Some basic notions 3 21 The Galois group Gal(K /k) 3 22 Representation of integers in O, and the

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 15.05 Recitation 8 TAs: Giacomo Nannicini, Ebrahim Nasrabadi At the end of this recitation, students should be able to: 1. Derive Gomory cut from fractional

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making (discrete optimization) problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock,

More information

A packing integer program arising in two-layer network design

A packing integer program arising in two-layer network design A packing integer program arising in two-layer network design Christian Raack Arie M.C.A Koster Zuse Institute Berlin Takustr. 7, D-14195 Berlin Centre for Discrete Mathematics and its Applications (DIMAP)

More information

3.10 Column generation method

3.10 Column generation method 3.10 Column generation method Many relevant decision-making problems can be formulated as ILP problems with a very large (exponential) number of variables. Examples: cutting stock, crew scheduling, vehicle

More information

Technische Universität Dresden Herausgeber: Der Rektor

Technische Universität Dresden Herausgeber: Der Rektor Als Manuskript gedruckt Technische Universität Dresden Herausgeber: Der Rektor Setup and Open Stacks Minimization in One-Dimensional Stock Cutting G. Belov, G. Scheithauer MATH-NM-16-2003 June 24, 2004

More information

A Remark on Certain Filtrations on the Inner Automorphism Groups of Central Division Algebras over Local Number Fields

A Remark on Certain Filtrations on the Inner Automorphism Groups of Central Division Algebras over Local Number Fields International Journal of lgebra, Vol. 10, 2016, no. 2, 71-79 HIKRI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2016.612 Remark on Certain Filtrations on the Inner utomorphism Groups of Central

More information

Technische Universität Dresden Herausgeber: Der Rektor

Technische Universität Dresden Herausgeber: Der Rektor Als Manuskript gedruckt Technische Universität Dresden Herausgeber: Der Rektor Models with Variable Strip Widths for Two-Dimensional Two-Stage Cutting G. Belov, G. Scheithauer MATH-NM-17-2003 October 8,

More information

Discrete Optimization 23

Discrete Optimization 23 Discrete Optimization 23 2 Total Unimodularity (TU) and Its Applications In this section we will discuss the total unimodularity theory and its applications to flows in networks. 2.1 Total Unimodularity:

More information

On the Iteration Complexity of Some Projection Methods for Monotone Linear Variational Inequalities

On the Iteration Complexity of Some Projection Methods for Monotone Linear Variational Inequalities On the Iteration Complexity of Some Projection Methods for Monotone Linear Variational Inequalities Caihua Chen Xiaoling Fu Bingsheng He Xiaoming Yuan January 13, 2015 Abstract. Projection type methods

More information

Cutting Plane Separators in SCIP

Cutting Plane Separators in SCIP Cutting Plane Separators in SCIP Kati Wolter Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies 1 / 36 General Cutting Plane Method MIP min{c T x : x X MIP }, X MIP := {x

More information

Column Generation. MTech Seminar Report. Soumitra Pal Roll No: under the guidance of

Column Generation. MTech Seminar Report. Soumitra Pal Roll No: under the guidance of Column Generation MTech Seminar Report by Soumitra Pal Roll No: 05305015 under the guidance of Prof. A. G. Ranade Computer Science and Engineering IIT-Bombay a Department of Computer Science and Engineering

More information

A New Fenchel Dual Problem in Vector Optimization

A New Fenchel Dual Problem in Vector Optimization A New Fenchel Dual Problem in Vector Optimization Radu Ioan Boţ Anca Dumitru Gert Wanka Abstract We introduce a new Fenchel dual for vector optimization problems inspired by the form of the Fenchel dual

More information

ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS Mathematics Subject Classification: 11B05, 11B13, 11P99

ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS Mathematics Subject Classification: 11B05, 11B13, 11P99 ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS N. HEGYVÁRI, F. HENNECART AND A. PLAGNE Abstract. We study the gaps in the sequence of sums of h pairwise distinct elements

More information

A Branch-and-Cut-and-Price Algorithm for One-Dimensional Stock Cutting and Two-Dimensional Two-Stage Cutting

A Branch-and-Cut-and-Price Algorithm for One-Dimensional Stock Cutting and Two-Dimensional Two-Stage Cutting A Branch-and-Cut-and-Price Algorithm for One-Dimensional Stock Cutting and Two-Dimensional Two-Stage Cutting G. Belov,1 G. Scheithauer University of Dresden, Institute of Numerical Mathematics, Mommsenstr.

