SWARM INTELLIGENCE OPTIMIZED NEURAL NETWORKS FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS. Received March 2010; revised August 2010

Size: px
Start display at page:

Download "SWARM INTELLIGENCE OPTIMIZED NEURAL NETWORKS FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS. Received March 2010; revised August 2010"

Transcription

1 International Journal of Innovative Computing, Information and Control ICIC International c 2011 ISSN Volume 7, Number 11, November 2011 pp SWARM INTELLIGENCE OPTIMIZED NEURAL NETWORKS FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS Muhammad Asif Zahoor Raja 1, Ijaz Mansoor Qureshi 2 and Junaid Ali Khan 1 1 Department of Electronic Engineering International Islamic University H-10, Islamabad, Pakistan { asif.phdee10; junaid.phdee17 }@iiu.edu.pk 2 Department of Electrical Engineering Air University Air Headquarters, E-9, Islamabad Pakistan imqureshi@mail.au.edu.pk Received March 2010; revised August 2010 Abstract. In this paper, a swarm intelligence technique, better known as Particle swarm optimization, has been used in solving the fractional differential equations. The approximate mathematical modeling has been done by employing feed-forward artificial neural networks by defining the unsupervised error. The learning of weights for such errors has been carried out by using particle swarm optimization hybridized with simulating annealing algorithms for efficient local search. The design scheme has been successfully applied to solve different problems associated with linear and nonlinear ordinary differential equations of fractional order. The results were compared with available exact solutions, analytic solutions and standard numerical techniques including both deterministic and stochastic approaches. In case of linear ordinary fractional differential equations, relatively more precise solutions were obtained than those of the deterministic numerical methods. Moreover, for complex non-linear fractional differential equations, the technique is still applicable, but with reduced accuracy. The advantages of the proposed scheme are easy implementation, simplicity of concept and broad scope of applications. Keywords: Computational intelligence, Fractional differential equations, Particle swarm optimization, Neural networks, Numerical computing, Simulating annealing 1. Introduction. In the last few decades, fractional differential equations (FDEs) have gained considerable importance due to their varied applications in the fields of applied sciences and engineering [1,2]. The historical survey, theory and applications have been carried out by various writers including Miller and Ross [3], Oldham and Spanier [4] and A. K. Anatoly et al. [5]. The problem to develop numerical solvers for FDEs has attracted many researchers. In this regard, successful advancements have been made in extending the existing classical, as well as, modern numerical solvers. The approximate analytic solutions were derived, and successfully applied to a variety of linear and nonlinear FDEs. Some of the important numerical solvers include Adomian decomposition method [6,7], variational iteration method [8,9], homotopy analysis method [10,11], Taylor collocation method [12], etc. The classical numerical solvers like Grunwald-Letnikov, and Lubich s convolutional quadrature method have also been applied to solve a number of FDEs [13], but with reduced accuracy. Besides this, Diethelm [14] combined the short memory principal with predictor-corrector approach to solve such problems more precisely. Recently, Podlubny [15,16] has provided his famous method of successive approximation in matrix 6301

2 6302 M. A. Z. RAJA, I. M. QURESHI AND J. A. KHAN form to solve the FDEs and system of FDEs. However, so far, no noticeable advancement has been seen in extending stochastic numerical methods to solve such problems. The stochastic methods have universal capability to solve a variety of differential equations. In such a scheme, approximate mathematical model of the equation is carried out with the help of feedforward artificial neural networks. The learning of the weights of the neural networks is carried out with initial population based on biological inspired methods, like evolutionary techniques and swarm intelligence [17,18]. A variety of practical significant applications associated with differential equations is solved by these techniques [19-21]. However, these techniques are limited to the differential equations involving integer order derivatives. There is a strong need to extend the existing stochastic solvers to differential equations of fractional order. In our pervious works, such problems have been solved successfully by using artificial neural network (ANN) aided with genetic algorithm [22,23]. The particle swarm optimization (PSO) algorithm, presented first by Kennedy and Eberhant [24], is a global optimization technique inspired by social behavior of bird flocking and fish schooling. Its discrete and continuous versions have widely been applied to different optimization problems in science and engineering. Few examples include the application of its discrete version in multiuser detection schemes in mobile communications [25-27] and sensor networks [28]. Similarly, its continuous versions have been used in diverse fields like inventory control [29], multiprocessor scheduling [30], controls [31,32], etc. Some improved versions of PSO can also be seen elsewhere [33-35]. In this article, the strength of neural network has been exploited to represent the approximate mathematical model of fractional differential equations, but, this time, the learning of unknown weights of neural network is carried out by using PSO, hybridized with simulating annealing (SA). A large number of simulations are performed by using this stochastic solver for enough statistical analysis of the results and to determine the effectiveness of the scheme. Comparison of this numerical solver has been made with neural network aided with various population based stochastic algorithms as well as classical deterministic approaches including Grnnwald-Letnikov (GL) and Podlubny matrix approach. The general form of the ordinary FDEs solved in this article is written as: with initial conditions as follows: D ν y(t) = f (t, y(t), D n y(t)), 0 t T, (1) D k y(0) = c k, k = 0, 1, 2,..., N 1, (2) and boundary condition at t = t b, for 0 t b T, is written as: D k y(t b ) = b k, k = 0, 1, 2,..., N 1, (3) where D is the operator giving the derivative of fractional order D ν and integer order D n, ν > 0, ν R, N = v. c k and b k are the constants representing the initial and boundary conditions, respectively. Our investigation in this paper is limited to solve such linear and nonlinear fractional differential equations, which contain only one fractional derivative. The developed methodology can easily and efficiently be extended to a variety of FDEs in Electromagnetics [36], Fluid Dynamics [37] and Control problems [38]. Before introducing the proposed methodology, it is necessary to introduce some definitions and relations which will be used in the next sections. The fractional integral and fractional derivative have been expressed in the literature in a variety of ways, including Riemann-Liouville, Caputo, Erdlyi-Kober, Hadamard, Grnwald-Letnikov and Riesz type

3 SOLVING FDES USING ANN OPTIMIZED WITH PSO 6303 fractional integrals and derivatives, etc. [3-5]. All these definitions have their own importance and advantages in different types of mathematical problems. Throughout this paper, Riemann-Liouville definition for fractional derivative with lower terminal at zero will be used. The definition of fractional integration of order ν > 0 is given as [39]: (I ν f) (t) = 1 Γ(α) t 0 (t τ) ν 1 f(τ)dτ, (4) (I 0 f)(t) = f(t), (5) along with its fractional derivative of order ν > 0 which is normally given as: D ν f(t) = dn dt n ( I n ν f ) (t), n 1 < ν n, (6) where D ν is the fractional derivative, and n is an integer. By using (6), the fractional derivative of exponential function f(t) = e at by simple mathematical manipulation is given as: D ν e at = t ν M 1,1 ν (at), (7) where M 1,1 ν (at), the Mittag-Leffler function of two parameters α = 1 and β = 1 ν, is defined by the series expansion. t k M α,β (t) = (α > 0, β > 0). (8) Γ(αk + β) k=0 2. Mathematical Model. In this section, the detailed description is provided about the development of mathematical model for FDEs. The model is developed using feed-forward ANNs by defined unsupervised error. The designed scheme is presented for ordinary differential equations involving integer order derivative, and then extended for fractional differential equations Integer order case. The general form of ordinary differential equation of integer order n can be represented as a special case of (1) by taking n = ν as: D n y(t) = f(t, y(t), Dy(t)), 0 t T, (9) where the initial and boundary conditions are as given in (2) and (3). The solution y(t) of such equations along with its n th order derivative can be approximated by the following continuous mappings as used in ANN methodology [17-21]. m ŷ(t) = α i A(w i t + b i ), (10) D n ŷ(t) = i=1 m α i D n A(w i t + b i ), (11) i=1 where α i, w i and b i are bounded real-valued adaptive weights, m is the number of neurons, and A is the activation function normally taken as log sigmoid function. A(x) = 1. (12) 1 + e x ANN architecture formed by linear combinations of the networks represented in (10) and (11) can approximately model the integer order ordinary differential equations as given in (9).

