1D Nonlinear Numerical Methods

Size: px
Start display at page:

Download "1D Nonlinear Numerical Methods"

Transcription

1 1D Nonlinear Numerical Methods Page 1 1D Nonlinear Numerical Methods Reading Assignment Lecture Notes Pp Kramer DEEPSOIL.pdf 2001 Darendeli, Ch. 10 Other Materials DeepSoil User's Manual 2001 Darendeli Homework Assignment # Obtain the scaled Matahina Dam, New Zealand record from the course website and plot the following: (10 points) a. Plot the scaled acceleration time history b. Plot the scaled response spectrum Develop a soil profile for ground response analysis using soil properties for the I-15 project at 600 South Street (see attached) and the shear wave velocities found in SLC Vs profile.xls. (20 points) a. For sands, Darendeli, 2001 curves b. For silts, use Darendeli, 2001 with PI = 0 c. For clays, use Darendeli, 2001 curves with PI = 20 d. Treat layer 18 as a clay with PI = 20 and use Darendeli, 2001 curves e. Treat layer 19 as a sand and use Darendeli, 2001 curves f. For the bedrock velocity, use the velocity corresponding to the deepest Vs measurement in the soil profile with 2 percent damping Perform a site-specific, non-linear time domain ground response analysis for this soil profile using the pressure dependent hyperbolic model and Masing critera. Provide the following plots of the results: (15 points) a. Response spectrum summary b. Acceleration time histories for layer 1 c. pga profile Repeat problem 3 but perform a EQL analysis using the directions given in HW#3 problem 3. Plot a comparative plot of the response spectra using the spectrum from the nonlinear pressure dependent model (previous problem) versus the EQL pressure independent model (HW3 problem 4). (10 points). (SEE NEXT PG.)

2 1D Nonlinear Numerical Methods Page 2 Nonlinear Methods Homework Assignment #5 (cont.) 5. Modify the finite difference spreadsheet provided on the course website to include (20 points): a. Heterogeneous layers i. Varying thickness ii. Varying unit weight iii. Varying shear modulus b. Damping c. Given the information below, use the modified spreadsheet to perform a dynamic analysis for a duration of 2.0 s. Plot the response of the surface node versus time for verification: Layer # layer thickness unit weight Vs Damping (m) kn/m^3 (m/s) Poisson ratio = 0.35 v(t) = A cos( t + ) A = Verify your solution in 5 by performing an linear elastic analysis in DEEPSoil or FLAC for the same soil properties and velocity input (10 points).

3 1D Nonlinear Numerical Methods Page 3 Nonlinear Methods Homework Assignment #5 (cont.) 5. Solution (Excel) for uniform Vs = 80 m/s and 10 damping 6. Solution (FLAC)

4 1D Nonlinear Numerical Methods Page 4 Nonlinear Methods Homework Assignment #5 (cont.) 5. Solution (Excel) (first 5 time steps)

5 1D Nonlinear Numerical Methods Page 5 Comparison of 1D Equivalent Liner vs. 1D Nonlinear Methods EQL Method Nonlinear Methods

6 1D Nonlinear Numerical Methods Page 6 EQL vs NL Comparisons Target Spectrum for Comparisons

7 1D Nonlinear Numerical Methods Page 7 EQL vs NL Comparisons (cont.) EQL (Shake) Results at Surface from 5 km Convolution Nonlinear Results (DEEPSoil at Surface from 5 km Convolution

8 1D Nonlinear Numerical Methods Page 8 Lumped Mass System used in DeepSoil Fundamental Equation of Motion

9 1D Nonlinear Numerical Methods Page 9 DEEPSoil - Hyperbolic Model Modified Soil Hyperbolic Model used in DeepSoil

10 1D Nonlinear Numerical Methods Page 10 DEEPSoil (cont.) Introducing Pressure Dependency (Important for Deep Sediments)

11 1D Nonlinear Numerical Methods Page 11 DeepSoil (cont.) Incorporating Pressure Dependency in Damping [K] = stiffness matrix small strain viscous damping hysteretic damping incorporated by the hysteretic behavior of the soil

12 1D Nonlinear Numerical Methods Page 12 DEEPSoil (cont.) Pressure-dependent parameters b and d used to adjust curves in DEEPSoil. However, DARENDELI, 2001 has published newer curves based on confining pressure and PI. These are also incorporated in DEEPSoil.

13 1D Nonlinear Numerical Methods Page 13 Shear Modulus and Damping Curves from DARENDELI, 2001 As part of various research projects [including the SRS (Savannah River Site) Project AA EPRI (Electric Power Research Institute) Project and ROSRINE (Resolution of Site Response Issues from the Northridge Earthquake) Project], numerous geotechnical sites were drilled and sampled. Intact soil samples over a depth range of several hundred meters were recovered from 20 of these sites. These soil samples were tested in the laboratory at The University of Texas at Austin (UTA) to characterize the materials dynamically. The presence of a database accumulated from testing these intact specimens motivated a re-evaluation of empirical curves employed in the state of practice. The weaknesses of empirical curves reported in the literature were identified and the necessity of developing an improved set of empirical curves was recognized. This study focused on developing the empirical framework that can be used to generate normalized modulus reduction and material damping curves. This framework is composed of simple equations. which incorporate the key parameters that control nonlinear soil behavior. The data collected over the past decade at The University of Texas at Austin are statistically analyzed using First-order. Second-moment Bayesian Method (FSBM). The effects of various parameters (such as confining pressure and soil plasticity on dynamic soil properties are evaluated and quantified within this framework. One of the most important aspects of this study is estimating not only the mean values of the empirical curves but also estimating the uncertainty associated with these values. This study provides the opportunity to handle uncertainty in the empirical estimates of dynamic soil properties within the probabilistic seismic hazard analysis framework. A refinement in site-specific probabilistic seismic hazard assessment is expected to materialize in the near future by incorporating the results of this study into the state of practice.