More information

#A45 INTEGERS 9 (2009), BALANCED SUBSET SUMS IN DENSE SETS OF INTEGERS. Gyula Károlyi 1. H 1117, Hungary

#A45 INTEGERS 9 (2009), BALANCED SUBSET SUMS IN DENSE SETS OF INTEGERS. Gyula Károlyi 1. H 1117, Hungary #A45 INTEGERS 9 (2009, 591-603 BALANCED SUBSET SUMS IN DENSE SETS OF INTEGERS Gyula Károlyi 1 Institute of Mathematics, Eötvös University, Pázmány P. sétány 1/C, Budapest, H 1117, Hungary karolyi@cs.elte.hu

More information

1 Ordinary Load Balancing

1 Ordinary Load Balancing Comp 260: Advanced Algorithms Prof. Lenore Cowen Tufts University, Spring 208 Scribe: Emily Davis Lecture 8: Scheduling Ordinary Load Balancing Suppose we have a set of jobs each with their own finite

More information

Lecture #21. c T x Ax b. maximize subject to

Lecture #21. c T x Ax b. maximize subject to COMPSCI 330: Design and Analysis of Algorithms 11/11/2014 Lecture #21 Lecturer: Debmalya Panigrahi Scribe: Samuel Haney 1 Overview In this lecture, we discuss linear programming. We first show that the

More information

3 Finite continued fractions

3 Finite continued fractions MTH628 Number Theory Notes 3 Spring 209 3 Finite continued fractions 3. Introduction Let us return to the calculation of gcd(225, 57) from the preceding chapter. 225 = 57 + 68 57 = 68 2 + 2 68 = 2 3 +

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

1 Column Generation and the Cutting Stock Problem

1 Column Generation and the Cutting Stock Problem 1 Column Generation and the Cutting Stock Problem In the linear programming approach to the traveling salesman problem we used the cutting plane approach. The cutting plane approach is appropriate when

More information

On a correlation inequality of Farr

On a correlation inequality of Farr On a correlation inequality of Farr Colin McDiarmid, Department of Statistics Oxford University Abstract Suppose that each vertex of a graph independently chooses a colour uniformly from the set {1,...,

More information

Closing the duality gap in linear vector optimization

Closing the duality gap in linear vector optimization Closing the duality gap in linear vector optimization Andreas H. Hamel Frank Heyde Andreas Löhne Christiane Tammer Kristin Winkler Abstract Using a set-valued dual cost function we give a new approach

More information

On the knapsack closure of 0-1 Integer Linear Programs

On the knapsack closure of 0-1 Integer Linear Programs On the knapsack closure of 0-1 Integer Linear Programs Matteo Fischetti 1 Dipartimento di Ingegneria dell Informazione University of Padova Padova, Italy Andrea Lodi 2 Dipartimento di Elettronica, Informatica

More information

A CONSTRUCTION OF ARITHMETIC PROGRESSION-FREE SEQUENCES AND ITS ANALYSIS

A CONSTRUCTION OF ARITHMETIC PROGRESSION-FREE SEQUENCES AND ITS ANALYSIS A CONSTRUCTION OF ARITHMETIC PROGRESSION-FREE SEQUENCES AND ITS ANALYSIS BRIAN L MILLER & CHRIS MONICO TEXAS TECH UNIVERSITY Abstract We describe a particular greedy construction of an arithmetic progression-free

More information

Closing the Duality Gap in Linear Vector Optimization

Closing the Duality Gap in Linear Vector Optimization Journal of Convex Analysis Volume 11 (2004), No. 1, 163 178 Received July 4, 2003 Closing the Duality Gap in Linear Vector Optimization Andreas H. Hamel Martin-Luther-University Halle-Wittenberg, Department

More information

α-recursion Theory and Ordinal Computability

α-recursion Theory and Ordinal Computability α-recursion Theory and Ordinal Computability by Peter Koepke University of Bonn 1 3. 2. 2007 Abstract Motivated by a talk of S. D. Friedman at BIWOC we show that the α-recursive and α-recursively enumerable

