Jet Final States in WW Pair Production and Colour Screening in the QCD Vacuum

Size: px
Start display at page:

Download "Jet Final States in WW Pair Production and Colour Screening in the QCD Vacuum"

Transcription

1 April 988 LU TP 88-4 Jet Final States in WW Pair Production and Colour Screening in the QCD Vacuum Gösta Gustafson, Ulf Pettersson Department of Theoretical Physics, University of Lund, Sölvegatan 4A, S Lund, Sweden and P.M. Zerwas* Inst. for Theor. Physics, RWTH Aachen, Aachen, W. Germany Abstract: Hadron distributions are analyzed for W pair production in e e colliders, e e - WW - qq'oq'. They are compared for independent WW fragmentation and quark exchange pairing where qq' and Qq' form (colour singlet) jets. These distributions can give essential information on the QCD vacuum and the confinement mechanism. * Supported in part by the W. German Bundesministerium fiir Forschung und Technologie.

2 Jet Final States in WW Pair Production 2 Since the first pioneering paper on jets in high energy e e annihilation [l], the description of jetty hadron final states in short-distance processes has steadily been improved. While the foraation of jets by bunches of high energy hadrons is well described in the basic independent jet fragmentation model [2], that helped establish gluon jets [3] as a cornerstone of QCD, more subtle effects like the distribution of low energy hadrons in the angular range between the quark and the gluon jets were predicted in the string picture [4] and experimentally confirmed subsequently [s]. This string picture is suggested, see e.g. [e], as an outgrowth of the non-perturbative domain of QCD that has recently received some support in lattice analyses of the shape [7] and the breaking [s] of flux tubes between quarks. The "string effect", a natural consequence of Lorentz boosts in this picture, has also been derived, however, in a perturbative approach as a consequence of coherence effects in soft gluon emission [9]. Hadrons are produced by the separation of the colour charges within a colour singlet system. In the perturbative approach this is described by the coherent emission fro* the charges in the colour singlet. However, in some cases colour singlets can be formed in different ways. A very important question is then over how large a distance the colour charges radiate gluons coherently. At some distance this coherence will be destroyed by the screening from the vacuum condensate. In the string picture hadrons are formed by breaking the string stretched between the colour charges. The corresponding problem is then at which distance between the colour charges the geometry of the string configuration is determined. If the QCD vacuum behaves like a superconductor thers are two possibilities [lo]. If it is like a type I superconductor the string should correspond to - flux tube, similar to an elongated bag, with a more or less homogenous colour electric field. The diameter of the flux tube should be of the order of fm (a typical hadron bag diameter) and we expect that the geometry of the fluxtube is determined only when the separation of the colour charges has reached this order of magnitude. However, if the vacuum is like a type II superconductor the string would correspond to a vortexline with a thin core which is surrounded by an exponentially falling electric field. The diameter of this field would be about fm, but the size of the core could be much smaller. In this case the geometry of the string would be determined already when the separation has reached the core size.

3 Jet Final States In WW Pair Production 3 In this note we will show that this problem can nicely be studied in the analysis of WW pair production in e e~ annihilation*. WW pairs that will be produced almost at rest in e e collisions at LEP2 [4], decay with a probability of into hadnn jets. The jets are initiated by two quark-antiquark pairs in the femto-universe at distances << fm. (the indices i,j -,2,3 running over the three quark colours). Each of the quark pairs qq' and QQ' is generated in a colour singlet state, suggesting the independent hadronization of both pairs. This procedure, followed in all analyses so far, is physically convincing when the W's are produced at high energies and decay well separated from each other. However, at LEP2 this separation is not very large, growing up to -. fm only when the total e e energy increases from threshold to 2 GeV. (Even at an energy of /2 Te" the flight distance remains less than /4 fm.) The separation in time between the two decays is also rather small with an average around. fm. When the W's decay close to each other, however, also the qö' and Qq' can pair to colour singlets and thus form two fragmenting systems. Solely based on the group structure the relative probability for this configuration is /9, where the terms dropped are octet qq and Qq' states in which t>.e colour forces between quarks and antiquarks are repulsive. However the hadronization mechanism can alter this probability and other results are also conceivable. If the vacuum is like a type II superconductor with a very thin core, then it could b«possible that the strings or the fragmenting singlet systems are fixed at distances even shorter than the W flight distances. In this case the * WW production in e e annihilation has several advantages over weak decays like B J/T+X [ll,2] from which some information can be extracted, (i) The initial state is free of colour fields whereas the b quark decays in the colour field of the spectator quark. (This problem is even more severe in charm decays that cannot be understood at all by r.aive colour counting arguments [l3]); (ii) The distance can be varied by varying the total e e cm energy and the opening angles between the quark pairs, whereas the naked current quarks in B decays are initially coupled at a fixed distance - "' fm. extending to - ~' fm by glon corrections.

4 Jet Final States in WW Pair Production 4 probability for the recoupled configurations would be suppressed. If the vortex core is larger or if the vacuum is like a type I superconductor, then the quarks would be allowed to exchange colour via soft gluons until their separation has leached a critical value, which may be of the order of fm. The probability for the recoupled configurations qq' and Qq' is then enhanced. It is possible that strings are formed more easily between nearest neighbours in phase space in order to minimize the potential energy* thus increasing the probability for the recoupled configuration*. The phenomenological consequences of the qq* and Qq' pairings are striking when the angles between the q and Q', etc.. are small, (i) Since the coloursinglet invariant masses are then much smaller than /s/2. the particle multiplicities will be reduced compared with the independent WW fragmentation picture, (ii) Energy and particle flow into the large angle segment of the event will almost be negligible, (iii) This is also reflected in the rapidity distribution with respect to the axis z cutting the small angle in two. He have analyzed these effects foe WW pair production near threshold more quantitatively by means of a Monte Carlo program [is], developed to describe hadron production in the e e» qq continuum. This program is based on a perturbative cascade formulated in terms of colour dipoles [l6] followed by string fragmentation [7]. The model reproduces well experimental data in the PETRA-PEP energy range. At \igher energies it gives a somewhat larger central multiplicity than programs based on other parton cascades (e.g. ref [l8]). However this difference is not essential for the conclusions in this analysis. * A similar situation occurs in the decay B * J/f+X via the process b * cw ccs. Without colour exchange the cs pair always forms a colour singlet while the cc pair forms a colour singlet (needed to build up a J/) with probability /9. The experimental branching ratio is about % [ll]. Theoretical estimates based on the assumption that colour can easily be exchanged by soft gluons, thus neglecting the suppression factor /9, tend to give larger values 3-5 % [l2]. On the other hand, some calculations which include this factor and also short distance QCD effects give.3-.5 %, i.e. even less than the experimental vali_e. Thus we conclude that at these small initial distances recoupling is possible and that its probability seems to be somewhat larger than (but still compatible with) the "natural" estimate above. However it is not as large as it would be if colour could be freely exchanged by soft