14 1D Nonlinear Numerical Methods Page 14 Effects of Mean Effective Stress on Shear Modulus and Damping Curves DARENDELI, 2001

15 1D Nonlinear Numerical Methods Page 15 Effects of Mean Effective Stress on Shear Modulus and Damping Curves (cont.) Shearing Strain (%) σo' = 0.25 atm σo' = 1.0 atm σo' = 4.0 atm σo' = 16 atm 1.00E E E E E E E E E E E E E E E E Shearing Strain (%) σo' = 0.25 atm σo' = 1.0 atm σo' = 4.0 atm σo' = 16 atm 1.00E E E E E E E E E E E E E E E E DARENDELI, 2001

16 1D Nonlinear Numerical Methods Page 16 Effects of Mean Effective Stress on Shear Modulus and Damping Curves (cont.) Curve 1 Curve 2 Curve 1 - Sand Darendeli, 2001 v' (psf) = OCR = 1 Ko = 0.4 N = 10 F = 1 Hz Curve 2 - Sand Darendeli, 2001 v' (psf) = 576 OCR = 1 Ko = 0.4 N = 10 F = 1 Hz Curve 2 Curve 1 DEEPSoil V4.0

17 1D Nonlinear Numerical Methods Page 17 Effects of Plasticity on Shear Modulus and Damping Curves DARENDELI, 2001

18 1D Nonlinear Numerical Methods Page 18 Effects of Plasticity on Shear Modulus and Damping Curves (cont.) Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 % 1.00E E E E E E E E E E E E E E E E Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 % 1.00E E E E E E E E E E E E E E E E DARENDELI, 2001

19 1D Nonlinear Numerical Methods Page 19 Shear Modulus and Damping Curves ( ' = 0.25 atm) DARENDELI, 2001

20 1D Nonlinear Numerical Methods Page 20 Shear Modulus and Damping Curves ( ' = 0.25 atm) Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 % 1.00E E E E E E E E E E E E E E E E Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 % 1.00E E E E E E E E E E E E E E E E DARENDELI, 2001

21 1D Nonlinear Numerical Methods Page 21 Shear Modulus and Damping Curves ( ' = 1 atm) DARENDELI, 2001

22 1D Nonlinear Numerical Methods Page 22 Shear Modulus and Damping Curves ( ' = 1 atm) Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 % 1.00E E E E E E E E E E E E E E E E Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 % 1.00E E E E E E E E E E E E E E E E DARENDELI, 2001

23 1D Nonlinear Numerical Methods Page 23 Shear Modulus and Damping Curves ( ' = 4 atm) DARENDELI, 2001

24 1D Nonlinear Numerical Methods Page 24 Shear Modulus and Damping Curves ( ' = 4 atm) Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 % 1.00E E E E E E E E E E E E E E E E Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 % 1.00E E E E E E E E E E E E E E E E DARENDELI, 2001

25 1D Nonlinear Numerical Methods Page 25 Shear Modulus and Damping Curves ( ' = 16 atm) DARENDELI, 2001

26 1D Nonlinear Numerical Methods Page 26 Shear Modulus and Damping Curves ( ' = 16 atm) Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 % 1.00E E E E E E E E E E E E E E E E Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 % 1.00E E E E E E E E E E E E E E E E DARENDELI, 2001

27 1D Nonlinear Numerical Methods Page 27 Finite Difference Approach Wednesday, August 17, :45 PM Note that with this approach we can approximate the change of things that vary either in space or time, or both. In regards to time, we will use the forward differencing approach in formulating the finite difference approach.

28 1D Nonlinear Numerical Methods Page 28 Finite Difference Approach (cont.) Wednesday, August 17, :45 PM Finite difference calculation loop written with differential calculus

29 1D Nonlinear Numerical Methods Page 29 Finite Difference Approach (cont.) Finite difference calculation loop written with incremental approach

30 1D Nonlinear Numerical Methods Page 30 1D Finite Difference Solution for Wave Propagation Wednesday, August 17, :45 PM

31 1D Nonlinear Numerical Methods Page 31 1D Finite Difference Solution for Wave Propagation (cont.) Tuesday, March 04, :45 AM Steven F. Bartlett, 2014

32 1D Nonlinear Numerical Methods Page 32 1D Finite Difference Solution for Wave Propagation (cont.) Wednesday, August 17, :45 PM

33 1D Nonlinear Numerical Methods Page 33 1D Finite Difference Solution for Wave Propagation (cont.) Wednesday, March 05, :45 AM Steven F. Bartlett, 2014

34 1D Nonlinear Numerical Methods Page 34 1D Finite Difference Solution for Wave Propagation (cont.) Wednesday, August 17, :45 PM 1 Displacement of Top Node vs Time

35 1D Nonlinear Numerical Methods Page 35 1D Finite Difference Solution for Wave Propagation (cont.) Wednesday, August 17, :45 PM ;FLAC verification of solution without damping config dynamic extra 5 grid 1 10 model elastic ini y mul 1 ;set dy_damp rayl ; 5 percent damping at 5 hz fix y prop dens 2000 bulk 9.6E6 shear 3.2E6 def wave wave=amp*cos(omega*dytime) if dytime>=100 wave=0 endif end set amp=0.3 set omega = apply xvel 1 hist wave yvel=0 j=1 his 1 xdisp i 1 j 1 his 2 xdisp i 1 j 11 his 3 xvel i 1 j 1 his 4 dytime set dytime = 0 ;set dydt = ; Flac can calc automatically solve dytime 5.01 save model2.sav 'last project state'

36 1D Nonlinear Numerical Methods Page 36 Incorporating Damping Note that shear resistance has two components: elastic and damping.

37 1D Nonlinear Numerical Methods Page 37 Incorporating Damping (cont.) Stiffness due to viscous damping

38 1D Nonlinear Numerical Methods Page 38 Hysteretic Damping as Implemented in FLAC Background The equivalent-linear method (see Section 3.2) has been in use for many years to calculate the wave propagation (and response spectra) in soil and rock, at sites subjected to seismic excitation. The method does not capture directly any nonlinear effects because it assumes linearity during the solution process; strain-dependent modulus and damping functions are only taken into account in an average sense, in order to approximate some effects of nonlinearity (damping and material softening). Although fully nonlinear codes such as FLAC are capable in principle of modeling the correct physics, it has been difficult to convince designers and licensing authorities to accept fully nonlinear simulations. One reason is that the constitutive models available to FLAC are either too simple (e.g., an elastic/plastic model, which does not reproduce the continuous yielding seen in soils), or too complicated (e.g., the Wang model [Wang et al. 2001], which needs many parameters and a lengthy calibration process). Further, there is a need to accept directly the same degradation curves used by equivalent-linear methods (see Figure 3.23 for an example), to allow engineers to move easily from using these methods to using fully nonlinear methods.

39 1D Nonlinear Numerical Methods Page 39 Hysteretic Damping (cont.) Formulation Modulus degradation curves, as illustrated in Figure 3.23, imply a nonlinear stress/strain curve. If we assume an ideal soil, in which the stress depends only on the strain (not on the number of cycles, or time), we can derive an incremental constitutive relation from the degradation curve, described by τe/γ = Ms, where τe is the normalized shear stress, γ the shear strain and Ms the normalized secant modulus. τe = Msγ (elastic component) Mt = dτe / dγ = Ms + γ dms / dγ (elastic and viscous component) where Mt is the normalized tangent modulus. The incremental shear modulus in a nonlinear simulation is then given by G Mt, where G is the small-strain shear modulus of the material.