More information

LOWER BOUNDS FOR THE MAXIMUM NUMBER OF SOLUTIONS GENERATED BY THE SIMPLEX METHOD

LOWER BOUNDS FOR THE MAXIMUM NUMBER OF SOLUTIONS GENERATED BY THE SIMPLEX METHOD Journal of the Operations Research Society of Japan Vol 54, No 4, December 2011, pp 191 200 c The Operations Research Society of Japan LOWER BOUNDS FOR THE MAXIMUM NUMBER OF SOLUTIONS GENERATED BY THE

More information

AN OPERATOR THEORETIC APPROACH TO DEGENERATED NEVANLINNA-PICK INTERPOLATION

AN OPERATOR THEORETIC APPROACH TO DEGENERATED NEVANLINNA-PICK INTERPOLATION 1 AN OPERATOR THEORETIC APPROACH TO DEGENERATED NEVANLINNA-PICK 1 Introduction INTERPOLATION Harald Woracek Institut für Technische Mathematik Technische Universität Wien A-1040 Wien, Austria In this paper

More information

On a Theorem of Dedekind

On a Theorem of Dedekind On a Theorem of Dedekind Sudesh K. Khanduja, Munish Kumar Department of Mathematics, Panjab University, Chandigarh-160014, India. E-mail: skhand@pu.ac.in, msingla79@yahoo.com Abstract Let K = Q(θ) be an

More information

VALUATIONS ON COMPOSITION ALGEBRAS

VALUATIONS ON COMPOSITION ALGEBRAS 1 VALUATIONS ON COMPOSITION ALGEBRAS Holger P. Petersson Fachbereich Mathematik und Informatik FernUniversität Lützowstraße 15 D-5800 Hagen 1 Bundesrepublik Deutschland Abstract Necessary and sufficient

More information

BOUNDS FOR THE NAKAMURA NUMBER

BOUNDS FOR THE NAKAMURA NUMBER BOUNDS FOR THE NAKAMURA NUMBER JOSEP FREIXAS AND SASCHA KURZ ABSTRACT. The Nakamura number is an appropriate invariant of a simple game to study the existence of social equilibria and the possibility of

More information

arxiv:math.pr/ v1 17 May 2004

arxiv:math.pr/ v1 17 May 2004 Probabilistic Analysis for Randomized Game Tree Evaluation Tämur Ali Khan and Ralph Neininger arxiv:math.pr/0405322 v1 17 May 2004 ABSTRACT: We give a probabilistic analysis for the randomized game tree

More information

3.7 Cutting plane methods

3.7 Cutting plane methods 3.7 Cutting plane methods Generic ILP problem min{ c t x : x X = {x Z n + : Ax b} } with m n matrix A and n 1 vector b of rationals. According to Meyer s theorem: There exists an ideal formulation: conv(x

More information

Integer Linear Programming Models for 2-staged Two-Dimensional Knapsack Problems. Andrea Lodi, Michele Monaci

Integer Linear Programming Models for 2-staged Two-Dimensional Knapsack Problems. Andrea Lodi, Michele Monaci Integer Linear Programming Models for 2-staged Two-Dimensional Knapsack Problems Andrea Lodi, Michele Monaci Dipartimento di Elettronica, Informatica e Sistemistica, University of Bologna Viale Risorgimento,

More information

Combinatorial Algorithms for Minimizing the Weighted Sum of Completion Times on a Single Machine

Combinatorial Algorithms for Minimizing the Weighted Sum of Completion Times on a Single Machine Combinatorial Algorithms for Minimizing the Weighted Sum of Completion Times on a Single Machine James M. Davis 1, Rajiv Gandhi, and Vijay Kothari 1 Department of Computer Science, Rutgers University-Camden,

More information

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra LP Duality: outline I Motivation and definition of a dual LP I Weak duality I Separating hyperplane theorem and theorems of the alternatives I Strong duality and complementary slackness I Using duality

More information

Lagrange Relaxation: Introduction and Applications

Lagrange Relaxation: Introduction and Applications 1 / 23 Lagrange Relaxation: Introduction and Applications Operations Research Anthony Papavasiliou 2 / 23 Contents 1 Context 2 Applications Application in Stochastic Programming Unit Commitment 3 / 23