4 6304 M. A. Z. RAJA, I. M. QURESHI AND J. A. KHAN 2.2. Fractional order case. The networks given in (10) and (11) cannot directly be applied to the ordinary differential equation of fractional order due to extreme difficulty in obtaining fractional derivative of the log-sigmoid activation function. To solve this issue, the exponential function is taken as a candidate to replace the log-sigmoid function in the neural network modeling. It has universal function approximation capability and known fractional derivative as well. The approximate continuous mappings in the form of linear combination of exponential functions can be taken to approximate the solution y(t) and its integer and fractional derivatives. m ŷ(t) = α i e w it+b i, (13) D n ŷ(t) = D ν ŷ(t) = i=1 m α i wi n e w it+b i, (14) i=1 m α i e b i t ν M 1,1 ν (w i t), (15) i=1 respectively. The linear combination of the networks represented in (13)-(15) can approximately model the fractional differential equations as given in (1). The standard ANN architecture has been extended to be applicable to solution of such problems. It is named as fractional differential equation neural network (FDE-NN). A generic form of the FDE-NN architecture is represented in Figure 1. Figure 1. Fractional differential equation neural network architecture for FDEs 3. Learning Procedure. In this section, the learning procedure is given for finding the unknown weights of networks representing the FDEs with the help of efficient stochastic computational intelligence algorithms. These training procedures are based on simulating annealing (SA) technique, PSO and PSO hybridized with SA algorithm. Simulating annealing is designated as a probabilistic computational method for local and global optimization problems of applied mathematics. It is a technique inspired from heating and controlled cooling of the materials. Its goal is to efficiently find the required

5 SOLVING FDES USING ANN OPTIMIZED WITH PSO 6305 objective parameters in fixed amount of time instead of the best solutions. This method is originally introduced in 1983 and still widely used for optimization [40,41]. In standard PSO algorithm, each single solution to an optimization problem is considered as a particle in the search space. The exploration of a problem space was made in PSO by a population of particles called a swarm. All particles in the swarm have fitness values which are evaluated by the fitness function related to the problem specific optimization. So, the PSO algorithm is originally initialized with a swarm of particles placed in the search space randomly and is used to search for optimal solution iteratively. In each iteration, the position and the velocity of each particle are updated according to its known previous local best position P n 1 L and the global best position of all particles in the swarm so far. The updating formula for each particle velocity and position P n 1 G in continuous standard PSO is written as: v n i = ωv n 1 i + c 1 r 1 ( P n 1 L x n i x n 1 i = x n 1 i ) + c2 r 2 ( P n 1 G ) xn 1 i, (16) + v n 1 i, (17) where x i is vector to represent i th particle of the swarm, i = 1, 2,..., M, M is the total number of particles in a swarm, v i is the velocity vector associated with i th particle, c 1 and c 2 are the social acceleration constant, ω is the inertia weight linearly decreasing over the course of search between 0 and 1, r 1 and r 2 are random vectors with its elements distributed between 0 and 1. The position and velocity are to be taken as the restricted real numbers such that (x i, v i ) R d where is the dimension of the search space. The broader spread of initial swarm, results in optimal performance of the algorithm. The element of velocity are assigned as v i [ v max, v max ], where v max is assigned maximum velocity defined by users according to the objective optimization function. If the velocity goes beyond the maximum value, it will be set to v max. This parameter controls the convergence rate and can prevent the method from growing too fast. The termination criterion for iterations is determined according to maximum flights/cycles completed or a designated value of the fitness is achieved. The flowchart showing the process of proposed algorithm is given in Figure 2. The objective function to be minimized is given as the sum of errors. e j = e j 1 + e j 2, j = 1, 2,... (18) where j is the flight number and e j 1 is given as: e j 1 = 1 s [D ν ŷ(t i ) f(t i, ŷ(t i ), D n ŷ(t i ))] 2 j, (19) s i=0 where s is the number of time steps, ŷ, D n ŷ and D ν ŷ are the networks represented in (13)-(15), respectively. The value of s is adjusted as a tradeoff between the computation complexity and the accuracy of algorithm. Similarly, e j 2 is linked with initial and boundary conditions and can be written as: e j 2 = 1 N N 1 k=0 [ Dkŷ(0) c k ] N N 1 k=0 [ Dkŷ(t b ) b k ] 2 j. (20) The iterative process for optimization continues until user defined number of cycles is achieved or pre-defined level of error e j is obtained. The algorithm is given in the following steps: Step 1 : Initialize swarm: Randomly generate bounded real values to form initial swarm of particles. Each particle represents the unknown parameters of neural network. The initial swarm is scattered enough for better search space for the algorithm.

6 6306 M. A. Z. RAJA, I. M. QURESHI AND J. A. KHAN Figure 2. Flowchart of particle swarm optimization algorithm Step 2 : Initialization: Following parameter values assigned for algorithm execution. Set the number of flights. Set the fitness limit and start cycle count. Set the values of individual best and global best acceleration factors. Set the value of inertia weight ω and maximum velocity v max. Step 3 : Fitness Evaluation: Calculate fitness by using the fitness function given in expressions (18)-(20). Step 4 : Ranking: Rank each particle of the swarm on the basis of minimum fitness values. Store the best fitness particle. Step 5 : Termination Criteria: Terminate the algorithm if either predefined fitness value, i.e., MSE for linear FDEs and for non-linear FDEs is achieved or number of maximum flights/cycles is reached. If yes go to Step 7 else continue. Step 6 : Renewal: Update the Velocity using Equation (16). Update the position using Equation (17). Repeat the procedure from Step 3 to Step 6 until total number of flights is reached. Step 7 : Storage: Store the best fitted particle so far and name it as global best particle for this run. Step 8 : Refinement: MATLAB optimization toolbox is used for simulating annealing algorithm for further fine-tuning by taking the best fitted particle as start point of the algorithm. Store the value of fitness along with the best particle for this run. Stop. 4. Simulation and Results. Designed scheme was applied to three different problems of FDEs using the FDE-NN method and comparison was made with exact solutions and other numerical methods to validate the obtained results.

7 SOLVING FDES USING ANN OPTIMIZED WITH PSO Problem I. In this problem, we have taken a linear ordinary fractional differential equation with known exact solution and analyze the applicability of the proposed designed scheme. The following equation is taken which has also been solved by many authors of fractional calculus [13,22,23,42,43]. D ν y(t) = t Γ(3 ν) t2 ν y(t), 0 < ν 1, (21) with condition y(0) = 0 and y(1) = 1. The exact solution is given as: y(t) = t 2. (22) To solve this problem using FDE-NN methodology, the learning of weights was made with PSO-SA, a hybrid intelligent algorithm. Results were also determined by training of weights with PSO, GA, GA-SA and SA algorithms. A total number of 10 neurons were taken, which resulted in 30 unknown parameters or weights (α i, w i and b i ). These weights were restricted to be real numbers between 10 and 10. The values of the fractional order derivative ν were taken as 0.5 and The input t is taken between 0 and 1 with a step size of 0.1. Therefore, the fitness function is formulated as: e j = i=1 [ D ν ŷ(t i ) t 2 i 2 Γ(3 ν) t2 ν i + ŷ(t i )] 2 +[ŷ(0)] 2 +[ŷ(1) 1] 2 j, j = 1, 2, 3,... (23) where j is the flight index, ŷ and D ν ŷ are networks given in (13) and (15), respectively. The parameter settings used for evaluation of results are provided in Table 1. Table 1. Parameters setting of the algorithms PSO GA SA Parameters Setting Parameters Setting Parameters Setting Swarm Size 80 Population Size 200 Start Point Size 30 Particle size 30 Chromosome size 30 Annealing function Fast Flights 2000 Generations 1000 Iteration c 1 Linearly Selection Stochastic Max. function decreasing Uniform evaluations (5 to 0.5) c 2 Linearly Crossover fraction 0.8 Reannealing 100 increasing (method) (Scattered) interval (0.5 to 5) Inertia weight Linearly Mutation Adaptive Temperature Exponential decreasing feasible update (0.9 to 0.4) v max 02 Elite count 4 Initial temperature 100 Our scheme runs iteratively in order to find the minimum of fitness function, e j, with stoppage criteria as 2000 number of flights or fitness value e j 10 8 whichever comes earlier. One of the set of unknown weights learned by the PSO-SA algorithm is provided in Table 2. These weights can be used in equation (13) to obtain the solution of the equation for any input time t between 0 and 1. The classical deterministic numerical technique in GL method is also used to obtain the solution of Equation (21). The relation used to solve the equation can be written as: ( ) y m = 1 t h ν m m Γ3 ν t2 ν m 1 + Wj ν y m j, m = 1, 2, 3,..., 100, (24) j=1

8 6308 M. A. Z. RAJA, I. M. QURESHI AND J. A. KHAN Table 2. The sample set of weights trained by FDE-NN with PSO-SA algorithm ν = 0.5 ν = 0.75 i w i α i b i w i α i b i ( ) ν where y m = y(mh), h = 0.01, t m = mh and Wj ν = ( 1) j, j = 0, 1, 2,... j The solution obtained for the equation by FDE-NN with PSO-SA algorithm and the GL method are given in Table 3. It also includes the exact solution as well as the reported result of stochastic solver using neural network supported by genetic algorithms [22]. It can be seen from the table that our proposed methodology gives better result than that of GL method. It also gives better results as compared to that of GA-SA, although the population size for GA-SA case was 200, while that for PSO-SA was only 80. Hence, with less than half the computational cost, the results of PSO-SA are still comparable to that of GA-SA. Table 3. Results for solution of FDE given in problem I ν = 0.5 ν = 0.75 Exact FDE-NN Absolute Error FDE-NN Absolute Error t y(t) Our GA [22] GL Our GA [22] GL Our GL Our GL e e-5 3.7e e e-4 4.0e e-4 6.7e e-4 3.6e-4 7.4e e-3 1.2e e-4 1.1e e-3 1.8e e-3 4.3e-4 1.3e e-3 2.2e e-3 1.6e e- 2.7e e-3 2.7e-3 1.9e e-3 3.1e e-4 2.1e e-3 3.4e e-5 4.8e-3 2.3e e-4 3.8e e-4 2.6e e-4 4.1e e-4 3.5e-4 2.8e e-4 4.4e-3 In order to make further analysis of the scheme, results are also determined for various inputs t (0, 10). The results are shown graphically in Figure 3. It can be seen from Figure 3(a), that the result obtained by our algorithm is overlapping the exact solution. In order to view the difference clearly, the zoomed diagram is also shown in Figure 3(b). The training of FDE-NN is made for bounded input between 0 and 1. Therefore, the error starts to accumulate for input greater than 1, as can be seen from Figure 3(c). It