40 1D Nonlinear Numerical Methods Page 40 Hysteretic Damping (cont.) FLAC code for single zone model with hysteretic damping conf dyn ext 5 grid 1 1 model elas prop dens 1000 shear 5e8 bulk 10e8 fix x y set dydt 1e-4 ini dy_damp hyst default his sxy i 1 j 1 his xdis i 1 j 2 his nstep 1 ini xvel 1e-2 j=2 cyc 1000 ini xvel mul -1 cyc 250 ini xvel mul -1 cyc 500

41 1D Nonlinear Numerical Methods Page 41 Hysteretic Damping - Types of Tangent-Modulus Functions

42 1D Nonlinear Numerical Methods Page 42 Hysteretic Damping - Tangent-Modulus Functions (cont.) Default Model (cont)

43 1D Nonlinear Numerical Methods Page 43 Hysteretic Damping - Tangent-Modulus Functions (cont.)

44 1D Nonlinear Numerical Methods Page 44 Hysteretic Damping - Tangent-Modulus Functions (cont.)

45 1D Nonlinear Numerical Methods Page 45 Hysteretic Damping - Tangent-Modulus Functions (cont.)

46 1D Nonlinear Numerical Methods Page 46 Hysteretic Damping - Tangent-Modulus Functions (cont.)

47 1D Nonlinear Numerical Methods Page 47 Hysteretic Damping - Tangent-Modulus Functions (cont.) The parameters for the various tangent-modulus functions can be changed to fit or types of modulus reduction and damping data. To judge the fit of the function parameters to the experimental data, the following FLAC subroutine can be used. conf dy def setup givenshear = 1e8 ; shear modulus CycStrain = 0.01 ; cyclic strain (%) / 10 ;---- derived.. setvel = 0.1 * min(1.0,cycstrain/0.1) givenbulk = 2.0 * givenshear timestep = min(1e-4,1e-5 / CycStrain) nstep1 = int( / (timestep * 10.0)) nstep2 = nstep1 * 2 nstep3 = nstep1 + nstep2 nstep5 = nstep1 + 2 * nstep2 end setup ; gri 1 1 ;m mohr m elastic prop den 1000 sh givenshear bu givenbulk cohesion = 50e3 fix x y ini xvel setvel j=2 set dydt 1e-4 ini dy_damp hyst default ; hysteretic damping his sxy i 1 j 1 his xdis i 1 j 2 his nstep 1 cyc nstep1 ini xv mul -1 cyc nstep2 ini xv mul -1 cyc nstep2 his write 1 vs 2 tab 1

48 1D Nonlinear Numerical Methods Page 48 Hysteretic Damping - Tangent-Modulus Functions (cont.) def HLoop emax = 0.0 emin = 0.0 tmax = 0.0 tmin = 0.0 loop n (1,nstep5) emax = max(xtable(1,n),emax) emin = min(xtable(1,n),emin) tmax = max(ytable(1,n),tmax) tmin = min(ytable(1,n),tmin) endloop slope = ((tmax - tmin) / (emax - emin)) / givenshear oo = out(' strain = '+string(emax*100.0)+'% G/Gmax = '+string(slope)) Tbase = ytable(1,nstep3) Lsum = 0.0 loop n (nstep1,nstep3-1) meant = (ytable(1,n) + ytable(1,n+1)) / 2.0 Lsum = Lsum + (xtable(1,n)-xtable(1,n+1)) * (meant - Tbase) endloop Usum = 0.0 loop n (nstep3,nstep5-1) meant = (ytable(1,n) + ytable(1,n+1)) / 2.0 Usum = Usum + (xtable(1,n+1)-xtable(1,n)) * (meant - Tbase) endloop Wdiff = Usum - Lsum Senergy = 0.5 * xtable(1,nstep1) * ytable(1,nstep1) Drat = Wdiff / (Senergy * 4.0 * pi) oo = out(' damping ratio = '+string(drat*100.0)+'%') end HLoop save singleelement.sav 'last project state'

49 1D Nonlinear Numerical Methods Page 49 Rayleigh Damping

50 1D Nonlinear Numerical Methods Page 50 Rayleigh Damping (cont.)

51 1D Nonlinear Numerical Methods Page 51 Hysteretic vs Rayleigh Damping Comparison

52 1D Nonlinear Numerical Methods Page 52

53 1D Nonlinear Numerical Methods Page 53 Blank

54 1D Nonlinear Numerical Methods Page 54

55 1D Nonlinear Numerical Methods Page 55 Blank

56 1D Nonlinear Numerical Methods Page 56

57 1D Nonlinear Numerical Methods Page 57 Blank

CVEEN 7330 Modeling Exercise 2c

CVEEN 7330 Modeling Exercise 2c CVEEN 7330 Modeling Exercise 2c Table of Contents Table of Contents... 1 Objectives:... 2 FLAC Input:... 2 DEEPSOIL INPUTS:... 5 Required Outputs from FLAC:... 6 Required Output from DEEPSOIL:... 6 Additional

More information

1D Analysis - Simplified Methods

1D Analysis - Simplified Methods 1D Equivalent Linear Method Page 1 1D Analysis - Simplified Methods Monday, February 13, 2017 2:32 PM Reading Assignment Lecture Notes Pp. 255-275 Kramer (EQL method) p. 562 Kramer (Trigonometric Notation

More information

2D Embankment and Slope Analysis (Numerical)

2D Embankment and Slope Analysis (Numerical) 2D Embankment and Slope Analysis (Numerical) Page 1 2D Embankment and Slope Analysis (Numerical) Sunday, August 14, 2011 Reading Assignment Lecture Notes Other Materials FLAC Manual 1. 2. Homework Assignment

More information

1D Ground Response Analysis

1D Ground Response Analysis Lecture 8 - Ground Response Analyses Page 1 1D Ground Response Analysis 1. 2. 3. Dynamic behavior of soils is quite complex and requires models which characterize the important aspects of cyclic behavior,

More information

CVEEN Table of Contents

CVEEN Table of Contents CVEEN 7330 Table of Contents Table of Contents... 1 Objectives... 2 ackground... 2 Model Setup and Analysis Input... 2 Data for Interfaces... 5 Required Outputs from FLAC... 10 Required Calculations and

More information

CVEEN Table of Contents

CVEEN Table of Contents CVEEN 7330 Table of Contents Table of Contents... 1 Objectives:... 2 FLAC Input:... 3 Model Inputs... 3 Create Grid and Assign Properties... 4 Create Foundation... 4 Create Forcing Function... 4 Create

More information

Evaluation of 1-D Non-linear Site Response Analysis using a General Quadratic/Hyperbolic Strength-Controlled Constitutive Model