More information

AN ELEMENTARY PROOF OF THE GROUP LAW FOR ELLIPTIC CURVES

AN ELEMENTARY PROOF OF THE GROUP LAW FOR ELLIPTIC CURVES AN ELEMENTARY PROOF OF THE GROUP LAW FOR ELLIPTIC CURVES Abstract. We give a proof of the group law for elliptic curves using explicit formulas. 1. Introduction In the following K will denote an algebraically

More information

Uncertain Risk Analysis and Uncertain Reliability Analysis

Uncertain Risk Analysis and Uncertain Reliability Analysis Journal of Uncertain Systems Vol.4, No.3, pp.63-70, 200 Online at: www.jus.org.uk Uncertain Risk Analysis and Uncertain Reliability Analysis Baoding Liu Uncertainty Theory Laboratory Department of Mathematical

More information

Improving Branch-And-Price Algorithms For Solving One Dimensional Cutting Stock Problem

Improving Branch-And-Price Algorithms For Solving One Dimensional Cutting Stock Problem Improving Branch-And-Price Algorithms For Solving One Dimensional Cutting Stock Problem M. Tech. Dissertation Submitted in partial fulfillment of the requirements for the degree of Master of Technology

More information

Lecture 5. Theorems of Alternatives and Self-Dual Embedding

Lecture 5. Theorems of Alternatives and Self-Dual Embedding IE 8534 1 Lecture 5. Theorems of Alternatives and Self-Dual Embedding IE 8534 2 A system of linear equations may not have a solution. It is well known that either Ax = c has a solution, or A T y = 0, c

More information

We want to show P (n) is true for all integers

We want to show P (n) is true for all integers Generalized Induction Proof: Let P (n) be the proposition 1 + 2 + 2 2 + + 2 n = 2 n+1 1. We want to show P (n) is true for all integers n 0. Generalized Induction Example: Use generalized induction to

More information

Column Generation. ORLAB - Operations Research Laboratory. Stefano Gualandi. June 14, Politecnico di Milano, Italy

Column Generation. ORLAB - Operations Research Laboratory. Stefano Gualandi. June 14, Politecnico di Milano, Italy ORLAB - Operations Research Laboratory Politecnico di Milano, Italy June 14, 2011 Cutting Stock Problem (from wikipedia) Imagine that you work in a paper mill and you have a number of rolls of paper of

More information

A p-median Model for Assortment and Trim Loss Minimization with an Application to the Glass Industry

A p-median Model for Assortment and Trim Loss Minimization with an Application to the Glass Industry A p-median Model for Assortment and Trim Loss Minimization with an Application to the Glass Industry Claudio Arbib, Fabrizio Marinelli Dipartimento di Informatica, Università degli Studi di L Aquila, via

More information

A computational study of Gomory cut generators

A computational study of Gomory cut generators A computational study of Gomory cut generators Gerard Cornuéjols 1, François Margot 1, Giacomo Nannicini 2 1. CMU Tepper School of Business, Pittsburgh, PA. 2. Singapore University of Technology and Design,

More information

Acta Acad. Paed. Agriensis, Sectio Mathematicae 28 (2001) THE LIE AUGMENTATION TERMINALS OF GROUPS. Bertalan Király (Eger, Hungary)

Acta Acad. Paed. Agriensis, Sectio Mathematicae 28 (2001) THE LIE AUGMENTATION TERMINALS OF GROUPS. Bertalan Király (Eger, Hungary) Acta Acad. Paed. Agriensis, Sectio Mathematicae 28 (2001) 93 97 THE LIE AUGMENTATION TERMINALS OF GROUPS Bertalan Király (Eger, Hungary) Abstract. In this paper we give necessary and sufficient conditions

More information

Description of 2-integer continuous knapsack polyhedra

Description of 2-integer continuous knapsack polyhedra Discrete Optimization 3 (006) 95 0 www.elsevier.com/locate/disopt Description of -integer continuous knapsack polyhedra A. Agra a,, M. Constantino b a Department of Mathematics and CEOC, University of

More information

Matchings in hypergraphs of large minimum degree

Matchings in hypergraphs of large minimum degree Matchings in hypergraphs of large minimum degree Daniela Kühn Deryk Osthus Abstract It is well known that every bipartite graph with vertex classes of size n whose minimum degree is at least n/2 contains