5 Jet Final States in WW Pair Production 5 Our results Cor the multiplicities and the particle flow and rapidity distributions are displayed in Tab. and Pig. 2. While the particle multiplicities are independent of the jet angles for independent WW fragmentation, very low multiplicity events are predicted for qq' pairings at small angle. For comparison, the multiplicity in the non WW, qq continuum final states is listed in the 3"* column. In Fig. 2, particle flows and rapidity distributions are compared, at an angle of 3 between the jets, for independent WW fragmentation and the competing qq' pairings. Note that In the case of qq' pairings the large angle segment between the jets is completely depleted from particles. Most remarkable are the differences in the rapidity distributions which are almost flat for independent WW fragmentation whereas they are strongly peaked for qq' pairings. These features all coincide with naive kinematical expectations for both cases. The differences in the distributions increase with decreasing angle, and they get washed out for large angles. Because we want to determine a small admixture of the recoupled pairings it is important that the difference between the two configurations is seen not only in the average but also on an event-by-event basis. To demonstrate this, the distribution in the number of particles within the rapidity range yj<2 for events with an opening angle of 3 between q and Q' is shown in Fig. 3. We note that the two event classes are very well separated. For smaller opening angles the separation is even larger. Our conclusions can be summarized in the following points. (i) Quark exchange pairing implies that final state distributions in WW» jets near threshold will differ from the naive expectations derived from independent WW fragmentation. Precision tests of W properties must ta<e this complication into consideration. (ii) Nonperturbative effects are likely to modify the probability resulting from mere colour counting for the quark exchange pairing, and the valje i? related to the colour screening length in the QCD vacuum condensate.

6 Jet Final States in WW Pair Production (iii) The difference between events originating from quark exchange pairing and "normal" events is large enough to allow a separation on an event by event basis. The possible variation of the different fractions with the total center of mass energy (i.e. with the separation of the W's) and with the angle between the jets will give important information about the QCD vacuum and the confinement phenomenon. Acknowledgement - P.Z. thanks B. Andersson for the ware hospitality extended to him during a stay at Lund University. We are grateful to B. Andersson, H. Bengtsson, J. Kiihn, L. Sehgal, T. Sjöstrand and T. Walsh for illuminating discussions.

7 Jet Final States In WW Pair Production 7 References. [l] G. Hanson et al., Phys. Rev. Lett. 5 (975) 69. [2] R.D. Field and R.P. Feynman, Nucl. Phys. B36 (978) ; P. Hoyer, P. Osland, H.G. Sanders, T.F. Walsh and P.M. Zerwas, Nucl. Phys. B6 (979) 349; A. Mi, E. Pietarinen, G. Kramer and J. WHlrodt, Phys. Lett. 93B (98) 55. [3] R. Brandelik et al., Phys. Lett. B6B (979) 243; O.P. Barber et al., Phys. Rev. Lett. 43 (979) 83; Ch. Berger et al., Phys. Lett. 86B (979) 48; W. Bartel et al., Phys. Lett. 2I (98) 42. [4] B. Andersson, G. Gustafson and C. Peterson, Z. Phys. Cl (979) 5; B. Andersson and G. Gustafson, Z. Phys. C3 (98) 223; B. Andersson, G. Gustafson and T. Sjöstrand, Phys. Lett. 2B (98) 2. [5] H. Bartel et al., Phys. Lett. B (98) 29. [6] L. Susskind, Int. Symposium on Lepton and Photon Interactions at High Energies, Hamburg, 977. [7] R. Sommer, Nucl. Phys. B29 (987) 673; J. Ambjoern, M. Flensburg, C. Peterson, Phys. Lett. 59B (985) 335; C. Michael, CERN-TH 4493/86. [s] E. Laermann, F. Langhammer, I. Schmitt and P.M. Zerwas, Phys. Lett. 73B (986) 437; H. Joos and I. Montvay, Nucl. Phys. B225 (983) 565; M. Campostini, K. Moriarty, J. Potvin and C. Rebbi, Phys. Lett. 93B (987) 78; M. Grady, D. Sinclair and J. Kogut, ANL-HEP-PR [9] Y. Azinov, Y. Dokshitzer, v. Khoze and S. Troyan, Coherence Effects in QCD Jets, Leningrad preprint 5 (985); Phys. Lett. 65B (985) 47; B.R. Webber, XVI Symposium on MuLtiparticle Dynamics, Xiryat Anaviffl, 985.

8 Jet Final States in HW Pair Production 8 [] See e.g. Parks: Superconductivity (Marcel Dekker, New York, 969); or P.G. de Gennes, Superconductivity of Metals and Alloys (W.A. Benjamin, New York Amsterdam, 966). [ll] P. Haas et al. (CLEO collaboration), Phys. Rev. Lett. 55 (985) 248; H. Albrecht et al. (ARGUS collaboration), Phys. Lett. 62B (985) 395; DESY preprint DESY 87- (987). [l2] H. Fritzsch, Phys. Lett. 86B (979) 64 and 86B (979) 343; J.H. Kiihn, S. Nussinov and R. Riickl, Z. Phys. C5 (98) 7; J.H. Kiihn and R. Riickl, Phys. Lett. 35B (984) 477; M.B. Wise, Phys. Lett. 89B (98) 229; T.A. DeGrand and D. Toussaint. Phys. Lett. 89B (98) 256; I. Bigi and A. Sanda, Nucl. Phys. B93 (98) 85; P. Cox et al.. Phys. Rev. D32 (985) 57: S.T. Jones and P.H. Cox, Phys. Rev. Bli (987) 64. [l3] N. Deshpande, M. Gronau and D. Sutherland, Phys. Lett. 9B (98) 43; M. Bauer, B. Stech and M. Winbel, Z. Phys. C34 (987) 3; D. Hitlin, Report CALT-6B-463 (897). [4] See e.g. P. Roudeau et al. and E. Longo et al., ECFA Workshop LEP2, Aachen, 985; P. Mättig and M. Dittmar, Z. Phys. CJ5. (987) 22. [5J G. Gustafson and U. Pettersson, Dipole Formulation of QCD cascades, LU TP addendum LU TP 87-9; U. Pettersson, ARIADNE - A Monte Carlo for QCD Cascades in the Colour Dipole Formulation, LU TP [l6] G. Gustafson, Phys. Lett. B75 (986) 453. [7] B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Phys. Rep. 9_7 (983) 3; T. Sjöstrand, Computer Phys. Comm. 2 (986) 347. [l8] T. Sjöstrand and M. Bengtsson, Nucl. Phys (987) 8; B.R. Webber, Nucl. Phys (984) -J92; T.D. Gottschalk. D. Morris CALT (986).