Evaluation of 1-D Non-linear Site Response Analysis using a General Quadratic/Hyperbolic Strength-Controlled Constitutive Model 6 th International Conference on Earthquake Geotechnical Engineering -4 November 25 Christchurch, New Zealand Evaluation of -D Non-linear Site Response Analysis using a General Quadratic/Hyperbolic Strength-Controlled

More information

Dynamic Analysis Contents - 1

Dynamic Analysis Contents - 1 Dynamic Analysis Contents - 1 TABLE OF CONTENTS 1 DYNAMIC ANALYSIS 1.1 Overview... 1-1 1.2 Relation to Equivalent-Linear Methods... 1-2 1.2.1 Characteristics of the Equivalent-Linear Method... 1-2 1.2.2

More information

USER S MANUAL 1D Seismic Site Response Analysis Example University of California: San Diego August 30, 2017

USER S MANUAL 1D Seismic Site Response Analysis Example   University of California: San Diego August 30, 2017 USER S MANUAL 1D Seismic Site Response Analysis Example http://www.soilquake.net/ucsdsoilmodels/ University of California: San Diego August 30, 2017 Table of Contents USER'S MANUAL TABLE OF CONTENTS Page

More information

USER S MANUAL. 1D Seismic Site Response Analysis Example. University of California: San Diego.

USER S MANUAL. 1D Seismic Site Response Analysis Example.  University of California: San Diego. USER S MANUAL 1D Seismic Site Response Analysis Example http://www.soilquake.net/ucsdsoilmodels/ University of California: San Diego August 2, 2017 Table of Contents USER'S MANUAL TABLE OF CONTENTS Page

More information

Design Spectra. Reading Assignment Course Information Lecture Notes Pp Kramer Appendix B7 Kramer

Design Spectra. Reading Assignment Course Information Lecture Notes Pp Kramer Appendix B7 Kramer Design Spectra Page 1 Design Spectra Reading Assignment Course Information Lecture Notes Pp. 73-75 Kramer Appendix B7 Kramer Other Materials Responsespectra.pdf (Chopra) ASCE 7-05.pdf Sakaria time history

More information

USER S MANUAL 1D Seismic Site Response Analysis Example University of California: San Diego August 30, 2017

USER S MANUAL 1D Seismic Site Response Analysis Example   University of California: San Diego August 30, 2017 USER S MANUAL 1D Seismic Site Response Analysis Example http://www.soilquake.net/ucsdsoilmodels/ University of California: San Diego August 30, 2017 Table of Contents USER'S MANUAL TABLE OF CONTENTS Page

More information

Recent Research on EPS Geofoam Seismic Buffers. Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada

Recent Research on EPS Geofoam Seismic Buffers. Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada Recent Research on EPS Geofoam Seismic Buffers Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada What is a wall (SEISMIC) buffer? A compressible inclusion placed between

More information

Earth Pressure Theory

Earth Pressure Theory Lateral Earth Pressure Page 1 Earth Pressure Theory Examples of Retaining Walls Lateral Earth Pressure Page 2 At-Rest, Active and Passive Earth Pressure Wednesday, August 17, 2011 12:45 PM At-rest condition

More information

Numerical Modeling in Geotechnical Engineering October 17,

Numerical Modeling in Geotechnical Engineering October 17, 1 Numerical Modeling in Geotechnical Engineering October 17, 18 2014 PRESENTED BY: Siavash Zamiran Ph.D. Student, Research and Teaching Assistant, Department of Civil Engineering, Southern Illinois University

More information

Some Recent Advances in (understanding) the Cyclic Behavior of Soils

Some Recent Advances in (understanding) the Cyclic Behavior of Soils 39 th SPRING SEMINAR and 19 th LA GEO EXPO American Society of Civil Engineers Geo-Institute, Los Angeles Section Wednesday April 13, 216 Queen Mary, Long Beach, CA 982 Invited lecture: Some Recent Advances

More information

SURFACE WAVE MODELLING USING SEISMIC GROUND RESPONSE ANALYSIS

SURFACE WAVE MODELLING USING SEISMIC GROUND RESPONSE ANALYSIS 43 SURFACE WAVE MODELLING USING SEISMIC GROUND RESPONSE ANALYSIS E John MARSH And Tam J LARKIN SUMMARY This paper presents a study of surface wave characteristics using a two dimensional nonlinear seismic

More information

Dynamic Analyses of an Earthfill Dam on Over-Consolidated Silt with Cyclic Strain Softening

Dynamic Analyses of an Earthfill Dam on Over-Consolidated Silt with Cyclic Strain Softening Keynote Lecture: Dynamic Analyses of an Earthfill Dam on Over-Consolidated Silt with Cyclic Strain Softening W.D. Liam Finn University of British Columbia, BC, Canada Guoxi Wu BC Hydro, Burnaby, BC, Canada

More information

A Visco-Elastic Model with Loading History Dependent Modulus and Damping for Seismic Response Analyses of Soils. Zhiliang Wang 1 and Fenggang Ma 2.

A Visco-Elastic Model with Loading History Dependent Modulus and Damping for Seismic Response Analyses of Soils. Zhiliang Wang 1 and Fenggang Ma 2. A Visco-Elastic Model with Loading History Dependent Modulus and Damping for Seismic Response Analyses of Soils Zhiliang Wang 1 and Fenggang Ma 2. 1 Senior Associate, AMEC Environment & Infrastructure,

More information

Determination of Excess Pore Pressure in Earth Dam after Earthquake

Determination of Excess Pore Pressure in Earth Dam after Earthquake ABSTRACT: Determination of Excess Pore Pressure in Earth Dam after Earthquake S.M. Nasrollahi Faculty of Islamic Azad University Qaenat Branch, Qaen, Iran. Email: s.m.nasrollahi@gmail.com Pore pressure

More information

Advanced Lateral Spread Modeling

Advanced Lateral Spread Modeling Adv. Liquefaction Modeling Page 1 Advanced Lateral Spread Modeling Reading Assignment Lecture Notes Other Materials Homework Assignment 1. Complete FLAC model 10a.pdf 2. Modify the example in FLAC model

More information

Dynamic effective stress analysis using the finite element approach

Dynamic effective stress analysis using the finite element approach 2017 2018 Lecture for CIVL 581 at University of BC by Dr. Guoxi Wu of BC Hydro / Wutec Geot. Dynamic effective stress analysis using the finite element approach for soils and soil-structure interactions

More information

A study on nonlinear dynamic properties of soils

A study on nonlinear dynamic properties of soils A study on nonlinear dynamic properties of soils * Chih-Hao Hsu ), Shuh-Gi Chern 2) and Howard Hwang 3) ), 2) Department of Harbor and River Engineering, NTOU, Taiwan ) willie2567@hotmail.com 3) Graduate