9 SOLVING FDES USING ANN OPTIMIZED WITH PSO 6309 may start to grow rapidly for more deviated training inputs. Moreover, it can be seen for Figure 3(d) that solution starts to diverge for inputs greater than 4. (a) (b) (c) (d) Figure 3. Comparison of our result with exact solution for different input intervals for ν = 0.75 Enough simulations have been performed to test the reliability of our designed scheme. In this regard 100 independent runs were carried out for finding the weights of FDE- NN optimized with SA, GA, GA-SA, PSO and PSO-SA algorithms. The MATLAB optimization toolbox is used for SA and GA with parameter setting as given in Table 1. The term best and worst corresponds to minimum and maximum errors. The statistical parameter like mean and standard deviation (STD) are useful to determine the behavior of the results. The best, worst, mean and STD for inputs t (0, 1) with step 0.1 is calculated for FDE-NN optimized by PSO-SA. The results are summarized in Table 4. These results validate the applicability of our scheme for solution of such equations. Moreover, the other stochastic solvers are used for this optimization problem for comparison. In this regard, 100 independent runs for finding weights by SA, GA, GA-SA and standard PSO are also executed. The comparison of the results is made for some inputs and it is given in Table 5. It can be seen that the best result are obtained using PSO-SA hybrid technique. The same is verified by Figure 4, in which the value of objective function, e j, is plotted in descending order against the number of independent runs of different solvers. It is further added that our approach used optimization mainly based on particle

10 6310 M. A. Z. RAJA, I. M. QURESHI AND J. A. KHAN Table 4. The statistical parameters of the solution by FDE-NN optimized with PSO-SA scheme ν = 0.5 ν = 0.75 t Best Worst Mean STD Best Worst Mean STD e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e-03 swarm optimization technique, which is already proven to have reduced computational complexity than that of Genetic Algorithm based approaches [44,45]. Table 5. Comparison of stochastic solvers for solution of problem I ν = 0.5 ν = 0.75 t FDE-NN Best Worst Mean STD Best Worst Mean STD 0.2 SA 2.47e e GA 4.52e e e e e e-02 GA-SA 3.09e e e e e e-03 PSO 7.25e e e e e e-02 PSO-SA 1.69e e e e e e SA 3.38e e GA 4.86e e e e e e-02 GA-SA 1.67e e e e e e-02 PSO 6.17e e e e e e-02 PSO-SA 3.55e e e e e e Problem II. In this example, our intent is to further analyze the proposed methodology by applying to the differential equation of fractional order for which the exact solution is not known. Therefore, the comparative studies of the scheme are carried out against approximate analytic solver and other standard numerical methods. Let us take such ordinary fractional differential equation as [23]: Dy(t) D1/2 y(t) + 2 y(t) = 0, y(0) = 0. (25) 15 The approximate analytic solution can be determined by direct approach method [3]. It is written in the form of special function as: y(t) = a 1 ε t ( 0, a 2 1 ) a2 ε t ( 0, a a 1 ) + a1 ε t ( 1/2, a 2 1 ) a2 ε t ( 1/2, a 2 2 ), (26) where a 1 and a 2 are the zeros of indicial polynomial of (19) and ε t is a special function to two inputs and it can be represented in terms of Mittag-Leffler function as: ε t (ν, a) = t ν k=0 at t Γν + k + 1 = tν M 1,1+ν (at), (27)

11 SOLVING FDES USING ANN OPTIMIZED WITH PSO 6311 (a) (b) Figure 4. Comparison of FDE-NN networks optimized with stochastic solvers, (a) is for ν = 0.5 and (b) is for ν = 0.75 where M 1,1+ν (at) is given in (8). Similarly, solution for Equation (25) can be written in terms of error function as: y(t) = a 1 e a2 1 t erfc ( a 1 t 1/2) a 2 e a2 2 t erfc ( a 2 t 1/2). (28) Equation (25) is an important equation in fractional calculus. It can be interpreted as a simplified form of composite fractional relaxation equation, and also it is representing a special case of the unsteady motion of a particle accelerating in a viscous fluid under the action of gravity, which is referred to as Basset problem [46,47]. This problem has been simulated by FDE-NN networks (13)-(15) similar to previous example. The input of the training set is chosen from time t (0, 1) with a step of 0.1. The fitness function can be given as: e j = i=1 [ Dŷ(t) D1/2 ŷ(t) ŷ(t) ] 2 + [ŷ(0)] 2 j, j = 1, 2, 3,... (29) The set of weights learnt stochastically using GA-SA, PSO, PSO-SA algorithms are given in Table 6. Using these weights in Equation (13) the solution of the equation can be determined. The famous numerical technique developed by Podlubny [39], based on successive approximation method, is also applied to solve the equation. The recursive relations are used for computations, given as: y m = ( h1/ h ) y m h1/2 m j=1 W 1/2 j y m j, m = 1, 2, 3,..., 100, h = (30) In order to compare the results on input interval t (0, 1) with step 0.1, Podlubny numerical method (PNM) using Equation (30), approximate analytical solution using direct approach (DAM) as given in (28) and solution due to stochastic solvers GA-SA, PSO and PSO-SA have been given in Table 7. It can be seen that our algorithm can also approximate the solution for such equations. Once again 100 independent runs have been executed for this equation using solvers SA, GA, GA-SA, PSO and PSO-SA. The minimum value of fitness function, e j, is set as figure of merit for this equation. The summary of the statistical results are provided in

12 6312 M. A. Z. RAJA, I. M. QURESHI AND J. A. KHAN Table 6. A set of weights trained for FDE-NN networks GA-SA PSO PSO-SA i w i α i b i w i α i b i w i α i b i Table 7. Results for solution of the equation in problem II t DAM PNM GA-SA PSO PSO-SA Table 8 and plotted in Figure 5. The trend of the results is same as in case of the previous example and PSO-SA hybrid intelligent approach is invariably the best. Table 8. Comparison of stochastic solvers using error e j for problem II FDE-NN Best Worst Mean STD SA 1.47e GA 1.37e e e-03 GA-SA 9.01e e e-03 PSO 1.25e e e-03 PSO-SA 1.79e e e Problem III. In this example, a complex fractional differential equation is taken to determine the strength and weakness of our proposed scheme for such models. In this regard, let us take a non-linear ordinary fractional differential equation given as [13,23,48]: D ν y(t) = Γ(5 + ν/2) Γ(9 ν) t8 ν 3 Γ(5 ν/2) t4 ν/2 + 9 ( ) 3 3 Γ(ν +1)+ 4 2 tν/2 t 4 [y(t)] 3/2, (31)

13 SOLVING FDES USING ANN OPTIMIZED WITH PSO 6313 Figure 5. Comparison of results for FDE-NN networks optimized with stochastic solvers with initial and boundary conditions given as y(0) = 0 and y(1) = 0.25, respectively. The exact solution for the this equation is given as: y(t) = t 8 3t 4+ν/ tν (32) The classical numerical techniques used for solution of FDEs in problems I and II are unable to provide solution to such problems. However, modern deterministic methods with higher computational cost can provide solution for (31), such as fractional Adams method [49] and variation iteration method [50]. The simulation has been performed for this problem on similar pattern to the previous examples. The order of fractional derivative ν is taken as 0.25, 0.5 and The set of weights learned stochastically using PSO-SA algorithms are given in Table 9. Table 9. A set of weights trained for FDE-NN networks by PSO-SA algorithm ν = 0.25 ν = 0.5 ν = 0.75 i w i α i b i w i α i b i w i α i b i Using these weights in Equation (13), the results can be obtained which are given in Table 10. Moreover, the graphic comparison of our obtained solution with the exact solution is given in Figure 6. The numerical result of the Adams scheme [13] based on predictor corrector approach are given separately in Table 11 as the errors are given only for t = 1

14 6314 M. A. Z. RAJA, I. M. QURESHI AND J. A. KHAN Table 10. Summary of the result for solution of FDE in problem III ν = 0.5 ν = 0.25 ν = 0.75 t Exact PSO-SA Error GA[23] Error Exact PSO-SA Exact PSO-SA e e e e e e Figure 6. The exact and PSO-SA algorithm solutions for problem III for different mesh sizes. As can be seen from TableS 10 and 11 that at time t = 1, Table 11. Numerical result of Adam scheme at different mesh sizes Mesh Size (h) Error at t = 1 1 1/ / e / e / e / e / e / e-04 ν = 0.25 and mesh size h = 1/10, the value of the error by Adam scheme is 0.25 while by our proposed scheme is This error reduces to in Adam scheme by reducing mesh size to 1/640, but at the cost of much greater computational complexity.