9 Jet Final States in WW Pair Production Table. Multiplicities in the fragmentation of WW + qq'qq' depending on the quai k pairings, and compared with continuum qq events, a denotes the angle between q and Q*. a Independent WW fragm. Quark exchange pairing qq continuum Figure captions.. Jets in e e > WW * qq'qq' near threshold; (a) independent WW fragmentation, (b) qq" and Qq' quark exchange pairing. 2. Particle flow and rapidity distribution (with respect to the thrust axis) for: (a) independent WW fragmentation, (b) quark exchange pairing and (c) qq continuum events. The angle between q and Q' is chosen to be Distribution in number of particles with rapidity y < 2 toe independent WW fragmentation (dashed line) and quark exchange pairings (solid line). The angle between q and Q' is 3. (a) ib) Fig

10 (a) C. J 45 i J v J 225 vv 27C : 6 (b) (c) Particle flow Fig. 2 Rapidity distribution No. of particles with 3 degrees FIG, 3-2<y<2

arxiv:hep-ex/ v2 2 Feb 2001

arxiv:hep-ex/ v2 2 Feb 2001 CR-459 hep-ex/00009 RECENT RESULTS ON PARTICLE PRODUCTION FROM J. H. VOSSEBELD CERN, CH - 2 Geneva 23, Switzerland E-mail: Joost.Vossebeld@cern.ch arxiv:hep-ex/00009v2 2 Feb 200 Three recent studies are

More information

Bose-Einstein and Colour Interference in W-pair Decays

Bose-Einstein and Colour Interference in W-pair Decays LU TP 97-32 November 1997 Bose-Einstein and Colour Interference in W-pair Decays Jari Häkkinen and Markus Ringnér 1 Department of Theoretical Physics, Lund University, Sölvegatan 14A, S-223 62 Lund, Sweden

More information

Soft Colour Exchanges and the Hadronic Final State 1 A. Edin a, G. Ingelman ab, J. Rathsman c

Soft Colour Exchanges and the Hadronic Final State 1 A. Edin a, G. Ingelman ab, J. Rathsman c TSL/ISV-99-0215 ISSN 0284-2769 August 1999 Soft Colour Exchanges and the Hadronic Final State 1 A. Edin a, G. Ingelman ab, J. Rathsman c a Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603

More information

Department of Theoretical Physics, University of Lund. Solvegatan 14A, S Lund, Sweden

Department of Theoretical Physics, University of Lund. Solvegatan 14A, S Lund, Sweden LU TP 92-29 December 1992 -polarization in e + e? -annihilation at the Z -pole Gosta Gustafson 1, Jari Hakkinen 2 Department of Theoretical Physics, University of Lund Solvegatan 1A, S-22362 Lund, Sweden

More information

arxiv:hep-ex/ v1 14 Sep 1999

arxiv:hep-ex/ v1 14 Sep 1999 ANL-HEP-CP-99-99 September, 1999 Short-Range and Long-Range Correlations in DIS at HERA 1 arxiv:hep-ex/99926v1 14 Sep 1999 S.V. Chekanov Argonne National Laboratory, 97 S.Cass Avenue, Argonne, IL 6439

More information

Colour Correlations and Multiplicities in Top Events

Colour Correlations and Multiplicities in Top Events CERN-TH.7199/94 DTP/94/18 Colour Correlations and Multiplicities in Top Events Valery A. Khoze Department of Physics, University of Durham Durham DH1 3LE, England and Torbjörn Sjöstrand Theory Division,

More information

arxiv:hep-ex/ v1 16 Jun 2004

arxiv:hep-ex/ v1 16 Jun 2004 Proceedings of the DIS 2004, Štrbské Pleso, Slovakia RECENT QCD RESULTS FROM OPAL arxiv:hep-ex/0406043v1 16 Jun 2004 MARINA GIUNTA Physics Department, University of California, Riverside, CA 92521, USA

More information

How can we understand the strong force?

How can we understand the strong force? How can we understand the strong force? Gösta Gustafson Department of Astronomy and Theoretical Physics Lund University Seminar 5 March 2014 How can we understand the strong force 1 Gösta Gustafson Lund

More information

Abstract: We describe briey a Monte Carlo implementation of the Linked Dipole

Abstract: We describe briey a Monte Carlo implementation of the Linked Dipole LU-TP 96-24 NORDITA 96/67-P October 1996 The LDC Event Generator 1 Gosta Gustafson a, Hamid Kharraziha a, Leif Lonnblad b a Dept. of Theoretical Physics, Solvegatan 14a, S-223 62 Lund, Sweden, gosta@thep.lu.se,

More information

Neutral Current Interference in the TeV Region; the Experimental Sensitivity at the LHC

Neutral Current Interference in the TeV Region; the Experimental Sensitivity at the LHC ETHZ-IPP PR-96-01 21 March, 1996 Neutral Current Interference in the TeV Region; the Experimental Sensitivity at the LHC Michael Dittmar Institute for Particle Physics (IPP), ETH Zürich, CH-8093 Zürich,

More information

PRODUCTION OF Q g2 STATES* Stanford Linear Accelerator Center Stanford University, Stanford, CA 94309

PRODUCTION OF Q g2 STATES* Stanford Linear Accelerator Center Stanford University, Stanford, CA 94309 SLAC-PUB-5007 June 1989 (T) PRODUCTON OF Q g2 STATES* BNG AN L** Stanford Linear Accelerator Center Stanford University, Stanford, CA 94309 ABSTRACT n this talk, the productions of Q2g2 states in two-photon

More information

QCD aspects of leptoquark production at HERA

QCD aspects of leptoquark production at HERA LU TP 97 04 March 1997 arxiv:hep-ph/970414v1 Apr 1997 QCD aspects of leptoquark production at HERA C. Friberg 1, E. Norrbin and T. Sjöstrand 3 Department of Theoretical Physics, Lund University, Lund,

More information

QCD results from LEP. new studies & puzzling results. Thorsten Wengler, CERN Moriond QCD 2004 La Thuile, Italy