More information

Role of hysteretic damping in the earthquake response of ground

Role of hysteretic damping in the earthquake response of ground Earthquake Resistant Engineering Structures VIII 123 Role of hysteretic damping in the earthquake response of ground N. Yoshida Tohoku Gakuin University, Japan Abstract Parametric studies are carried out

More information

DYNAMIC RESPONSE APPROACH AND METHODOLOGY

DYNAMIC RESPONSE APPROACH AND METHODOLOGY DYNAMIC RESPONSE APPROACH AND METHODOLOGY Traditional seismic stability procedures vs coupled effective-stress approach. Traditional seismic stability procedures: Empirical and laboratory corrections and

More information

1 Slope Stability for a Cohesive and Frictional Soil

1 Slope Stability for a Cohesive and Frictional Soil Slope Stability for a Cohesive and Frictional Soil 1-1 1 Slope Stability for a Cohesive and Frictional Soil 1.1 Problem Statement A common problem encountered in engineering soil mechanics is the stability

More information

Unloading-Reloading Rule for Nonlinear Site Response Analysis

Unloading-Reloading Rule for Nonlinear Site Response Analysis 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 015 Christchurch, New Zealand Unloading-Reloading Rule for Nonlinear Site Response Analysis S. Yniesta 1, S. J. Brandenberg

More information

1 Slope Stability for a Cohesive and Frictional Soil

1 Slope Stability for a Cohesive and Frictional Soil Slope Stability for a Cohesive and Frictional Soil 1-1 1 Slope Stability for a Cohesive and Frictional Soil 1.1 Problem Statement A common problem encountered in engineering soil mechanics is the stability

More information

Dynamic Soil Pressures on Embedded Retaining Walls: Predictive Capacity Under Varying Loading Frequencies

Dynamic Soil Pressures on Embedded Retaining Walls: Predictive Capacity Under Varying Loading Frequencies 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Dynamic Soil Pressures on Embedded Retaining Walls: Predictive Capacity Under Varying Loading

More information

7 Uniaxial Compressive Strength of a Jointed Rock Sample

7 Uniaxial Compressive Strength of a Jointed Rock Sample Uniaxial Compressive Strength of a Jointed Rock Sample 7-1 7 Uniaxial Compressive Strength of a Jointed Rock Sample 7.1 Problem Statement The uniaxial compressive strength of a jointed rock sample is a

More information

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER Identification of Site Parameters that Improve Predictions of Site Amplification Ellen M. Rathje Sara Navidi Department of Civil, Architectural, and Environmental

More information

2D Liquefaction Analysis for Bridge Abutment

2D Liquefaction Analysis for Bridge Abutment D Liquefaction Analysis for Bridge Abutment Tutorial by Angel Francisco Martinez Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering

More information

Liquefaction: Additional issues. This presentation consists of two parts: Section 1

Liquefaction: Additional issues. This presentation consists of two parts: Section 1 Liquefaction: Additional issues Ahmed Elgamal This presentation consists of two parts: Section 1 Liquefaction of fine grained soils and cyclic softening in silts and clays Section 2 Empirical relationship

More information

Amplification of Seismic Motion at Deep Soil Sites

Amplification of Seismic Motion at Deep Soil Sites 20th International Conference on Structural Mechanics in Reactor Technology (SMiRT 20) Espoo, Finland, August 9-14, 2009 SMiRT 20-Division 5, Paper 1740 Amplification of Seismic Motion at Deep Soil Sites

More information

1 DYNAMIC ANALYSIS DYNAMIC ANALYSIS Overview

1 DYNAMIC ANALYSIS DYNAMIC ANALYSIS Overview DYNAMIC ANALYSIS 1-1 1 DYNAMIC ANALYSIS 1.1 Overview The dynamic analysis option permits two-dimensional, plane-strain, plane-stress or axisymmetric, fully dynamic analysis with FLAC. The calculation is

More information

A SIMPLIFIED METHOD FOR ESTIMATING SHEAR STRAINS FOR OVALING AND RACKING ANALYSIS OF TUNNELS

A SIMPLIFIED METHOD FOR ESTIMATING SHEAR STRAINS FOR OVALING AND RACKING ANALYSIS OF TUNNELS 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 27 Paper No. 1142 A SIMPLIFIED METHOD FOR ESTIMATING SHEAR STRAINS FOR OVALING AND RACKING ANALYSIS OF TUNNELS James R.

More information

QUAKE/W ProShake Comparison

QUAKE/W ProShake Comparison 1 Introduction QUAKE/W Comparison is a commercially available software product for doing one-dimensional ground response analyses. It was developed and is being maintained under the guidance of Professor

More information

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Jorge Castillo, Yong-Beom Lee Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting Inc., USA ABSTRACT

More information

Session 2: Triggering of Liquefaction

Session 2: Triggering of Liquefaction Session 2: Triggering of Liquefaction Plenary Speaker: Geoff Martin Professor Emeritus University of Southern California What are the primary deficiencies in the simplified method for evaluation of liquefaction

More information

Liquefaction - principles

Liquefaction - principles Liquefaction - principles Consider a box of dry sand, subjected to cycles of shear strain. On initial loading, sand usually compacts and then dilates. On unloading, the sand follows a similar path to loading,

More information

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION October 1-17,, Beijing, China DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION Mohammad M. Ahmadi 1 and Mahdi Ehsani 1 Assistant Professor, Dept. of Civil Engineering, Geotechnical Group,

More information

Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment

Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment Proc. of Second China-Japan Joint Symposium on Recent Development of Theory and Practice in Geotechnology, Hong Kong, China Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment J. C. Chai 1

More information

Module 3. DYNAMIC SOIL PROPERTIES (Lectures 10 to 16)

Module 3. DYNAMIC SOIL PROPERTIES (Lectures 10 to 16) Module 3 DYNAMIC SOIL PROPERTIES (Lectures 10 to 16) Lecture 15 Topics 3.6 STRESS-STRAIN BEHAVIOR OF CYCLICALLY LOADED SOILS 3.7 SOME BASIC ASPECTS OF PARTICULATE MATTER BEHAVIOR 3.8 EQUIVALENT LINEAR

More information

1-160 Dynamic Analysis

1-160 Dynamic Analysis 1-160 Dynamic Analysis 1.6 Example Application of a Seismic Analysis An example application of a nonlinear seismic analysis is presented in this section. The example illustrates several of the topics discussed

More information

Site Response Using Effective Stress Analysis

Site Response Using Effective Stress Analysis Site Response Using Effective Stress Analysis Faiz Makdisi, Zhi-Liang Wang, C.Y. Chang and J. Egan Geomatrix Consultants, Inc. Oakland, California 1 TRB 85 th Annual Meeting, January 22-26, 26, 2006, Washington,