15 SOLVING FDES USING ANN OPTIMIZED WITH PSO 6315 The statistical analysis, based on 100 independent runs of our scheme is provided in Table 12. It can be seen that differences exist between best and worst results. Moreover, Table 12. Statistical parameters of the solution by FDE-NN with PSO-SA algorithm ν = 0.5 ν = 0.75 t Best Worst Mean STD Best Worst Mean STD e e e e e e e e e e e e e e e e e e e e e e the average accuracy obtained is in the range of 10 1 to The stochastic solver, like SA algorithm, mostly provides the results with objective function value more than 1. Similarly the effects of SA in hybridization approach with PSO and GA are also not significant. In most of the independent runs there is no improvement made with SA. Therefore, 125 independent runs of GA-SA and PSO-SA are executed. The results of best 100 runs are plotted in Figure 7, in which the value of the fitness function, e j, has been drawn in descending order against the numbers of independent runs of the algorithms. On the basis of these result, it can be stated that our proposed method is applicable to solve such problems, but with reduced accuracy. (a) (b) Figure 7. Comparison of FDE-NN networks optimized with stochastic solvers, (a) is for ν = 0.5 and (b) is for ν = Conclusions. A new stochastic computational approach has been developed for solving the FDEs by swarm intelligence optimized neural networks. The method has been tested successfully by applying it to different linear and non-linear ordinary differential

16 6316 M. A. Z. RAJA, I. M. QURESHI AND J. A. KHAN equations of fractional order. A large number of Monte Carlo simulations with stochastic solvers validated its reliability and effectiveness. The best results are achieved for FDE-NN networks optimized with PSO-SA algorithm instead of SA, GA, GA-SA, PSO algorithms. We have shown that PSO-SA, for less than half the population as compared to GA-SA, gives same accuracy. It has also been shown that proposed scheme can approximate the solution with the accuracy comparable to the standard state of art deterministic numerical solvers or even better in some cases. The strength of designed scheme over such solvers is that, it can provide the result on continuous finite time domain, instead of predefined discrete grid of points. In the future, we intend to look for basis function other than exponential function for which the fractional derivative is available. Moreover, we shall also look into artificial bee colony as a good global optimizer for not only the problems given in this paper, but also fractional differential equations which still lie unsolved. Acknowledgment. The authors gratefully acknowledge Professor I. Podlubny for providing the MATLAB routine for calculating Mittag-Leffler functions, which are used extensively in our simulations. REFERENCES [1] Y. K. Chang and J. J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions, J. Math. Comput. Modelling, vol.49, pp , [2] W. Deng, Numerical algorithm for the time fractional Fokker-Planck equation, J. Comput. Phys., vol.227, pp , [3] K. B. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley Publisher, New York, [4] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press Publisher, New York, [5] A. K. Anatoly, H. M. Srivastava and J. J. Trujillo, Theory and application of fractional differential equations, North-Holland Mathematics Studies, vol.204, [6] Y. Hu, Y. Luo and Z. Lu, Analytic solution of linear fractional differential equation by Adomian decomposition method, Journal of Computer and Applied Mathematics, vol.215, no.1, pp , [7] S. S. Ray and R. K. Bera, An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Applied Mathematics and Computation, vol.167, no.1, pp , [8] S. Abbasbandy, A new application of He s variational iteration method for quadractic Riccati differential equation by using Adomian s polynomials, Journal of Computational and Applied Mathematics, vol.207, no.1, pp.59-63, [9] S. Das, Analytical solution of a diffusion equation by variational iteration method, Computers and Mathematics with Application, vol.57, no.3, pp , [10] M. Zurigat, S. Momani, Z. Odibat and A. Alawneh, The homotopy analysis method for handling system of fractional differential equations, Applied Mathematics Modeling, vol.34, no.1, pp.24-35, [11] M. Ganjiani, Solution of nonlinear fractional differential equations using homotopy analysis method, Applied Mathematical Modeling, vol.34, no.6, pp , [12] Y. Cenesiz, Y. Keskin and A. Kurnaz, The solution of the Bagley-Torvik equation with generalized Taylor collocation method, Journal of the Franklin institute, vol.347, no.2, pp , [13] M. Weibeer, Efficient Numerical Methods for Fractional Differential Equations and Their Analytical Background, Ph.D. Thesis, [14] W. Deng, Short memory principle and a predictor-corrector approach for fractional differential equations, Journal of Computational and Applied Mathematics, vol.206, no.1, pp , [15] I. Podlubny, Numerical solution of ordinary fractional differential equations by the fractional difference method, Advances in Difference Equation, pp , [16] I. Podlubny, A. V. Chechkin, T. Skovranek, C. Yq and B. Vinagre, Matrix approach to discrete fractional calculus II: Partial fractional differential equations, Journal of Computational Physics, vol.228, no.8, pp , 2009.

17 SOLVING FDES USING ANN OPTIMIZED WITH PSO 6317 [17] A. Junaid, M. A. Z. Raja and I. M. Qureshi, Evolutionary computing approach for the solution of initial value problems in ordinary differential equations, Proc. of WASET, vol.55, pp , [18] A. K. Junaid, R. M. A. Zahoor and I. M. Qureshi, Swarm intelligence for the solution of problems in differential equations, The 2nd International Conference on Environmental and Computer Science, pp , [19] L. P. Aarts and P. van der Veer, Neural network method for solving the partial differential equations, Neural Processing Letters, vol.14, pp , [20] D. R. Rarisi et al., Solving differential equations with unsupervised neural networks, J. Chemical Engineering and Processing, vol.42, pp , [21] L. G. Tsoulos, D. Gavrilis and E. Glavas, Solving differential equations with constructed neural networks, Journal of Neurocomputing, vol.72, no.10-12, pp , [22] R. M. A. Zahoor, A. K. Junaid and I. M. Qureshi, Evolutionary computation technique for solving Riccati differential equation of arbitrary order, Proc. of WASET, vol.58, pp , [23] M. A. Z. Raja, A. K. Junaid and I. M. Qureshi, Evolutionary computational intelligence in solving the fractional differential equations, Lecture Notes in Computer Science, vol.5990, pp , [24] J. Kennedy and R. Eberhart, Particle swarm optimization, Proc. of IEEE International Conference on Neural Networks, Perth, Australia, vol.4, pp , [25] Z. S. Lu and S. Yan, Multiuser detector based on particle swarm algorithm, Proc. of IEEE Symp. Emerging Technologies: Mobile and Wireless Communications, Shanghai, China, [26] C. Liu and Y. Xiao, Multiuser detection using the particle swarm optimization algorithm, Proc. of IEEE ISCIT, [27] M. A. S. Choudhry, M. Zubair, A. Naveed and I. M. Qureshi, Near optimum detector for DS-CDMA system using particle swarm optimization, IEICE Trans. on Commun., vol.e90-b, no.11, pp , [28] J. Nagashima, A. Utani and H. Yamamoto, Efficient flooding method using discrete particle swarm optimization for long-term operation of sensor networks, ICIC Express Letters, vol.3, no.3(b), pp , [29] C.-H. Hsu, C.-S. Tsou and F.-J. Yu, Multicriteria tradeoffs in inventory control using memetic particle swarm optimization, International Journal of Innovative Computing, Information and Control, vol.5, no.11(a), pp , [30] S. N. Sivanandam and P. Visalakshi, Multiprocessor scheduling using hybrid particle swarm optimization with dynamically varying inertia, International Journal of Computer Science and Applications, vol.4, no.3, pp , [31] C. Lin, Y. Liu and C. Lee, An efficient neural fuzzy network based on immune particle swarm optimization for prediction and control applications, International Journal of Innovative Computing, Information and Control, vol.4, no.7, pp , [32] G.-D. Li, S. Masuda, D. Yamaguchi and M. Nagai, The optimal GNN-PID control system using particle swarm optimization algorithm, International Journal of Innovative Computing, Information and Control, vol.5, no.10(b), pp , [33] C. Wang, P. Sui and W. Liu, Improved particle swarm optimization algorithm based on double mutation, ICIC Express Letters, vol.3, no.4(b), pp , [34] Z. Cui, J. Zeng and G. Sun, A fast particle swarm optimization, International Journal of Innovative Computing, Information and Control, vol.2, no.6, pp , [35] J. H. Seo, C. H. Im, C. G. Heo, J. K. Kim, H. K. Jung and C. G. Lee, Multimodal function optimization based on particle swarm optimization, IEEE Trans. on Magnetic, vol.42, no.4, pp , [36] N. Engheta, On the role of fractional calculus in electromagnetic theory, IEEE Antennas Propagat. Mag., vol.39, pp.35-46, [37] S. Zhou et al., Chaos control and synchronization in fractional neuron network system, Chaos, Solitons and Fractals, vol.36, no.4, pp , [38] J. Y. Cao et al., Optimization of fractional order PID controllers based on genetic algorithm, International Conference on Machine Learning and Cybernetics, pp , [39] I. Podlubny, Fractional Differential Equations, Academic Press, New York, [40] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by simulated annealing, Science, New Series, vol.220, no.4598, pp , [41] V. Kroumov, J. Yu and K. Shibayama, 3D path planning for mobile robots using simulated annealing neural network, International Journal of Innovative Computing, Information and Control, vol.6, no.7, pp , 2010.