QCD results from LEP. new studies & puzzling results. Thorsten Wengler, CERN Moriond QCD 2004 La Thuile, Italy QCD results from LEP new studies & puzzling results Unbiased gluon jets using the boost algorithm (OPAL) Coherence in soft particle production in 3-jets events (DELPHI) Pentaquark search (DELPHI) Thorsten

More information

A Test of QCD based on 4-Jet Events from Z Decays. The L3 Collaboration. Patricia L. McBride Harvard University, Cambridge MA, USA

A Test of QCD based on 4-Jet Events from Z Decays. The L3 Collaboration. Patricia L. McBride Harvard University, Cambridge MA, USA A Test of QCD based on 4-Jet Events from Z Decays The L3 Collaboration Patricia L. McBride Harvard University, Cambridge MA, USA ABSTRACT The measured angular correlations between jets in 4-jet events

More information

dσ/dx 1/σ tot TASSO 22 TPC/2γ 29 MKII 29 TASSO 35 CELLO 35 TASSO 43.7 AMY 55.2 DELPHI 91.2 ALEPH 91.

dσ/dx 1/σ tot TASSO 22 TPC/2γ 29 MKII 29 TASSO 35 CELLO 35 TASSO 43.7 AMY 55.2 DELPHI 91.2 ALEPH 91. Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow, Glasgow, G12 8QQ, Scotland Telephone: +44 (0)141 339 8855 Fax: +44 (0)141 334 9029 GLAS{PPE/95{02

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

Quantum properties of QCD string fragmentation

Quantum properties of QCD string fragmentation EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 216 Quantum properties of QCD string fragmentation Šárka Todorova-Nová

More information

Experimental Status of Photon Photon into Baryon Antibaryon Pairs

Experimental Status of Photon Photon into Baryon Antibaryon Pairs SLAC-PUB-8878 July 2 Experimental Status of Photon Photon into Baryon Antibaryon Pairs T. Barillari University of Colorado Boulder, Colorado Invited talk presented at the E+ E- Physics At Intermediate

More information

Measurement of Charged Particle Spectra in Deep-Inelastic ep Scattering at HERA

Measurement of Charged Particle Spectra in Deep-Inelastic ep Scattering at HERA Measurement of Charged Particle Spectra in Deep-Inelastic ep Scattering at HERA Alexander BYLINKIN ( Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia) E-mail: alexander.bylinkin@gmail.com

More information

OPAL =0.08) (%) (y cut R 3. N events T ρ. L3 Data PYTHIA ARIADNE HERWIG. L3 Data PYTHIA ARIADNE HERWIG

OPAL =0.08) (%) (y cut R 3. N events T ρ. L3 Data PYTHIA ARIADNE HERWIG. L3 Data PYTHIA ARIADNE HERWIG CR-244 15 May 1996 QCD-RESULTS AND STUDIES OF FOUR FERMION PROCESSES AT THE INTERMEDIATE LEP ENERGY SCALE p s = 130{136 GEV Hans-Christian Schultz-Coulon Universitat Freiburg, Fakultat fur Physik Hermann-Herder-Strae

More information

arxiv:hep-ph/ v2 15 Dec 2006

arxiv:hep-ph/ v2 15 Dec 2006 Fluctuations and Fermi-Dirac Correlations in e + e -annihilation Gösta Gustafson und University, Dept. of Theoretical Physics, Sölvegatan 4A, S- 6 und, Sweden Gosta.Gustafson@thep.lu.se In this talk I

More information

J/Ψ-Production in γγ-collisions at NLO. Michael Klasen LPSC Grenoble April 19, 2005

J/Ψ-Production in γγ-collisions at NLO. Michael Klasen LPSC Grenoble April 19, 2005 J/Ψ-Production in γγ-collisions at NLO Michael Klasen LPSC Grenoble April 19, 2005 CERN / Fréjus LPSC ILL ESRF April 19, 2005 Michael Klasen, LPSC Grenoble 2 Research at LPSC Grenoble Astroparticles: Particles:

More information

arxiv: v1 [nucl-th] 23 Jan 2019

arxiv: v1 [nucl-th] 23 Jan 2019 arxiv:1901.08157v1 [nucl-th] 23 Jan 2019 Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station TX 77843, USA E-mail: rjfries@comp.tamu.edu Michael Kordell Cyclotron

More information

Microscopic collectivity: The ridge and strangeness enhancement from string string interactions in Pythia8

Microscopic collectivity: The ridge and strangeness enhancement from string string interactions in Pythia8 Microscopic collectivity: The ridge and strangeness enhancement from string string interactions in Pythia8 Christian Bierlich bierlich@thep.lu.se Lund University / University of Copenhagen May 15, 2018

More information

arxiv:hep-ph/ v1 28 Aug 1995

arxiv:hep-ph/ v1 28 Aug 1995 TSL/ISV-95-0125, DESY-95-163 Soft Colour Interactions as the Origin of Rapidity Gaps in DIS A. Edin 1, G. Ingelman 1,2, J. Rathsman 1 arxiv:hep-ph/9508386v1 28 Aug 1995 1 Dept. of Radiation Sciences, Uppsala

More information

arxiv:hep-ph/ v1 2 Oct 2001

arxiv:hep-ph/ v1 2 Oct 2001 DESY 01-136 LUNFD6/(NFFL 7203) 2001 October 2001 Heavy Quark production at the TEVATRON and HERA using k t - factorization with CCFM evolution arxiv:hep-ph/0110034v1 2 Oct 2001 H. Jung Physics Department,

More information

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab hreshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab Introduction With the advent of higher energies at Jefferson Lab, the study of charmonium becomes possible. he threshold production of J/5

More information

arxiv:hep-ex/ v1 19 Jun 1999

arxiv:hep-ex/ v1 19 Jun 1999 arxiv:hep-ex/9906031v1 19 Jun 1999 QCD AT LEP2 AND WW FINAL STATE INTERACTIONS a M. HAPKE Queen Mary and Westfield College, University of London, London E1 4NS, UK A short overview of the QCD program at

More information

Massive Quarks in Vincia. M. Ritzmann in collaboration with A. Gehrmann-De Ridder and P. Skands

Massive Quarks in Vincia. M. Ritzmann in collaboration with A. Gehrmann-De Ridder and P. Skands Massive Quarks in Vincia M. Ritzmann in collaboration with A. Gehrmann-De Ridder and P. Skands Outline Introduction - Parton Showers Vincia - Principles Masses in Vincia Energy Scales at a Collider Energy

More information

arxiv:hep-ph/ v1 25 May 1999 Energy dependence of mean multiplicities in gluon and quark jets at the next-to-next-to-next-to-leading order

arxiv:hep-ph/ v1 25 May 1999 Energy dependence of mean multiplicities in gluon and quark jets at the next-to-next-to-next-to-leading order FIAN-30/99 UCRHEP-E255 14 May 1999 arxiv:hep-ph/9905477v1 25 May 1999 Energy dependence of mean multiplicities in gluon and quark jets at the next-to-next-to-next-to-leading order I.M. Dremin 1 and J.W.