More information

EVALUATION OF SITE CHARACTERISTICS IN LIQUEFIABLE SOILS

EVALUATION OF SITE CHARACTERISTICS IN LIQUEFIABLE SOILS 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 27 Paper No. 1651 EVALUATION OF SITE CHARACTERISTICS IN LIQUEFIABLE SOILS Konstantinos TREVLOPOULOS 1, Nikolaos KLIMIS 2

More information

Soil Properties - II

Soil Properties - II Soil Properties - II Amit Prashant Indian Institute of Technology andhinagar Short Course on eotechnical Aspects of Earthquake Engineering 04 08 March, 2013 Seismic Waves Earthquake Rock Near the ground

More information

SIMPLIFIED EQUIVALENT LINEAR AND NONLINEAR SITE RESPONSE ANALYSIS OF PARTIALLY SATURATED SOIL LAYERS

SIMPLIFIED EQUIVALENT LINEAR AND NONLINEAR SITE RESPONSE ANALYSIS OF PARTIALLY SATURATED SOIL LAYERS SIMPLIFIED EQUIVALENT LINEAR AND NONLINEAR SITE RESPONSE ANALYSIS OF PARTIALLY SATURATED SOIL LAYERS M. Mirshekari and M. Ghayoomi, Ph.D., A.M.ASCE Research Assistant, University of New Hampshire, Dept.

More information

Effects of Multi-directional Shaking in Nonlinear Site Response Analysis: Case Study of 2007 Niigata-ken Chuetsu-oki Earthquake

Effects of Multi-directional Shaking in Nonlinear Site Response Analysis: Case Study of 2007 Niigata-ken Chuetsu-oki Earthquake 6 th International Conference on Earthquake Geotechnical Engineering -4 November 205 Christchurch, New Zealand Effects of Multi-directional Shaking in Nonlinear Site Response Analysis: Case Study of 2007

More information

13 Plastic Flow in a Punch Problem

13 Plastic Flow in a Punch Problem Plastic Flow in a Punch Problem 13-1 13 Plastic Flow in a Punch Problem 13.1 Problem Statement Difficulties are sometimes reported in the modeling of plastic flow where large velocity gradients exist.

More information

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method E. Yıldız & A.F. Gürdil Temelsu International Engineering Services Inc., Ankara, Turkey SUMMARY: Time history analyses conducted

More information

Dynamics: Domain Reduction Method. Case study

Dynamics: Domain Reduction Method. Case study Dynamics: Domain Reduction Method. Case study Andrzej Truty c ZACE Services Ltd August 2016 1 / 87 Scope of the lecture Example of a building subject to the earthquake (using Domain Reduction Method (DRM))

More information

Visco-elasto-plastic Earthquake Shear Hysteretic Response of Geomaterials

Visco-elasto-plastic Earthquake Shear Hysteretic Response of Geomaterials Visco-elasto-plastic Earthquake Shear Hysteretic Response of Geomaterials Zamila Harichane Associate Professor Geomaterials laboratory, Civil Engineering Department, University of Chlef, Chlef 02000, Algeria

More information

COMBINED DETERMINISTIC-STOCHASTIC ANALYSIS OF LOCAL SITE RESPONSE

COMBINED DETERMINISTIC-STOCHASTIC ANALYSIS OF LOCAL SITE RESPONSE 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 2533 COMBINED DETERMINISTIC-STOCHASTIC ANALYSIS OF LOCAL SITE RESPONSE Ronaldo I. BORJA, 1 José E. ANDRADE,

More information

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS Transactions, SMiRT-24 ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS 1 Principal Engineer, MTR & Associates, USA INTRODUCTION Mansour Tabatabaie 1 Dynamic response

More information

Effective stress analysis of pile foundations in liquefiable soil

Effective stress analysis of pile foundations in liquefiable soil Effective stress analysis of pile foundations in liquefiable soil H. J. Bowen, M. Cubrinovski University of Canterbury, Christchurch, New Zealand. M. E. Jacka Tonkin and Taylor Ltd., Christchurch, New

More information

10 Slope Stability Analysis of a Rock Slope

10 Slope Stability Analysis of a Rock Slope Slope Stability Analysis of a Rock Slope 10-1 10 Slope Stability Analysis of a Rock Slope 10.1 Problem Statement Limit equilibrium methods are commonly used to evaluate the stability of slopes in rock

More information

CHAPTER 6: ASSESSMENT OF A COMPREHENSIVE METHOD FOR PREDICTING PERFORMANCE

CHAPTER 6: ASSESSMENT OF A COMPREHENSIVE METHOD FOR PREDICTING PERFORMANCE CHAPTER 6: ASSESSMENT OF A COMPREHENSIVE METHOD FOR PREDICTING PERFORMANCE 6.1 Overview The analytical results presented in Chapter 5 demonstrate the difficulty of predicting the performance of an improved

More information

3-D DYNAMIC ANALYSIS OF TAIYUAN FLY ASH DAM

3-D DYNAMIC ANALYSIS OF TAIYUAN FLY ASH DAM 3-D DYNAMIC ANALYSIS OF TAIYUAN FLY ASH DAM Jian ZHOU 1, Peijiang QI 2 And Yong CHI 3 SUMMARY In this paper, the seismic stability of Taiyuan Fly Ash Dam in China is studied by using 3-D dynamic effective

More information

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation Yong-Beom Lee, Jorge Castillo Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting

More information

Gapping effects on the lateral stiffness of piles in cohesive soil

Gapping effects on the lateral stiffness of piles in cohesive soil Gapping effects on the lateral stiffness of piles in cohesive soil Satyawan Pranjoto Engineering Geology, Auckland, New Zealand. M. J. Pender Department of Civil and Environmental Engineering, University

More information

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Module - 4 Lecture 21 Dynamic Soil, Properties Estimation of Gmax, Modulus Reduction Curves,

More information

Soil Behaviour in Earthquake Geotechnics

Soil Behaviour in Earthquake Geotechnics Soil Behaviour in Earthquake Geotechnics KENJI ISHIHARA Department of Civil Engineering Science University of Tokyo This publication was supported by a generous donation from the Daido Life Foundation

More information

Transactions on the Built Environment vol 3, 1993 WIT Press, ISSN

Transactions on the Built Environment vol 3, 1993 WIT Press,  ISSN Resonant column and cyclic triaxial testing of tailing dam material S.A. Savidis*, C. Vrettos", T. Richter^ "Technical University of Berlin, Geotechnical Engineering Institute, 1000 Berlin 12, Germany

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 3 6, University of California Santa Barbara ENHANCING SITE RESPONSE MODELING THROUGH DOWNHOLE ARRAY RECORDINGS