18 6318 M. A. Z. RAJA, I. M. QURESHI AND J. A. KHAN [42] Z. Odibat, S. Momani and V. S. Erturk, Generalized differential transform method: Application to differential equations of fractional order, Applied Mathematics and Computation, vol.197, pp , [43] M. A. Z. Raja, J. A. Khan and I. M. Qureshi, Heuristic computational approach using swarm intelligence in solving fractional differential equations, Proc. of the 12th GECCO, pp , [44] P. Angeline, Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences, Evolutionary Programming, LNCS, vol.1447, pp , [45] R. C. Eberhart and Y. Shi, Comparison between genetic algorithms and particle swarm optimization, Evolutionary Programming, LNCS, vol.1447, pp , [46] R. Gorenflo and F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, CISM Lecture Notes, [47] F. Mainardi, Fractional relaxation and fractional diffusion equations, mathematical aspects, Proc. of the 14th IMACS World Congress, pp , [48] A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order differential equations, Computer and Mathematics with Applications, vol.59, no.3, pp , [49] C. Li and C. Tao, On the fractional Adams method, Journal of Computer and Mathematics with Applications, vol.58, no.8, pp , [50] Z. M. Odibat and S. Momani, Application of variational iteration method to nonlinear differential equations of fractional order, International Journal of Nonlinear Sciences and Numerical Simulation, vol.7, pp.27-34, 2006.

NUMERICAL SOLUTION OF FRACTIONAL ORDER DIFFERENTIAL EQUATIONS USING HAAR WAVELET OPERATIONAL MATRIX

NUMERICAL SOLUTION OF FRACTIONAL ORDER DIFFERENTIAL EQUATIONS USING HAAR WAVELET OPERATIONAL MATRIX Palestine Journal of Mathematics Vol. 6(2) (217), 515 523 Palestine Polytechnic University-PPU 217 NUMERICAL SOLUTION OF FRACTIONAL ORDER DIFFERENTIAL EQUATIONS USING HAAR WAVELET OPERATIONAL MATRIX Raghvendra

More information

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013)

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013) ISSN 749-3889 (print, 749-3897 (online International Journal of Nonlinear Science Vol.9(205 No.2,pp.3-20 Approimate Solutions of Fractional Linear and Nonlinear Differential Equations Using Laplace Homotopy

More information

Local Polynomial Smoother for Solving Bagley-Torvik Fractional Differential Equations

Local Polynomial Smoother for Solving Bagley-Torvik Fractional Differential Equations Preprints (wwwpreprintsorg) NOT PEER-REVIEWED Posted: 3 August 216 doi:12944/preprints2168231v1 Article Local Polynomial Smoother for Solving Bagley-Torvik Fractional Differential Equations Tianshun Yan

More information

ARTIFICIAL NEURAL NETWORK WITH HYBRID TAGUCHI-GENETIC ALGORITHM FOR NONLINEAR MIMO MODEL OF MACHINING PROCESSES

ARTIFICIAL NEURAL NETWORK WITH HYBRID TAGUCHI-GENETIC ALGORITHM FOR NONLINEAR MIMO MODEL OF MACHINING PROCESSES International Journal of Innovative Computing, Information and Control ICIC International c 2013 ISSN 1349-4198 Volume 9, Number 4, April 2013 pp. 1455 1475 ARTIFICIAL NEURAL NETWORK WITH HYBRID TAGUCHI-GENETIC

More information

A Novel Approach for Complete Identification of Dynamic Fractional Order Systems Using Stochastic Optimization Algorithms and Fractional Calculus

A Novel Approach for Complete Identification of Dynamic Fractional Order Systems Using Stochastic Optimization Algorithms and Fractional Calculus 5th International Conference on Electrical and Computer Engineering ICECE 2008, 20-22 December 2008, Dhaka, Bangladesh A Novel Approach for Complete Identification of Dynamic Fractional Order Systems Using

More information

EXACT TRAVELING WAVE SOLUTIONS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING THE IMPROVED (G /G) EXPANSION METHOD

EXACT TRAVELING WAVE SOLUTIONS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING THE IMPROVED (G /G) EXPANSION METHOD Jan 4. Vol. 4 No. 7-4 EAAS & ARF. All rights reserved ISSN5-869 EXACT TRAVELIN WAVE SOLUTIONS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USIN THE IMPROVED ( /) EXPANSION METHOD Elsayed M.

More information

Numerical Solution of Blasius Equation through Neural Networks Algorithm

Numerical Solution of Blasius Equation through Neural Networks Algorithm American Journal of Computational Mathematics, 014, 4, 3-3 Published Online June 014 in SciRes. http://www.scirp.org/journal/ajcm http://dx.doi.org/10.436/ajcm.014.43019 Numerical Solution of Blasius Equation

More information

Research Article New Method for Solving Linear Fractional Differential Equations

Research Article New Method for Solving Linear Fractional Differential Equations International Differential Equations Volume 2011, Article ID 814132, 8 pages doi:10.1155/2011/814132 Research Article New Method for Solving Linear Fractional Differential Equations S. Z. Rida and A. A.

More information

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation International Differential Equations Volume 2010, Article ID 764738, 8 pages doi:10.1155/2010/764738 Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

More information

Fuzzy adaptive catfish particle swarm optimization

Fuzzy adaptive catfish particle swarm optimization ORIGINAL RESEARCH Fuzzy adaptive catfish particle swarm optimization Li-Yeh Chuang, Sheng-Wei Tsai, Cheng-Hong Yang. Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan

More information

B-Positive Particle Swarm Optimization (B.P.S.O)

B-Positive Particle Swarm Optimization (B.P.S.O) Int. J. Com. Net. Tech. 1, No. 2, 95-102 (2013) 95 International Journal of Computing and Network Technology http://dx.doi.org/10.12785/ijcnt/010201 B-Positive Particle Swarm Optimization (B.P.S.O) Muhammad

More information

Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform. 1 Introduction. 2 Preliminaries and notations

Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform. 1 Introduction. 2 Preliminaries and notations ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.16(213) No.1,pp.3-11 Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform Saeed

More information

OPTIMAL DISPATCH OF REAL POWER GENERATION USING PARTICLE SWARM OPTIMIZATION: A CASE STUDY OF EGBIN THERMAL STATION

OPTIMAL DISPATCH OF REAL POWER GENERATION USING PARTICLE SWARM OPTIMIZATION: A CASE STUDY OF EGBIN THERMAL STATION OPTIMAL DISPATCH OF REAL POWER GENERATION USING PARTICLE SWARM OPTIMIZATION: A CASE STUDY OF EGBIN THERMAL STATION Onah C. O. 1, Agber J. U. 2 and Ikule F. T. 3 1, 2, 3 Department of Electrical and Electronics

More information

Nonlocal problems for the generalized Bagley-Torvik fractional differential equation

Nonlocal problems for the generalized Bagley-Torvik fractional differential equation Nonlocal problems for the generalized Bagley-Torvik fractional differential equation Svatoslav Staněk Workshop on differential equations Malá Morávka, 28. 5. 212 () s 1 / 32 Overview 1) Introduction 2)

More information

HOMOTOPY PERTURBATION METHOD TO FRACTIONAL BIOLOGICAL POPULATION EQUATION. 1. Introduction

HOMOTOPY PERTURBATION METHOD TO FRACTIONAL BIOLOGICAL POPULATION EQUATION. 1. Introduction Fractional Differential Calculus Volume 1, Number 1 (211), 117 124 HOMOTOPY PERTURBATION METHOD TO FRACTIONAL BIOLOGICAL POPULATION EQUATION YANQIN LIU, ZHAOLI LI AND YUEYUN ZHANG Abstract In this paper,

More information

Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition method

Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition method Annals of the University of Craiova, Mathematics and Computer Science Series Volume 39(2), 2012, Pages 200 210 ISSN: 1223-6934 Solving nonlinear fractional differential equation using a multi-step Laplace

More information

Hybrid Functions Approach for the Fractional Riccati Differential Equation

Hybrid Functions Approach for the Fractional Riccati Differential Equation Filomat 30:9 (2016), 2453 2463 DOI 10.2298/FIL1609453M Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Hybrid Functions Approach

More information

ACTA UNIVERSITATIS APULENSIS No 20/2009 AN EFFECTIVE METHOD FOR SOLVING FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS. Wen-Hua Wang

ACTA UNIVERSITATIS APULENSIS No 20/2009 AN EFFECTIVE METHOD FOR SOLVING FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS. Wen-Hua Wang ACTA UNIVERSITATIS APULENSIS No 2/29 AN EFFECTIVE METHOD FOR SOLVING FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS Wen-Hua Wang Abstract. In this paper, a modification of variational iteration method is applied

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 1 (211) 233 2341 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Variational