More information

Collider overview and kinematics

Collider overview and kinematics 1 Collider overview and kinematics QCD studies at colliders 2 ee - ep - pp QCD collider studies Short Long distance Q: large momentum scale PEP, PETRA, Cornell, LEP, SLD, NLC SLAC, FNAL, CERN, HERA, erhic

More information

arxiv:hep-ph/ v1 9 Apr 1997

arxiv:hep-ph/ v1 9 Apr 1997 Study of Baryon Antibaryon Rapidity Correlation in e + e Annihilation by Quark Combination Model Zong-Guo Si 1, Qu-Bing Xie 2,1, Qun Wang 1 1 Department of Physics, Shandong University arxiv:hep-ph/9704271v1

More information

arxiv:hep-ex/ v2 10 Jan 1997

arxiv:hep-ex/ v2 10 Jan 1997 UNIVERSITY OF CALIFORNIA, RIVERSIDE UCRHEP-E181 1 December 1996 arxiv:hep-ex/9701005v 10 Jan 1997 TEST OF QCD ANALYTIC PREDICTIONS FOR GLUON AND QUARK JET DIFFERENCES a J. WILLIAM GARY Department of Physics,

More information

Study of Charm Fragmentation at H1

Study of Charm Fragmentation at H1 Study of Charm Fragmentation at H1 Juraj Braciník (in collaboration with Zuzana Rúriková and Günter Grindhammer) University of Birmingham for H1 Collaboration Birmingham particle group seminar 18/2/2009

More information

arxiv:hep-ph/ v1 17 Feb 1995

arxiv:hep-ph/ v1 17 Feb 1995 LMU-13/94 (Revised version) Remarks on the Quark-diagram Description of Two-body Nonleptonic B-meson Decays arxiv:hep-ph/9502339v1 17 Feb 1995 Zhi-zhong XING 1 Sektion Physik, Theoretische Physik, Universität

More information

Study of charm fragmentation in e + e annihilation and ep scattering

Study of charm fragmentation in e + e annihilation and ep scattering Study of charm fragmentation in e + e annihilation and ep scattering - Summer Student Report - by Thomas Lübbert H1 Collaboration at DESY Advisor: Co-Advisor: Dr. Günter Grindhammer Andrej Liptaj September

More information

high energy e + e - colliders: experiment

high energy e + e - colliders: experiment QCD @ high energy e + e - colliders: experiment Bill Gary U. California, Riverside bill.gary@ucr.edu OPAL, Babar, CMS, & CTEQ Collaborations Bill Gary, U California Riverside, CTEQ Summer School, Madison

More information

arxiv: v1 [hep-ph] 30 Dec 2018

arxiv: v1 [hep-ph] 30 Dec 2018 Jet fragmentation in a QCD medium: Universal quark/gluon ration and Wave turbulence arxiv:1812.11533v1 [hep-ph] 30 Dec 2018 Y. Mehtar-Tani Brookhaven National Laboratory, Physics Department, Upton, NY

More information

Higgs Boson Production at the LHC

Higgs Boson Production at the LHC Higgs Boson Production at the LHC M. Y. Hussein* *Department of Physics, College of Science, University of Bahrain P.O. Box 32038, Kingdom of Bahrain One of the major goals of the Large Hadron Collider

More information

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract SUNY-NTG-01-03 Possible Color Octet Quark-Anti-Quark Condensate in the Instanton Model Thomas Schäfer Department of Physics, SUNY Stony Brook, Stony Brook, NY 11794 and Riken-BNL Research Center, Brookhaven

More information

Multi-jet production and jet correlations at CMS

Multi-jet production and jet correlations at CMS Multi-jet production and jet correlations at Gábor I. Veres on behalf of the Collaboration CERN E-mail: gabor.veres@cern.ch Hadronic jet production at the LHC is an excellent testing ground for QCD. Essential

More information

Lawrence Berkeley Laboratory and Department of Physics University of California, Berkeley, California

Lawrence Berkeley Laboratory and Department of Physics University of California, Berkeley, California SLAC-PUB-4030 LBL-21872 July, 1986 P/E) A Comparison of the Particle Flow in Three-Jet and Radiative Two-Jet Events from e+e- Annihilation at E,., = 29 GeV* P. D. Sheldon, G. H. Trilling, A. Petersen,

More information

Jet Photoproduction at THERA

Jet Photoproduction at THERA DESY 0 03 ISSN 048 9833 hep ph/00309 March 200 Jet Photoproduction at THERA arxiv:hep-ph/00309v 9 Mar 200 M. Klasen II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 49, 2276

More information

arxiv: v1 [hep-ph] 3 Jul 2010

arxiv: v1 [hep-ph] 3 Jul 2010 arxiv:1007.0498v1 [hep-ph 3 Jul 2010 Single-top production with the POWHEG method IPPP, Durham University E-mail: emanuele.re@durham.ac.uk We describe briefly the POWHEG method and present results for

More information

The Lund Model. and some extensions. Department of Astronomy and Theoretical Physics Lund University Sölvegatan 14A, SE Lund, Sweden

The Lund Model. and some extensions. Department of Astronomy and Theoretical Physics Lund University Sölvegatan 14A, SE Lund, Sweden The Lund Model and some extensions Torbjörn Sjöstrand Department of Astronomy and Theoretical Physics Lund University Sölvegatan 4A, SE-223 62 Lund, Sweden Workshop on Collective effects in small collisions

More information

Heavy-quark hybrid mesons and the Born-Oppenheimer approximation

Heavy-quark hybrid mesons and the Born-Oppenheimer approximation Heavy-quark hybrid mesons and the Born-Oppenheimer approximation Colin Morningstar Carnegie Mellon University Quarkonium Workshop, Fermilab Sept 20, 2003 9/20/2003 Hybrid mesons (C. Morningstar) 1 Outline!