More information

Seismic Response of Floating Tunnel Shafts

Seismic Response of Floating Tunnel Shafts 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 215 Christchurch, New Zealand Seismic Response of Floating Tunnel Shafts J. M. Mayoral 1, N. Sarmiento 2 and E. Castañon

More information

Liquefaction Remediation

Liquefaction Remediation Liquefaction Remediation Page 1 Liquefaction Remediation Step 1 - Determine the required area replacement ratio, Ra, based on the pre-improvement factor of safety against liquefaction, FSpre, and the ratio

More information

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

SOIL-BASEMENT STRUCTURE INTERACTION ANALYSIS ON DYNAMIC LATERAL EARTH PRESSURE ON BASEMENT WALL

SOIL-BASEMENT STRUCTURE INTERACTION ANALYSIS ON DYNAMIC LATERAL EARTH PRESSURE ON BASEMENT WALL International Conference on Earthquake Engineering and Disaster Mitigation, Jakarta, April 1-15, SOIL-BASEMENT STRUCTURE INTERACTION ANALYSIS ON DYNAMIC LATERAL EARTH PRESSURE ON BASEMENT WALL Nurrachmad

More information

PRACTICAL THREE-DIMENSIONAL EFFECTIVE STRESS ANALYSIS CONSIDERING CYCLIC MOBILITY BEHAVIOR

PRACTICAL THREE-DIMENSIONAL EFFECTIVE STRESS ANALYSIS CONSIDERING CYCLIC MOBILITY BEHAVIOR PRACTICAL THREE-DIMENSIONAL EFFECTIVE STRESS ANALYSIS CONSIDERING CYCLIC MOBILITY BEHAVIOR Hiroyuki Yoshida 1, Kohji Tokimatsu 2, Tatsuya Sugiyama 3 and Tadahiko Shiomi 4 1 Member, Arch. & Struct. Eng.

More information

Numerical modeling of liquefaction effects: Development & initial applications of a sand plasticity model

Numerical modeling of liquefaction effects: Development & initial applications of a sand plasticity model 4 th IASPEI / IAEE International Symposium Santa Barbara, California, Aug 23-26, 2011 Numerical modeling of liquefaction effects: Development & initial applications of a sand plasticity model Ross W. Boulanger

More information

Influence of a sedimentary basin infilling description on the 2D P-SV wave propagation using linear and nonlinear constitutive models

Influence of a sedimentary basin infilling description on the 2D P-SV wave propagation using linear and nonlinear constitutive models Influence of a sedimentary basin infilling description on the 2D P-SV wave propagation using linear and nonlinear constitutive models C. Gélis IRSN, France L.F. Bonilla Université Paris Est - IFSTTAR,

More information

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil Appendix F Notation a b B C c C k C N C s C u C wt C θ D r D 1 D 2 D 10 D 30 Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus

More information

SEISMIC ANALYSIS OF AN EMBEDDED RETAINING STRUCTURE IN COARSE-GRAINED SOILS

SEISMIC ANALYSIS OF AN EMBEDDED RETAINING STRUCTURE IN COARSE-GRAINED SOILS 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 27 Paper No. 97 SEISMIC ANALYSIS OF AN EMBEDDED RETAINING STRUCTURE IN COARSE-GRAINED SOILS Luigi CALLISTO, Fabio M. SOCCODATO

More information

Estimation of Non-linear Seismic Site Effects for Deep Deposits of the Mississippi Embayment

Estimation of Non-linear Seismic Site Effects for Deep Deposits of the Mississippi Embayment Estimation of Non-linear Seismic Site Effects for Deep Deposits of the Mississippi Embayment Duhee Park, Ph.D. Post Doctoral Researcher Department of Civil & Environmental Engineering University of Illinois

More information

NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION

NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION IGC 2009, Guntur, INDIA NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION B. Manna Lecturer, Civil Engineering Department, National Institute of Technology, Rourkela 769008, India.

More information

UTILIZING NONLINEAR SEISMIC GROUND RESPONSE ANALYSIS PROCEDURES FOR TURKEY FLAT BLIND PREDICTIONS

UTILIZING NONLINEAR SEISMIC GROUND RESPONSE ANALYSIS PROCEDURES FOR TURKEY FLAT BLIND PREDICTIONS Third International Symposium on the Effects of Surface Geology on Seismic Motion Grenoble, France, 3 August - September 26 Paper Number: 5 UTILIZING NONLINEAR SEISMIC GROUND RESPONSE ANALYSIS PROCEDURES

More information

SEISMIC DEFORMATION ANALYSIS OF AN EARTH DAM - A COMPARISON STUDY BETWEEN EQUIVALENT-LINEAR AND NONLINEAR EFFECTIVE-STRESS APPROACHES

SEISMIC DEFORMATION ANALYSIS OF AN EARTH DAM - A COMPARISON STUDY BETWEEN EQUIVALENT-LINEAR AND NONLINEAR EFFECTIVE-STRESS APPROACHES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 3298 SEISMIC DEFORMATION ANALYSIS OF AN EARTH DAM - A COMPARISON STUDY BETWEEN EQUIVALENT-LINEAR AND NONLINEAR

More information

Sensitivity Analyses for Submarine Slopes under Seismic Loading

Sensitivity Analyses for Submarine Slopes under Seismic Loading Sensitivity Analyses for Submarine Slopes under Seismic Loading R. Rodríguez Ochoa University of Oslo / International Centre for Geohazards F. Nadim Norwegian Geotechnical Institute / International Centre

More information

Figure A7 22: Micrograph of PX (a) before and (b) after heat treatment to 50ºC

Figure A7 22: Micrograph of PX (a) before and (b) after heat treatment to 50ºC Figure A7 22: Micrograph of PX (a) before and (b) after heat treatment to 50ºC 293 Figure A7 23: Micrograph of PX after heat treatment to 100ºC and 140ºC 294 Figure A7 24: Micrograph of VTA (a) before

More information

Model Uncertainty and Analyst Qualification in Soil-Structure Interaction Analysis

Model Uncertainty and Analyst Qualification in Soil-Structure Interaction Analysis Laboratório de Dinâmica Estrutural e Confiabilidade Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil Model Uncertainty and Analyst Qualification in Soil-Structure Interaction Analysis Jorge

More information

Liquefaction Assessment using Site-Specific CSR

Liquefaction Assessment using Site-Specific CSR Liquefaction Assessment using Site-Specific CSR 1. Arup, Sydney 2. Arup Fellow, Adelaide M. M. L.SO 1, T. I. MOTE 1, & J. W. PAPPIN 2 E-Mail: minly.so@arup.com ABSTRACT: Liquefaction evaluation is often