More information

A Numerical Scheme for Generalized Fractional Optimal Control Problems

A Numerical Scheme for Generalized Fractional Optimal Control Problems Available at http://pvamuedu/aam Appl Appl Math ISSN: 1932-9466 Vol 11, Issue 2 (December 216), pp 798 814 Applications and Applied Mathematics: An International Journal (AAM) A Numerical Scheme for Generalized

More information

Research Article A Novel Differential Evolution Invasive Weed Optimization Algorithm for Solving Nonlinear Equations Systems

Research Article A Novel Differential Evolution Invasive Weed Optimization Algorithm for Solving Nonlinear Equations Systems Journal of Applied Mathematics Volume 2013, Article ID 757391, 18 pages http://dx.doi.org/10.1155/2013/757391 Research Article A Novel Differential Evolution Invasive Weed Optimization for Solving Nonlinear

More information

A Particle Swarm Optimization (PSO) Primer

A Particle Swarm Optimization (PSO) Primer A Particle Swarm Optimization (PSO) Primer With Applications Brian Birge Overview Introduction Theory Applications Computational Intelligence Summary Introduction Subset of Evolutionary Computation Genetic

More information

A computationally effective predictor-corrector method for simulating fractional order dynamical control system

A computationally effective predictor-corrector method for simulating fractional order dynamical control system ANZIAM J. 47 (EMA25) pp.168 184, 26 168 A computationally effective predictor-corrector method for simulating fractional order dynamical control system. Yang F. Liu (Received 14 October 25; revised 24

More information

SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD

SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD R. C. Mittal 1 and Ruchi Nigam 2 1 Department of Mathematics, I.I.T. Roorkee, Roorkee, India-247667. Email: rcmmmfma@iitr.ernet.in

More information

A Wavelet Method for Solving Bagley-Torvik Equation

A Wavelet Method for Solving Bagley-Torvik Equation Copyright 2014 Tech Science Press CMES, vol.102, no.2, pp.169-182, 2014 A Wavelet Method for Solving Bagley-Torvik Equation Xiaomin Wang 1,2 Abstract: In this paper, an efficient and robust wavelet Laplace

More information

MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS

MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS Hossein Jafari & M. A. Firoozjaee Young Researchers club, Islamic Azad University, Jouybar Branch, Jouybar, Iran

More information

Binary Particle Swarm Optimization with Crossover Operation for Discrete Optimization

Binary Particle Swarm Optimization with Crossover Operation for Discrete Optimization Binary Particle Swarm Optimization with Crossover Operation for Discrete Optimization Deepak Singh Raipur Institute of Technology Raipur, India Vikas Singh ABV- Indian Institute of Information Technology

More information

Comparing Numerical Methods for Solving Nonlinear Fractional Order Differential Equations

Comparing Numerical Methods for Solving Nonlinear Fractional Order Differential Equations Comparing Numerical Methods for Solving Nonlinear Fractional Order Differential Equations Farhad Farokhi, Mohammad Haeri, and Mohammad Saleh Tavazoei Abstract This paper is a result of comparison of some

More information

On the Designing of Fractional Order FIR Differentiator Using Radial Basis Function and Window

On the Designing of Fractional Order FIR Differentiator Using Radial Basis Function and Window On the Designing of Fractional Order FIR Differentiator Using Radial Basis Function and Window Manjeet Kumar Digital Signal Processing Laboratory, Room No. 135, ECE Division, Netaji Subhas Institute of

More information

The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation

The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation M. M. KHADER Faculty of Science, Benha University Department of Mathematics Benha EGYPT mohamedmbd@yahoo.com N. H. SWETLAM

More information

Hybrid particle swarm algorithm for solving nonlinear constraint. optimization problem [5].

Hybrid particle swarm algorithm for solving nonlinear constraint. optimization problem [5]. Hybrid particle swarm algorithm for solving nonlinear constraint optimization problems BINGQIN QIAO, XIAOMING CHANG Computers and Software College Taiyuan University of Technology Department of Economic

More information

Exact Solutions of Fractional-Order Biological Population Model

Exact Solutions of Fractional-Order Biological Population Model Commun. Theor. Phys. (Beijing China) 5 (009) pp. 99 996 c Chinese Physical Society and IOP Publishing Ltd Vol. 5 No. 6 December 15 009 Exact Solutions of Fractional-Order Biological Population Model A.M.A.

More information

Beta Damping Quantum Behaved Particle Swarm Optimization

Beta Damping Quantum Behaved Particle Swarm Optimization Beta Damping Quantum Behaved Particle Swarm Optimization Tarek M. Elbarbary, Hesham A. Hefny, Atef abel Moneim Institute of Statistical Studies and Research, Cairo University, Giza, Egypt tareqbarbary@yahoo.com,

More information

International Journal of Modern Theoretical Physics, 2012, 1(1): International Journal of Modern Theoretical Physics

International Journal of Modern Theoretical Physics, 2012, 1(1): International Journal of Modern Theoretical Physics International Journal of Modern Theoretical Physics, 2012, 1(1): 13-22 International Journal of Modern Theoretical Physics Journal homepage:www.modernscientificpress.com/journals/ijmtp.aspx ISSN: 2169-7426

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied Mathematics Letters 24 (211) 219 223 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Laplace transform and fractional differential

More information

Solving Numerical Optimization Problems by Simulating Particle-Wave Duality and Social Information Sharing

Solving Numerical Optimization Problems by Simulating Particle-Wave Duality and Social Information Sharing International Conference on Artificial Intelligence (IC-AI), Las Vegas, USA, 2002: 1163-1169 Solving Numerical Optimization Problems by Simulating Particle-Wave Duality and Social Information Sharing Xiao-Feng

More information

Research Article The Extended Fractional Subequation Method for Nonlinear Fractional Differential Equations

Research Article The Extended Fractional Subequation Method for Nonlinear Fractional Differential Equations Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2012, Article ID 924956, 11 pages doi:10.1155/2012/924956 Research Article The Extended Fractional Subequation Method for Nonlinear

More information

arxiv: v1 [math.na] 8 Jan 2019

arxiv: v1 [math.na] 8 Jan 2019 arxiv:190102503v1 [mathna] 8 Jan 2019 A Numerical Approach for Solving of Fractional Emden-Fowler Type Equations Josef Rebenda Zdeněk Šmarda c 2018 AIP Publishing This article may be downloaded for personal

More information

EXACT SOLUTIONS OF NON-LINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS BY FRACTIONAL SUB-EQUATION METHOD

EXACT SOLUTIONS OF NON-LINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS BY FRACTIONAL SUB-EQUATION METHOD THERMAL SCIENCE, Year 15, Vol. 19, No. 4, pp. 139-144 139 EXACT SOLUTIONS OF NON-LINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS BY FRACTIONAL SUB-EQUATION METHOD by Hong-Cai MA a,b*, Dan-Dan YAO a, and

More information

College, Nashik-Road, Dist. - Nashik (MS), India,

College, Nashik-Road, Dist. - Nashik (MS), India, Approximate Solution of Space Fractional Partial Differential Equations and Its Applications [1] Kalyanrao Takale, [2] Manisha Datar, [3] Sharvari Kulkarni [1] Department of Mathematics, Gokhale Education

More information

Solution to Force-Free and Forced Duffing-Van der Pol Oscillator Using Memetic Computing

Solution to Force-Free and Forced Duffing-Van der Pol Oscillator Using Memetic Computing 2012, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com Solution to Force-Free and Forced Duffing-Van der Pol Oscillator Using Memetic Computing Suheel

More information

The geometric and physical interpretation of fractional order derivatives of polynomial functions

The geometric and physical interpretation of fractional order derivatives of polynomial functions The geometric and physical interpretation of fractional order derivatives of polynomial functions M.H. Tavassoli, A. Tavassoli, M.R. Ostad Rahimi Abstract. In this paper, after a brief mention of the definitions

More information

Dynamic Response and Oscillating Behaviour of Fractionally Damped Beam

Dynamic Response and Oscillating Behaviour of Fractionally Damped Beam Copyright 2015 Tech Science Press CMES, vol.104, no.3, pp.211-225, 2015 Dynamic Response and Oscillating Behaviour of Fractionally Damped Beam Diptiranjan Behera 1 and S. Chakraverty 2 Abstract: This paper

More information

Higher order numerical methods for solving fractional differential equations

Higher order numerical methods for solving fractional differential equations Noname manuscript No. will be inserted by the editor Higher order numerical methods for solving fractional differential equations Yubin Yan Kamal Pal Neville J Ford Received: date / Accepted: date Abstract

More information

DIfferential equations of fractional order have been the

DIfferential equations of fractional order have been the Multistage Telescoping Decomposition Method for Solving Fractional Differential Equations Abdelkader Bouhassoun Abstract The application of telescoping decomposition method, developed for ordinary differential

More information

Secondary Frequency Control of Microgrids In Islanded Operation Mode and Its Optimum Regulation Based on the Particle Swarm Optimization Algorithm

Secondary Frequency Control of Microgrids In Islanded Operation Mode and Its Optimum Regulation Based on the Particle Swarm Optimization Algorithm International Academic Institute for Science and Technology International Academic Journal of Science and Engineering Vol. 3, No. 1, 2016, pp. 159-169. ISSN 2454-3896 International Academic Journal of