More information

2 ATLAS operations and data taking

2 ATLAS operations and data taking The ATLAS experiment: status report and recent results Ludovico Pontecorvo INFN - Roma and CERN on behalf of the ATLAS Collaboration 1 Introduction The ATLAS experiment was designed to explore a broad

More information

Measurements of the Cross Section for the Process γγ pp at s ee = GeV with the OPAL Detector at LEP

Measurements of the Cross Section for the Process γγ pp at s ee = GeV with the OPAL Detector at LEP Measurements of the Cross Section for the Process γγ pp at s ee = 183 189 GeV with the OPAL Detector at LEP Teresa Barillari, MPI Munich Photon 2003, Frascati 10 April 2003 Introduction Kinematics Theory

More information

Recent Advances in QCD Event Generators

Recent Advances in QCD Event Generators Durham University Recent Advances in QCD Event Generators Peter Richardson IPPP, Durham University Bonn Seminar 27 th January 1 Introduction Monte Carlo event generators are essential for experimental

More information

arxiv:hep-ph/ v1 30 May 1996

arxiv:hep-ph/ v1 30 May 1996 University of Wisconsin - Madison MADPH-96-943 KEK-TH-485 KEK Preprint 96-24 May 1996 arxiv:hep-ph/9605444v1 30 May 1996 Probing color-singlet exchange in Z + 2-jet events at the LHC D. Rainwater 1, R.

More information

PoS(EPS-HEP 2009)057. Bottomonium Studies at BaBar. Veronique Ziegler. SLAC National Accelerator Laboratory

PoS(EPS-HEP 2009)057. Bottomonium Studies at BaBar. Veronique Ziegler. SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory E-mail: vziegler@slac.stanford.edu Selected studies in bottomonium physics carried out by the BaBar experiment at the SLAC PEP-II e + e collider are presented. They

More information

C-Parameter and Jet Broadening at PETRA Energies

C-Parameter and Jet Broadening at PETRA Energies arxiv:hep-ex/9903009v1 9 Mar 1999 C-Parameter and Jet Broadening at PETRA Energies O. Biebel (1), P.A. Movilla Fernández (1), S. Bethke (1) and the JADE Collaboration (2) Abstract e + e annihilation data

More information

Heavy flavour in Pythia 8 Heavy flavour in showers only

Heavy flavour in Pythia 8 Heavy flavour in showers only Heavy flavour in Pythia 8 Heavy flavour in showers only Stefan Prestel Heavy Flavour Production at the LHC IPPP Durham, April 2, 206 / 8 Outline This will be a review of some heavy flavour aspects of Pythia

More information

A TEST OF THE FLAVOR INDEPENDENCE OF STRONG INTERACTIONS *

A TEST OF THE FLAVOR INDEPENDENCE OF STRONG INTERACTIONS * A TEST OF THE FLAVOR INDEPENDENCE OF STRONG INTERACTIONS * SLAC-PUB- 6659 September 1994 (N) Thomas W. Markiewicz a, representing The SLD Collaboration a Stanford Linear Accelerator Center, Stanford University,

More information

s = 2 TeV σ [ pb ] s = 4 TeV [ GeV ] M H pp l ν bb + X pp ν ν bb + X pp l l bb + X total cross section higgs signal total cross section

s = 2 TeV σ [ pb ] s = 4 TeV [ GeV ] M H pp l ν bb + X pp ν ν bb + X pp l l bb + X total cross section higgs signal total cross section 1 2 1 pp l ν bb + X pp ν ν bb + X pp l l bb + X total cross section s = 2 TeV σ [ pb ] 1 higgs signal 1-1 1-2 1 2 6 7 8 9 1 11 12 13 14 s = 4 TeV 1 total cross section σ [ pb ] 1 higgs signal 1-1 1-2 6

More information

PoS(HEP2005)038. Final state QCD studies at LEP: Part I. Pedro Abreu * for the DELPHI and OPAL Collaborations

PoS(HEP2005)038. Final state QCD studies at LEP: Part I. Pedro Abreu * for the DELPHI and OPAL Collaborations Final state QCD studies at LEP: Part I Pedro Abreu * LIP/IST Av. Elias Garcia, 14, 1 st, 1000-149 Lisboa, Portugal E-mail: abreu@lip.pt for the DELPHI and OPAL Collaborations CERN 1211 Geneva 23, Switzerland

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

Higgs Searches at CMS

Higgs Searches at CMS Higgs Searches at CMS Ashok Kumar Department of Physics and Astrophysics University of Delhi 110007 Delhi, India 1 Introduction A search for the Higgs boson in the Standard Model (SM) and the Beyond Standard

More information

arxiv: v2 [hep-lat] 23 Dec 2008

arxiv: v2 [hep-lat] 23 Dec 2008 arxiv:8.964v2 [hep-lat] 23 Dec 28, F. Farchioni, A. Ferling, G. Münster, J. Wuilloud University of Münster, Institute for Theoretical Physics Wilhelm-Klemm-Strasse 9, D-4849 Münster, Germany E-mail: k_demm@uni-muenster.de

More information

Diffractive Dijets and Gap Survival Probability at HERA

Diffractive Dijets and Gap Survival Probability at HERA Diffractive Dijets and Gap Survival Probability at HERA Sebastian Schätzel (CERN) CERN EP Seminar 21 April 2008 HERA Electron-Proton Collider May 1992-June 2007, DESY Hamburg 27.5 GeV electrons on 820

More information

PoS(Baldin ISHEPP XXI)032

PoS(Baldin ISHEPP XXI)032 Prompt photon and associated heavy quark production in the k T -factorization approach A.V. Lipatov, and N.P. Zotov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University Moscow, Russia

More information

St anfo rd L in ear A ccele rat o r Cent e r

St anfo rd L in ear A ccele rat o r Cent e r SLAC-PUB-7212 July 1996 NUCLEAR EFFECTS AT HERA STANLEY J. BRODSKY St anfo rd L in ear A ccele rat o r Cent e r St anfo rd University, St anfo rd, California 94 309 To appear in the Proceedings of the

More information

PHY357 Lecture 14. Applications of QCD. Varying coupling constant. Jets and Gluons. Quark-Gluon plasma. Colour counting

PHY357 Lecture 14. Applications of QCD. Varying coupling constant. Jets and Gluons. Quark-Gluon plasma. Colour counting PHY357 Lecture 14 Applications of QCD Varying coupling constant Jets and Gluons Quark-Gluon plasma Colour counting The proton structure function (not all of section 5.8!) Variable Coupling Constants! At

More information

Constraining the pomeron structure using LHC data

Constraining the pomeron structure using LHC data CEA Saclay - Irfu/SPP E-mail: matthias.saimpert@cea.fr Cyrille Marquet Centre de physique théorique, École Polytechnique, CNRS, 9118 Palaiseau, France E-mail: cyrille.marquet@cern.ch Christophe Royon CEA