More information

Two-Dimensional Site Effects for Dry Granular Soils

Two-Dimensional Site Effects for Dry Granular Soils 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Two-Dimensional Site Effects for Dry Granular Soils D. Asimaki 1 and S. Jeong 2 ABSTRACT

More information

EA (kn/m) EI (knm 2 /m) W (knm 3 /m) v Elastic Plate Sheet Pile

EA (kn/m) EI (knm 2 /m) W (knm 3 /m) v Elastic Plate Sheet Pile 1. Introduction Nowadays, the seismic verification of structures has dramatically evolved. Italy is surrounded many great earthquakes; hence it would be unwise to totally ignore the effects of earthquakes

More information

Numerical Modeling of Interface Between Soil and Pile to Account for Loss of Contact during Seismic Excitation

Numerical Modeling of Interface Between Soil and Pile to Account for Loss of Contact during Seismic Excitation Numerical Modeling of Interface Between Soil and Pile to Account for Loss of Contact during Seismic Excitation P. Sushma Ph D Scholar, Earthquake Engineering Research Center, IIIT Hyderabad, Gachbowli,

More information

Determination of Dynamic p-y Curves for Pile Foundations Under Seismic Loading

Determination of Dynamic p-y Curves for Pile Foundations Under Seismic Loading Determination of Dynamic p-y Curves for Pile Foundations Under Seismic Loading A. Rahmani, M. Taiebat, W.D. L. Finn, and C. E. Ventura Department of Civil Engineering, University of British Columbia, Vancouver,

More information

LIQUEFACTION ASSESSMENT BY THE ENERGY METHOD THROUGH CENTRIFUGE MODELING

LIQUEFACTION ASSESSMENT BY THE ENERGY METHOD THROUGH CENTRIFUGE MODELING LIQUEFACTION ASSESSMENT BY THE ENERGY METHOD THROUGH CENTRIFUGE MODELING Hesham M. Dief, Associate Professor, Civil Engineering Department, Zagazig University, Zagazig, Egypt J. Ludwig Figueroa, Professor

More information

Lab Practical - Discontinuum Analysis & Distinct Element Method

Lab Practical - Discontinuum Analysis & Distinct Element Method Lab Practical - Discontinuum Analysis & Distinct Element Method Part A The Basics The Universal Distinct Element Code (UDEC) is a two-dimensional numerical program based on the distinct element method

More information

15 Drained and Undrained Triaxial Compression Test on a Cam-Clay Sample

15 Drained and Undrained Triaxial Compression Test on a Cam-Clay Sample Drained and Undrained Triaxial Compression Test on a Cam-Clay Sample 15-1 15 Drained and Undrained Triaxial Compression Test on a Cam-Clay Sample 15.1 Problem Statement Conventional drained and undrained

More information

BEHAVIOR OF BUILDING FRAMES ON SOILS OF VARYING PLASTICITY INDEX

BEHAVIOR OF BUILDING FRAMES ON SOILS OF VARYING PLASTICITY INDEX International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 1, January 2017, pp. 623 627 Article ID: IJCIET_08_01_072 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=8&itype=1

More information

Recent Advances in Non-Linear Site Response Analysis

Recent Advances in Non-Linear Site Response Analysis Missouri University of Science and Technology Scholars' Mine International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics 1 - Fifth International Conference on

More information

Rock Mechanics and Seismology Laboratory

Rock Mechanics and Seismology Laboratory CAEE 211 Geology Laboratory 6 Lab Date: 29 July 2016 Rock Mechanics and Seismology Laboratory Due Date: 5 August 2016 Attendance (based on signing): 30 points Submitting Student Name: Members of laboratory

More information

GROUND MOTIONS AND SEISMIC STABILITY OF EMBANKMENT DAMS FAIZ I. MAKDISI AMEC, E&I, INC. OAKLAND, CA

GROUND MOTIONS AND SEISMIC STABILITY OF EMBANKMENT DAMS FAIZ I. MAKDISI AMEC, E&I, INC. OAKLAND, CA GROUND MOTIONS AND SEISMIC STABILITY OF EMBANKMENT DAMS FAIZ I. MAKDISI AMEC, E&I, INC. OAKLAND, CA BRIEF COMMENTS AND QUESTIONS Number of time histories (matched and or scaled) Use of Uniform hazard spectra

More information

A three-dimensional extension of the Ramberg-Osgood

A three-dimensional extension of the Ramberg-Osgood A three-dimensional extension of the Ramberg-Osgood model. Paper Comparison Title Line with 1 other formulations Chitas, P. Cenorgeo, Engenharia Geotécnica, Lda, Portugal J.A. Santos & I.F. Lopes Instituto

More information

PGroupN background theory

PGroupN background theory 12/12/03 Dr Francesco Basile, Geomarc Ltd PGroupN background theory Estimation of the deformations and load distributions in a group of piles generally requires the use of computer-based methods of analysis.

More information

DYNAMIC CENTRIFUGE TEST OF PILE FOUNDATION STRUCTURE PART ONE : BEHAVIOR OF FREE GROUND DURING EXTREME EARTHQUAKE CONDITIONS

DYNAMIC CENTRIFUGE TEST OF PILE FOUNDATION STRUCTURE PART ONE : BEHAVIOR OF FREE GROUND DURING EXTREME EARTHQUAKE CONDITIONS DYNAMIC CENTRIFUGE TEST OF PILE FOUNDATION STRUCTURE PART ONE : BEHAVIOR OF FREE GROUND DURING EXTREME EARTHQUAKE CONDITIONS Tsutomu NAMIKAWA 1, Katsuo TOGASHI 2, Satoru NAKAFUSA 3, Ryouichi BABASAKI 4

More information

EFFECT OF VARIOUS PARAMETERS ON DYNAMIC PROPERTIES OF BABOLSAR SAND BY CYCLIC SIMPLE SHEAR DEVICE

EFFECT OF VARIOUS PARAMETERS ON DYNAMIC PROPERTIES OF BABOLSAR SAND BY CYCLIC SIMPLE SHEAR DEVICE 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 27 Paper No. 274 EFFECT OF VARIOUS PARAMETERS ON DYNAMIC PROPERTIES OF BABOLSAR SAND BY CYCLIC SIMPLE SHEAR DEVICE Fardin

More information

A Study on Dynamic Properties of Cement-Stabilized Soils

A Study on Dynamic Properties of Cement-Stabilized Soils A Study on Dynamic Properties of Cement-Stabilized Soils Pei-Hsun Tsai, a and Sheng-Huoo Ni 2,b Department of Construction Engineering, Chaoyang University of Technology, 68 Jifong E. Rd., Wufong District,

More information

4 Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium

4 Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium 4-1 4 Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium 4.1 Problem Statement The stress and pore pressure changes due to the expansion

More information