More information

FEEDBACK GMDH-TYPE NEURAL NETWORK AND ITS APPLICATION TO MEDICAL IMAGE ANALYSIS OF LIVER CANCER. Tadashi Kondo and Junji Ueno

FEEDBACK GMDH-TYPE NEURAL NETWORK AND ITS APPLICATION TO MEDICAL IMAGE ANALYSIS OF LIVER CANCER. Tadashi Kondo and Junji Ueno International Journal of Innovative Computing, Information and Control ICIC International c 2012 ISSN 1349-4198 Volume 8, Number 3(B), March 2012 pp. 2285 2300 FEEDBACK GMDH-TYPE NEURAL NETWORK AND ITS

More information

ON THE SOLUTIONS OF NON-LINEAR TIME-FRACTIONAL GAS DYNAMIC EQUATIONS: AN ANALYTICAL APPROACH

ON THE SOLUTIONS OF NON-LINEAR TIME-FRACTIONAL GAS DYNAMIC EQUATIONS: AN ANALYTICAL APPROACH International Journal of Pure and Applied Mathematics Volume 98 No. 4 2015, 491-502 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v98i4.8

More information

A DELAY-DEPENDENT APPROACH TO DESIGN STATE ESTIMATOR FOR DISCRETE STOCHASTIC RECURRENT NEURAL NETWORK WITH INTERVAL TIME-VARYING DELAYS

A DELAY-DEPENDENT APPROACH TO DESIGN STATE ESTIMATOR FOR DISCRETE STOCHASTIC RECURRENT NEURAL NETWORK WITH INTERVAL TIME-VARYING DELAYS ICIC Express Letters ICIC International c 2009 ISSN 1881-80X Volume, Number (A), September 2009 pp. 5 70 A DELAY-DEPENDENT APPROACH TO DESIGN STATE ESTIMATOR FOR DISCRETE STOCHASTIC RECURRENT NEURAL NETWORK

More information

The Parameters Selection of PSO Algorithm influencing On performance of Fault Diagnosis

The Parameters Selection of PSO Algorithm influencing On performance of Fault Diagnosis The Parameters Selection of Algorithm influencing On performance of Fault Diagnosis Yan HE,a, Wei Jin MA and Ji Ping ZHANG School of Mechanical Engineering and Power Engineer North University of China,

More information

SOLUTIONS OF FRACTIONAL DIFFUSION EQUATIONS BY VARIATION OF PARAMETERS METHOD

SOLUTIONS OF FRACTIONAL DIFFUSION EQUATIONS BY VARIATION OF PARAMETERS METHOD THERMAL SCIENCE, Year 15, Vol. 19, Suppl. 1, pp. S69-S75 S69 SOLUTIONS OF FRACTIONAL DIFFUSION EQUATIONS BY VARIATION OF PARAMETERS METHOD by Syed Tauseef MOHYUD-DIN a, Naveed AHMED a, Asif WAHEED c, Muhammad

More information

On The Leibniz Rule And Fractional Derivative For Differentiable And Non-Differentiable Functions

On The Leibniz Rule And Fractional Derivative For Differentiable And Non-Differentiable Functions On The Leibniz Rule And Fractional Derivative For Differentiable And Non-Differentiable Functions Xiong Wang Center of Chaos and Complex Network, Department of Electronic Engineering, City University of

More information

Application Research of Fireworks Algorithm in Parameter Estimation for Chaotic System

Application Research of Fireworks Algorithm in Parameter Estimation for Chaotic System Application Research of Fireworks Algorithm in Parameter Estimation for Chaotic System Hao Li 1,3, Ying Tan 2, Jun-Jie Xue 1 and Jie Zhu 1 1 Air Force Engineering University, Xi an, 710051, China 2 Department

More information

Correspondence should be addressed to Suheel Abdullah Malik;

Correspondence should be addressed to Suheel Abdullah Malik; e Scientific World Journal, Article ID 837021, 10 pages http://dx.doi.org/10.1155/2014/837021 Research Article Nature Inspired Computational Technique for the Numerical Solution of Nonlinear Singular Boundary

More information

Three Steps toward Tuning the Coordinate Systems in Nature-Inspired Optimization Algorithms

Three Steps toward Tuning the Coordinate Systems in Nature-Inspired Optimization Algorithms Three Steps toward Tuning the Coordinate Systems in Nature-Inspired Optimization Algorithms Yong Wang and Zhi-Zhong Liu School of Information Science and Engineering Central South University ywang@csu.edu.cn

More information

Available online at ScienceDirect. Procedia Computer Science 20 (2013 ) 90 95

Available online at  ScienceDirect. Procedia Computer Science 20 (2013 ) 90 95 Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 20 (2013 ) 90 95 Complex Adaptive Systems, Publication 3 Cihan H. Dagli, Editor in Chief Conference Organized by Missouri

More information

Application of fractional-order Bernoulli functions for solving fractional Riccati differential equation

Application of fractional-order Bernoulli functions for solving fractional Riccati differential equation Int. J. Nonlinear Anal. Appl. 8 (2017) No. 2, 277-292 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2017.1476.1379 Application of fractional-order Bernoulli functions for solving fractional

More information

Artificial Bee Colony Algorithm-based Parameter Estimation of Fractional-order Chaotic System with Time Delay

Artificial Bee Colony Algorithm-based Parameter Estimation of Fractional-order Chaotic System with Time Delay IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 1, JANUARY 2017 107 Artificial Bee Colony Algorithm-based Parameter Estimation of Fractional-order Chaotic System with Time Delay Wenjuan Gu, Yongguang

More information

Homotopy Analysis Method for Nonlinear Differential Equations with Fractional Orders

Homotopy Analysis Method for Nonlinear Differential Equations with Fractional Orders Homotopy Analysis Method for Nonlinear Differential Equations with Fractional Orders Yin-Ping Liu and Zhi-Bin Li Department of Computer Science, East China Normal University, Shanghai, 200062, China Reprint

More information

New computational method for solving fractional Riccati equation

New computational method for solving fractional Riccati equation Available online at www.isr-publications.com/jmcs J. Math. Computer Sci., 17 2017), 106 114 Research Article Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs New computational method for

More information

Stochastic Velocity Threshold Inspired by Evolutionary Programming

Stochastic Velocity Threshold Inspired by Evolutionary Programming Stochastic Velocity Threshold Inspired by Evolutionary Programming Zhihua Cui Xingjuan Cai and Jianchao Zeng Complex System and Computational Intelligence Laboratory, Taiyuan University of Science and

More information

Application of Teaching Learning Based Optimization for Size and Location Determination of Distributed Generation in Radial Distribution System.

Application of Teaching Learning Based Optimization for Size and Location Determination of Distributed Generation in Radial Distribution System. Application of Teaching Learning Based Optimization for Size and Location Determination of Distributed Generation in Radial Distribution System. Khyati Mistry Electrical Engineering Department. Sardar

More information

NUMERICAL SOLUTION OF FRACTIONAL RELAXATION OSCILLATION EQUATION USING CUBIC B-SPLINE WAVELET COLLOCATION METHOD

NUMERICAL SOLUTION OF FRACTIONAL RELAXATION OSCILLATION EQUATION USING CUBIC B-SPLINE WAVELET COLLOCATION METHOD italian journal of pure and applied mathematics n. 36 2016 (399 414) 399 NUMERICAL SOLUTION OF FRACTIONAL RELAXATION OSCILLATION EQUATION USING CUBIC B-SPLINE WAVELET COLLOCATION METHOD Raghvendra S. Chandel

More information

High Order Numerical Methods for the Riesz Derivatives and the Space Riesz Fractional Differential Equation

High Order Numerical Methods for the Riesz Derivatives and the Space Riesz Fractional Differential Equation International Symposium on Fractional PDEs: Theory, Numerics and Applications June 3-5, 013, Salve Regina University High Order Numerical Methods for the Riesz Derivatives and the Space Riesz Fractional

More information

DESIGN OF MULTILAYER MICROWAVE BROADBAND ABSORBERS USING CENTRAL FORCE OPTIMIZATION

DESIGN OF MULTILAYER MICROWAVE BROADBAND ABSORBERS USING CENTRAL FORCE OPTIMIZATION Progress In Electromagnetics Research B, Vol. 26, 101 113, 2010 DESIGN OF MULTILAYER MICROWAVE BROADBAND ABSORBERS USING CENTRAL FORCE OPTIMIZATION M. J. Asi and N. I. Dib Department of Electrical Engineering

More information

Three Steps toward Tuning the Coordinate Systems in Nature-Inspired Optimization Algorithms

Three Steps toward Tuning the Coordinate Systems in Nature-Inspired Optimization Algorithms Three Steps toward Tuning the Coordinate Systems in Nature-Inspired Optimization Algorithms Yong Wang and Zhi-Zhong Liu School of Information Science and Engineering Central South University ywang@csu.edu.cn

More information

Gravitational Search Algorithm with Dynamic Learning Strategy

Gravitational Search Algorithm with Dynamic Learning Strategy Journal of Information Hiding and Multimedia Signal Processing c 2018 ISSN 2073-4212 Ubiquitous International Volume 9, Number 1, January 2018 Gravitational Search Algorithm with Dynamic Learning Strategy

More information

Bernstein operational matrices for solving multiterm variable order fractional differential equations

Bernstein operational matrices for solving multiterm variable order fractional differential equations International Journal of Current Engineering and Technology E-ISSN 2277 4106 P-ISSN 2347 5161 2017 INPRESSCO All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Bernstein

More information

A NEW SOLUTION OF SIR MODEL BY USING THE DIFFERENTIAL FRACTIONAL TRANSFORMATION METHOD

A NEW SOLUTION OF SIR MODEL BY USING THE DIFFERENTIAL FRACTIONAL TRANSFORMATION METHOD April, 4. Vol. 4, No. - 4 EAAS & ARF. All rights reserved ISSN35-869 A NEW SOLUTION OF SIR MODEL BY USING THE DIFFERENTIAL FRACTIONAL TRANSFORMATION METHOD Ahmed A. M. Hassan, S. H. Hoda Ibrahim, Amr M.