More information

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD Kern- und Teilchenphysik I Lecture 13:Quarks and QCD (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Dr. Silva Coutinho http://www.physik.uzh.ch/de/lehre/phy211/hs2016.html

More information

Gluon and Gluon-Selfinteraction

Gluon and Gluon-Selfinteraction Gluon and Gluon-Selfinteraction 3-Jet events at DELPHI Seminar on key experiments in particle physics May 29th 2009 Speaker: Roman Hennig Supervisor: Prof. Herrmann 1 Outline 1. Introduction Colour charge,

More information

Particle Physics. Dr Victoria Martin, Spring Semester 2012 Lecture 10: QCD at Colliders

Particle Physics. Dr Victoria Martin, Spring Semester 2012 Lecture 10: QCD at Colliders Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 10: QCD at Colliders! Renormalisation in QCD!Asymptotic Freedom and Confinement in QCD! Lepton and Hadron Colliders!R = (e + e!!hadrons)/(e

More information

Invited Contribution to XXXVII th Recontres de Moriond Electroweak Conference. March 2002, Les Arcs 1800, France.

Invited Contribution to XXXVII th Recontres de Moriond Electroweak Conference. March 2002, Les Arcs 1800, France. 15th May, 22 Measurement of the W Mass at LEP2 C.J. Parkes a On behalf of the Lep Collaborations Department of Physics and Astronomy, Kelvin Building, University Avenue, Glasgow G12 8QQ, Scotland, U.K.

More information

Theoretical Particle Physics in Lund

Theoretical Particle Physics in Lund Theoretical Particle Physics in Lund QCD phenomenology Event generators: Gösta Gustafson, Torbjörn Sjöstrand, Leif Lönnblad, Malin Sjödahl, Stefan Prestel, Jesper Roy Christiansen, Christian Bierlich Diffraction,

More information

Jet Physics. Yazid Delenda. 1st Jijel Meeting on Theoretical Physics. Jijel, October 29-31, University Batna 1

Jet Physics. Yazid Delenda. 1st Jijel Meeting on Theoretical Physics. Jijel, October 29-31, University Batna 1 Jet Physics Yazid Delenda University Batna 1 1st Jijel Meeting on Theoretical Physics Quantum Mechanics, Gravitation and Particle Physics Jijel, October 29-31, 2018 977 1 ⵜ ⴰ ⵙ ⴷⴰ ⵡⵉ ⵜ ⵏ ⵜ ⴱⴰ ⵜ ⴻ ⵏ ⵜ U

More information

Jet and Minijet Contributions to Transverse Momentum Correlations in High Energy Collisions

Jet and Minijet Contributions to Transverse Momentum Correlations in High Energy Collisions Jet and Minijet Contributions to Transverse Momentum Correlations in High Energy Collisions Mike Catanzaro August 14, 2009 1 Intro I have been studying the effects of jet and minijet production on momentum

More information

W Physics at LEP. 1. WW cross sections and W branching fractions. Corfu Summer Institute on Elementary Particle Physics, Monica Pepe Altarelli

W Physics at LEP. 1. WW cross sections and W branching fractions. Corfu Summer Institute on Elementary Particle Physics, Monica Pepe Altarelli Corfu Summer Institute on Elementary Particle Physics, 998 PROCEEDINGS Physics at LEP INFN - Laboratori Nazionali di Frascati and CERN, EP Division E-mail: Monica.Pepe.Altarelli@CERN.CH Abstract: A summary

More information

QCD at LHC in pp. Department of Theoretical Physics, Lund University

QCD at LHC in pp. Department of Theoretical Physics, Lund University 3rd Nordic LHC and Beyond Workshop 2-3 February 2009 Lund, Sweden QCD at LHC in pp Torbjörn Sjöstrand Department of Theoretical Physics, Lund University Introduction: the structure of an event Multiple

More information

USING e+e- CROSS-SECTIONS TO TEST QCD AND TO SEARCH FOR NEW PARTICLES*

USING e+e- CROSS-SECTIONS TO TEST QCD AND TO SEARCH FOR NEW PARTICLES* SLAC-PUB-2579 July 1980 (T/E) USING e+e- CROSS-SECTIONS TO TEST QCD AND TO SEARCH FOR NEW PARTICLES* R. Michael Barnett Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

More information

Physique des Particules Avancées 2

Physique des Particules Avancées 2 Physique des Particules Avancées Interactions Fortes et Interactions Faibles Leçon 6 Les collisions p p (http://dpnc.unige.ch/~bravar/ppa/l6) enseignant Alessandro Bravar Alessandro.Bravar@unige.ch tél.:

More information

Heavy quark production in e + e - & pp collisions

Heavy quark production in e + e - & pp collisions Heavy quark production in e + e - & pp collisions Seminar talk by Bernhard Maaß 12. Dezember 2013 IKP TU Darmstadt Bernhard Maaß 1 Outline I. Introduction to heavy quark production II. Producing quarks

More information

Event Generator Physics 2

Event Generator Physics 2 Event Generator Physics University of Cambridge 1st MCnet School, IPPP Durham 18 th 20 th April 2007 Structure of LHC Events 1. Hard process 2. Parton shower 3. Hadronization 4. Underlying event Lecture

More information

Electroweak accuracy in V-pair production at the LHC

Electroweak accuracy in V-pair production at the LHC Electroweak accuracy in V-pair production at the LHC Anastasiya Bierweiler Karlsruhe Institute of Technology (KIT), Institut für Theoretische Teilchenphysik, D-7628 Karlsruhe, Germany E-mail: nastya@particle.uni-karlsruhe.de

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

Introduction to the physics of hard probes in hadron collisions: lecture II. Michelangelo Mangano TH Division, CERN

Introduction to the physics of hard probes in hadron collisions: lecture II. Michelangelo Mangano TH Division, CERN Introduction to the physics of hard probes in hadron collisions: lecture II Michelangelo Mangano TH Division, CERN michelangelo.mangano@cern.ch Jet production gg gg 2 3 2 4 3 2 1 4 1 3 1 4 gg qq _ qg qg

More information

Origins of and PYTHIA experience with. Colour Reconnection

Origins of and PYTHIA experience with. Colour Reconnection Origins of and PYTHIA experience with Colour Reconnection Torbjörn Sjöstrand Department of Astronomy and Theoretical Physics Lund University Sölvegatan 14A, SE-223 62 Lund, Sweden Satellite meeting on

More information

arxiv: v1 [nucl-th] 21 Nov 2018

arxiv: v1 [nucl-th] 21 Nov 2018 arxiv:8.0889v [nucl-th] 2 Nov 208 Strongly intensive fluctuations and correlations in ultrarelativistic nuclear collisions in the model with string fusion Vladimir Kovalenko, Saint Petersburg State University

More information

arxiv:hep-ph/ v1 23 Apr 2002

arxiv:hep-ph/ v1 23 Apr 2002 DESY 01-116 LUNFD6/(NFFL 70) 001 hep-ph/0069 arxiv:hep-ph/0069v1 3 Apr 00 Massive c cg - Calculation in Diffractive DIS and Diffractive D - Production at HERA J. Bartels 1, H. Jung, A. Kyrieleis 1 1 II.