More information

The Dual Simplex Algorithm

The Dual Simplex Algorithm p. 1 The Dual Simplex Algorithm Primal optimal (dual feasible) and primal feasible (dual optimal) bases The dual simplex tableau, dual optimality and the dual pivot rules Classical applications of linear

More information

Linear Programming: Simplex

Linear Programming: Simplex Linear Programming: Simplex Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Linear Programming: Simplex IMA, August 2016

More information

The Value function of a Mixed-Integer Linear Program with a Single Constraint

The Value function of a Mixed-Integer Linear Program with a Single Constraint The Value Function of a Mixed Integer Linear Programs with a Single Constraint MENAL GUZELSOY TED RALPHS ISE Department COR@L Lab Lehigh University tkralphs@lehigh.edu University of Wisconsin February

More information

Introduction to optimization

Introduction to optimization Introduction to optimization Geir Dahl CMA, Dept. of Mathematics and Dept. of Informatics University of Oslo 1 / 24 The plan 1. The basic concepts 2. Some useful tools (linear programming = linear optimization)

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

COMPLETE PADOVAN SEQUENCES IN FINITE FIELDS. JUAN B. GIL Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601

COMPLETE PADOVAN SEQUENCES IN FINITE FIELDS. JUAN B. GIL Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601 COMPLETE PADOVAN SEQUENCES IN FINITE FIELDS JUAN B. GIL Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601 MICHAEL D. WEINER Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601 CATALIN ZARA

More information

AM 121: Intro to Optimization! Models and Methods! Fall 2018!

AM 121: Intro to Optimization! Models and Methods! Fall 2018! AM 121: Intro to Optimization Models and Methods Fall 2018 Lecture 15: Cutting plane methods Yiling Chen SEAS Lesson Plan Cut generation and the separation problem Cutting plane methods Chvatal-Gomory

More information

CS261: Problem Set #3

CS261: Problem Set #3 CS261: Problem Set #3 Due by 11:59 PM on Tuesday, February 23, 2016 Instructions: (1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. (2) Submission instructions:

More information

The Influence of Minimal Subgroups on the Structure of Finite Groups 1

The Influence of Minimal Subgroups on the Structure of Finite Groups 1 Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 14, 675-683 The Influence of Minimal Subgroups on the Structure of Finite Groups 1 Honggao Zhang 1, Jianhong Huang 1,2 and Yufeng Liu 3 1. Department

More information

Discrete (and Continuous) Optimization WI4 131

Discrete (and Continuous) Optimization WI4 131 Discrete (and Continuous) Optimization WI4 131 Kees Roos Technische Universiteit Delft Faculteit Electrotechniek, Wiskunde en Informatica Afdeling Informatie, Systemen en Algoritmiek e-mail: C.Roos@ewi.tudelft.nl

More information

Mathematical Formulas for Economists

Mathematical Formulas for Economists Mathematical Formulas for Economists Springer-Verlag Berlin Heidelberg GmbH Bernd Luderer. Volker Nollau Klaus Vetters Mathematical Formulas for Economists With 58 Figures and 6 Tables, Springer Professor

More information

A Weil bound free proof of Schur s conjecture

A Weil bound free proof of Schur s conjecture A Weil bound free proof of Schur s conjecture Peter Müller Department of Mathematics University of Florida Gainesville, FL 32611 E-mail: pfm@math.ufl.edu Abstract Let f be a polynomial with coefficients

More information

21 Induction. Tom Lewis. Fall Term Tom Lewis () 21 Induction Fall Term / 14

21 Induction. Tom Lewis. Fall Term Tom Lewis () 21 Induction Fall Term / 14 21 Induction Tom Lewis Fall Term 2010 Tom Lewis () 21 Induction Fall Term 2010 1 / 14 Outline 1 The method of induction 2 Strong mathematical induction Tom Lewis () 21 Induction Fall Term 2010 2 / 14 Pessimists

More information

An example for the L A TEX package ORiONeng.sty

An example for the L A TEX package ORiONeng.sty Operations Research Society of South Africa Submitted for publication in ORiON Operasionele Navorsingsvereniging van Suid-Afrika An example for the L A TEX package ORiONeng.sty Authors identities suppressed:

More information

DUALITY AND INTEGER PROGRAMMING. Jean B. LASSERRE

DUALITY AND INTEGER PROGRAMMING. Jean B. LASSERRE LABORATOIRE d ANALYSE et d ARCHITECTURE des SYSTEMES DUALITY AND INTEGER PROGRAMMING Jean B. LASSERRE 1 Current solvers (CPLEX, XPRESS-MP) are rather efficient and can solve many large size problems with

More information

The Strength of Multi-row Aggregation Cuts for Sign-pattern Integer Programs

The Strength of Multi-row Aggregation Cuts for Sign-pattern Integer Programs The Strength of Multi-row Aggregation Cuts for Sign-pattern Integer Programs Santanu S. Dey 1, Andres Iroume 1, and Guanyi Wang 1 1 School of Industrial and Systems Engineering, Georgia Institute of Technology

More information

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers Optimization for Communications and Networks Poompat Saengudomlert Session 4 Duality and Lagrange Multipliers P Saengudomlert (2015) Optimization Session 4 1 / 14 24 Dual Problems Consider a primal convex

More information

ABSOLUTE VALUES AND VALUATIONS

ABSOLUTE VALUES AND VALUATIONS ABSOLUTE VALUES AND VALUATIONS YIFAN WU, wuyifan@umich.edu Abstract. We introduce the basis notions, properties and results of absolute values, valuations, discrete valuation rings and higher unit groups.

More information

RUUD PELLIKAAN, HENNING STICHTENOTH, AND FERNANDO TORRES

RUUD PELLIKAAN, HENNING STICHTENOTH, AND FERNANDO TORRES Appeared in: Finite Fields and their Applications, vol. 4, pp. 38-392, 998. WEIERSTRASS SEMIGROUPS IN AN ASYMPTOTICALLY GOOD TOWER OF FUNCTION FIELDS RUUD PELLIKAAN, HENNING STICHTENOTH, AND FERNANDO TORRES

More information

arxiv: v1 [math.oc] 21 Mar 2015

arxiv: v1 [math.oc] 21 Mar 2015 Convex KKM maps, monotone operators and Minty variational inequalities arxiv:1503.06363v1 [math.oc] 21 Mar 2015 Marc Lassonde Université des Antilles, 97159 Pointe à Pitre, France E-mail: marc.lassonde@univ-ag.fr

More information

arxiv: v1 [math.oc] 3 Jan 2019

arxiv: v1 [math.oc] 3 Jan 2019 The Product Knapsack Problem: Approximation and Complexity arxiv:1901.00695v1 [math.oc] 3 Jan 2019 Ulrich Pferschy a, Joachim Schauer a, Clemens Thielen b a Department of Statistics and Operations Research,

More information

Technische Universität Dresden Institute of Numerical Mathematics

Technische Universität Dresden Institute of Numerical Mathematics Technische Universität Dresden Institute of Numerical Mathematics An Improved Flow-based Formulation and Reduction Principles for the Minimum Connectivity Inference Problem Muhammad Abid Dar Andreas Fischer

More information

LEGENDRE S THEOREM, LEGRANGE S DESCENT

LEGENDRE S THEOREM, LEGRANGE S DESCENT LEGENDRE S THEOREM, LEGRANGE S DESCENT SUPPLEMENT FOR MATH 370: NUMBER THEORY Abstract. Legendre gave simple necessary and sufficient conditions for the solvablility of the diophantine equation ax 2 +

More information

CAYLEY-BACHARACH AND EVALUATION CODES ON COMPLETE INTERSECTIONS

CAYLEY-BACHARACH AND EVALUATION CODES ON COMPLETE INTERSECTIONS CAYLEY-BACHARACH AND EVALUATION CODES ON COMPLETE INTERSECTIONS LEAH GOLD, JOHN LITTLE, AND HAL SCHENCK Abstract. In [9], J. Hansen uses cohomological methods to find a lower bound for the minimum distance

More information

Multicommodity Flows and Column Generation

Multicommodity Flows and Column Generation Lecture Notes Multicommodity Flows and Column Generation Marc Pfetsch Zuse Institute Berlin pfetsch@zib.de last change: 2/8/2006 Technische Universität Berlin Fakultät II, Institut für Mathematik WS 2006/07

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.85J / 8.5J Advanced Algorithms Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.5/6.85 Advanced Algorithms