More information

arxiv:hep-ph/ v1 4 Feb 1997

arxiv:hep-ph/ v1 4 Feb 1997 DOUBLE SPIN TRANSVERSE ASYMMETRIES IN DRELL YAN PROCESSES V. Barone a,b, T. Calarco c and A. Drago c a Dipartimento di Fisica Teorica, Università di Torino and INFN, Sezione di Torino, 10125 Torino, Italy

More information

arxiv:hep-ex/ v1 6 Jun 1994

arxiv:hep-ex/ v1 6 Jun 1994 FIAN TD-3 March 1994 arxiv:hep-ex/9406002v1 6 Jun 1994 AVERAGE MULTIPLICITIES IN GLUON AND QUARK JETS IN HIGHER-ORDER PERTURBATIVE QCD I.M.Dremin 1 and V.A.Nechitailo 2 P.N.Lebedev Physical Institute,

More information

Heavy Quark Fragmentation to Baryons Containing Two Heavy Quarks*

Heavy Quark Fragmentation to Baryons Containing Two Heavy Quarks* SLAC-PUB-6226 CALT-68-1868 UCSD/PTH 93-11 May 1993 T/E Heavy Quark Fragmentation to Baryons Containing Two Heavy Quarks* Adam F. Falk Stanford Linear Accelerator Center Stanford University, Stanford, California

More information

QCD at hadron colliders Lecture 2: Showers, Jets and fixed-order predictions

QCD at hadron colliders Lecture 2: Showers, Jets and fixed-order predictions QCD at hadron colliders Lecture 2: Showers, Jets and fixed-order predictions Gavin Salam CERN, Princeton & LPTHE/CNRS (Paris) Maria Laach Herbtschule für Hochenenergiephysik September 20, Germany QCD lecture

More information

Precision Calculations for Collider Physics

Precision Calculations for Collider Physics SFB Arbeitstreffen März 2005 Precision Calculations for Collider Physics Michael Krämer (RWTH Aachen) Radiative corrections to Higgs and gauge boson production Combining NLO calculations with parton showers

More information

Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD. Abstract

Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD. Abstract CERN-PH-TH-2015-192 TTP15-030 Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD Fabrizio Caola, 1, Kirill Melnikov, 2, and Markus Schulze

More information

Measurements of charm and beauty proton structure functions F2 c c and F2 b b at HERA

Measurements of charm and beauty proton structure functions F2 c c and F2 b b at HERA Measurements of charm and beauty proton structure functions F c c and F b b at HERA Vladimir Chekelian MPI for Physics, Germany E-mail: shekeln@mail.desy.de Inclusive charm and beauty production is studied

More information

arxiv:hep-ph/ v1 4 Nov 1998

arxiv:hep-ph/ v1 4 Nov 1998 Gluon- vs. Sea quark-shadowing N. Hammon, H. Stöcker, W. Greiner 1 arxiv:hep-ph/9811242v1 4 Nov 1998 Institut Für Theoretische Physik Robert-Mayer Str. 10 Johann Wolfgang Goethe-Universität 60054 Frankfurt

More information

Eventi Adronici a LEP

Eventi Adronici a LEP Eventi Adronici a LEP Alessandro De Angelis Università di Udine and INFN Trieste 1. Many things have been done Phenomenology of hadronic events QCD and the color structure of hadronic events α s q/g jets

More information

Introduction to the Standard Model. 1. e+e- annihilation and QCD. M. E. Peskin PiTP Summer School July 2005

Introduction to the Standard Model. 1. e+e- annihilation and QCD. M. E. Peskin PiTP Summer School July 2005 Introduction to the Standard Model 1. e+e- annihilation and QCD M. E. Peskin PiTP Summer School July 2005 In these lectures, I will describe the phenomenology of the Standard Model of particle physics.

More information

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Higgs Searches and Properties Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University LHEP, Hainan, China, January 11-14, 2013 Outline Introduction of SM Higgs Searches

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

Energy Dependence of the Mean Charged Multiplicity in Deep Inelastic Scattering with ZEUS at HERA

Energy Dependence of the Mean Charged Multiplicity in Deep Inelastic Scattering with ZEUS at HERA Energy Dependence of the Mean Charged Multiplicity in Deep Inelastic Scattering with ZEUS at HERA Michele Rosin University of Wisconsin, Madison Thesis Defense, Madison WI Jan. 27th, 2006 Michele Rosin,

More information

arxiv:hep-ph/ v2 13 Feb 2004

arxiv:hep-ph/ v2 13 Feb 2004 lueball hunting in e + e f 0 Frank E. Close 1 and Qiang Zhao 2 1) Department of Theoretical Physics, University of Oxford, Keble Rd., Oxford, OX1 3NP, United Kingdom and 2) Department of Physics, University

More information

arxiv:hep-ph/ v1 10 Nov 1997

arxiv:hep-ph/ v1 10 Nov 1997 E2 97 325 November 1997 Charmed sea contribution to the inclusive hadroproduction of the mesons with open charm in the Quark Gluon String Model G.H.Arakelyan 1 arxiv:hep-ph/9711276v1 10 Nov 1997 Joint

More information

glueballs from gluon jets at the LHC

glueballs from gluon jets at the LHC glueballs from gluon jets at the LHC Wolfgang Ochs Max-Planck-Institut für Physik, München status of glueballs: theory, experimental scenarios leading systems in gluon jets, LEP results proposals for LHC

More information

BY LIGHT AND HEAVY QUARKS*

BY LIGHT AND HEAVY QUARKS* SLAC-PUB-5909 September 1992 T/E ON THE PROFILES OF JETS INITIATED BY LIGHT AND HEAVY QUARKS* VALERY A. KHOZE Stanford Linear Accelerator Center Stanford University, Stanford, California 94309 and University

More information