More information

16.1 Min-Cut as an LP

16.1 Min-Cut as an LP 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: LPs as Metrics: Min Cut and Multiway Cut Date: 4//5 Scribe: Gabriel Kaptchuk 6. Min-Cut as an LP We recall the basic definition

More information

Algorithmic Game Theory and Applications. Lecture 7: The LP Duality Theorem

Algorithmic Game Theory and Applications. Lecture 7: The LP Duality Theorem Algorithmic Game Theory and Applications Lecture 7: The LP Duality Theorem Kousha Etessami recall LP s in Primal Form 1 Maximize c 1 x 1 + c 2 x 2 +... + c n x n a 1,1 x 1 + a 1,2 x 2 +... + a 1,n x n

More information

On the knapsack closure of 0-1 Integer Linear Programs. Matteo Fischetti University of Padova, Italy

On the knapsack closure of 0-1 Integer Linear Programs. Matteo Fischetti University of Padova, Italy On the knapsack closure of 0-1 Integer Linear Programs Matteo Fischetti University of Padova, Italy matteo.fischetti@unipd.it Andrea Lodi University of Bologna, Italy alodi@deis.unibo.it Aussois, January

More information

On the number of diamonds in the subgroup lattice of a finite abelian group

On the number of diamonds in the subgroup lattice of a finite abelian group DOI: 10.1515/auom-2016-0037 An. Şt. Univ. Ovidius Constanţa Vol. 24(2),2016, 205 215 On the number of diamonds in the subgroup lattice of a finite abelian group Dan Gregorian Fodor and Marius Tărnăuceanu

More information

NUMBERS WITH INTEGER COMPLEXITY CLOSE TO THE LOWER BOUND

NUMBERS WITH INTEGER COMPLEXITY CLOSE TO THE LOWER BOUND #A1 INTEGERS 12A (2012): John Selfridge Memorial Issue NUMBERS WITH INTEGER COMPLEXITY CLOSE TO THE LOWER BOUND Harry Altman Department of Mathematics, University of Michigan, Ann Arbor, Michigan haltman@umich.edu

More information

Finding Optimal Minors of Valuated Bimatroids

Finding Optimal Minors of Valuated Bimatroids Finding Optimal Minors of Valuated Bimatroids Kazuo Murota Research Institute of Discrete Mathematics University of Bonn, Nassestrasse 2, 53113 Bonn, Germany September 1994; Revised: Nov. 1994, Jan. 1995

More information

Pascal s Triangle, Normal Rational Curves, and their Invariant Subspaces

Pascal s Triangle, Normal Rational Curves, and their Invariant Subspaces Europ J Combinatorics (2001) 22, 37 49 doi:101006/euc20000439 Available online at http://wwwidealibrarycom on Pascal s Triangle, Normal Rational Curves, and their Invariant Subspaces JOHANNES GMAINER Each

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2017 04 07 Lecture 8 Linear and integer optimization with applications

More information

A Generalized Uncertainty Principle and Sparse Representation in Pairs of Bases

A Generalized Uncertainty Principle and Sparse Representation in Pairs of Bases 2558 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 48, NO 9, SEPTEMBER 2002 A Generalized Uncertainty Principle Sparse Representation in Pairs of Bases Michael Elad Alfred M Bruckstein Abstract An elementary

More information

Duality of LPs and Applications

Duality of LPs and Applications Lecture 6 Duality of LPs and Applications Last lecture we introduced duality of linear programs. We saw how to form duals, and proved both the weak and strong duality theorems. In this lecture we will

More information

arxiv: v1 [math.ac] 28 Dec 2007

arxiv: v1 [math.ac] 28 Dec 2007 arxiv:0712.4329v1 [math.ac] 28 Dec 2007 On the value-semigroup of a simple complete ideal in a two-dimensional regular local ring S. Greco Politecnico di Torino Abstract K. Kiyek University of Paderborn

More information

arxiv: v1 [math.ag] 28 Sep 2016

arxiv: v1 [math.ag] 28 Sep 2016 LEFSCHETZ CLASSES ON PROJECTIVE VARIETIES JUNE HUH AND BOTONG WANG arxiv:1609.08808v1 [math.ag] 28 Sep 2016 ABSTRACT. The Lefschetz algebra L X of a smooth complex projective variety X is the subalgebra

More information