More information

Evolutionary Functional Link Interval Type-2 Fuzzy Neural System for Exchange Rate Prediction

Evolutionary Functional Link Interval Type-2 Fuzzy Neural System for Exchange Rate Prediction Evolutionary Functional Link Interval Type-2 Fuzzy Neural System for Exchange Rate Prediction 3. Introduction Currency exchange rate is an important element in international finance. It is one of the chaotic,

More information

Numerical Detection of the Lowest Efficient Dimensions for Chaotic Fractional Differential Systems

Numerical Detection of the Lowest Efficient Dimensions for Chaotic Fractional Differential Systems The Open Mathematics Journal, 8, 1, 11-18 11 Open Access Numerical Detection of the Lowest Efficient Dimensions for Chaotic Fractional Differential Systems Tongchun Hu a, b, and Yihong Wang a, c a Department

More information

New Iterative Method for Time-Fractional Schrödinger Equations

New Iterative Method for Time-Fractional Schrödinger Equations ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 9 2013) No. 2, pp. 89-95 New Iterative Method for Time-Fractional Schrödinger Equations Ambreen Bibi 1, Abid Kamran 2, Umer Hayat

More information

DOCTORAL THESIS Extended Abstract

DOCTORAL THESIS Extended Abstract Lodz University of Technology Faculty of Electrical, Electronic, Computer and Control Engineering DOCTORAL THESIS Extended Abstract Dariusz Brzeziński MSc Eng. Problems of Numerical Calculation of Derivatives

More information

Discrete evaluation and the particle swarm algorithm

Discrete evaluation and the particle swarm algorithm Volume 12 Discrete evaluation and the particle swarm algorithm Tim Hendtlass and Tom Rodgers Centre for Intelligent Systems and Complex Processes Swinburne University of Technology P. O. Box 218 Hawthorn

More information

DESIGN AND OPTIMIZATION OF EQUAL SPLIT BROADBAND MICROSTRIP WILKINSON POWER DI- VIDER USING ENHANCED PARTICLE SWARM OPTI- MIZATION ALGORITHM

DESIGN AND OPTIMIZATION OF EQUAL SPLIT BROADBAND MICROSTRIP WILKINSON POWER DI- VIDER USING ENHANCED PARTICLE SWARM OPTI- MIZATION ALGORITHM Progress In Electromagnetics Research, Vol. 118, 321 334, 2011 DESIGN AND OPTIMIZATION OF EQUAL SPLIT BROADBAND MICROSTRIP WILKINSON POWER DI- VIDER USING ENHANCED PARTICLE SWARM OPTI- MIZATION ALGORITHM

More information

CAPACITOR PLACEMENT USING FUZZY AND PARTICLE SWARM OPTIMIZATION METHOD FOR MAXIMUM ANNUAL SAVINGS

CAPACITOR PLACEMENT USING FUZZY AND PARTICLE SWARM OPTIMIZATION METHOD FOR MAXIMUM ANNUAL SAVINGS CAPACITOR PLACEMENT USING FUZZY AND PARTICLE SWARM OPTIMIZATION METHOD FOR MAXIMUM ANNUAL SAVINGS M. Damodar Reddy and V. C. Veera Reddy Department of Electrical and Electronics Engineering, S.V. University,

More information

Self-Adaptive Ant Colony System for the Traveling Salesman Problem

Self-Adaptive Ant Colony System for the Traveling Salesman Problem Proceedings of the 29 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA - October 29 Self-Adaptive Ant Colony System for the Traveling Salesman Problem Wei-jie Yu, Xiao-min

More information

INVESTIGATION OF THE BEHAVIOR OF THE FRACTIONAL BAGLEY-TORVIK AND BASSET EQUATIONS VIA NUMERICAL INVERSE LAPLACE TRANSFORM

INVESTIGATION OF THE BEHAVIOR OF THE FRACTIONAL BAGLEY-TORVIK AND BASSET EQUATIONS VIA NUMERICAL INVERSE LAPLACE TRANSFORM (c) 2016 Rom. Rep. Phys. (for accepted papers only) INVESTIGATION OF THE BEHAVIOR OF THE FRACTIONAL BAGLEY-TORVIK AND BASSET EQUATIONS VIA NUMERICAL INVERSE LAPLACE TRANSFORM K. NOURI 1,a, S. ELAHI-MEHR

More information

An Evolution Strategy for the Induction of Fuzzy Finite-state Automata

An Evolution Strategy for the Induction of Fuzzy Finite-state Automata Journal of Mathematics and Statistics 2 (2): 386-390, 2006 ISSN 1549-3644 Science Publications, 2006 An Evolution Strategy for the Induction of Fuzzy Finite-state Automata 1,2 Mozhiwen and 1 Wanmin 1 College

More information

FRACTIONAL DIFFERENTIAL EQUATIONS

FRACTIONAL DIFFERENTIAL EQUATIONS FRACTIONAL DIFFERENTIAL EQUATIONS An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications by Igor Podlubny Technical University

More information

SHORT-TERM traffic forecasting is a vital component of

SHORT-TERM traffic forecasting is a vital component of , October 19-21, 2016, San Francisco, USA Short-term Traffic Forecasting Based on Grey Neural Network with Particle Swarm Optimization Yuanyuan Pan, Yongdong Shi Abstract An accurate and stable short-term

More information

Cubic B-spline collocation method for solving time fractional gas dynamics equation

Cubic B-spline collocation method for solving time fractional gas dynamics equation Cubic B-spline collocation method for solving time fractional gas dynamics equation A. Esen 1 and O. Tasbozan 2 1 Department of Mathematics, Faculty of Science and Art, Inönü University, Malatya, 44280,

More information

PSO with Adaptive Mutation and Inertia Weight and Its Application in Parameter Estimation of Dynamic Systems

PSO with Adaptive Mutation and Inertia Weight and Its Application in Parameter Estimation of Dynamic Systems Vol. 37, No. 5 ACTA AUTOMATICA SINICA May, 2011 PSO with Adaptive Mutation and Inertia Weight and Its Application in Parameter Estimation of Dynamic Systems ALFI Alireza 1 Abstract An important problem

More information

A PSO APPROACH FOR PREVENTIVE MAINTENANCE SCHEDULING OPTIMIZATION

A PSO APPROACH FOR PREVENTIVE MAINTENANCE SCHEDULING OPTIMIZATION 2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 A PSO APPROACH

More information

Distributed Particle Swarm Optimization

Distributed Particle Swarm Optimization Distributed Particle Swarm Optimization Salman Kahrobaee CSCE 990 Seminar Main Reference: A Comparative Study of Four Parallel and Distributed PSO Methods Leonardo VANNESCHI, Daniele CODECASA and Giancarlo

More information

ACTA UNIVERSITATIS APULENSIS No 11/2006

ACTA UNIVERSITATIS APULENSIS No 11/2006 ACTA UNIVERSITATIS APULENSIS No /26 Proceedings of the International Conference on Theory and Application of Mathematics and Informatics ICTAMI 25 - Alba Iulia, Romania FAR FROM EQUILIBRIUM COMPUTATION

More information

An Analytical Scheme for Multi-order Fractional Differential Equations

An Analytical Scheme for Multi-order Fractional Differential Equations Tamsui Oxford Journal of Mathematical Sciences 26(3) (2010) 305-320 Aletheia University An Analytical Scheme for Multi-order Fractional Differential Equations H. M. Jaradat Al Al Bayt University, Jordan

More information

ON SOLUTION OF NONLINEAR MODELS: A HYBRID ALGORITHM OF ARTIFICIAL BEE COLONY ALGORITHM AND ARTIFICIAL SHOWERING ALGORITHM

ON SOLUTION OF NONLINEAR MODELS: A HYBRID ALGORITHM OF ARTIFICIAL BEE COLONY ALGORITHM AND ARTIFICIAL SHOWERING ALGORITHM Pak. J. Statist. 2017 Vol. 33(5), 399-409 ON SOLUTION OF NONLINEAR MODELS: A HYBRID ALGORITHM OF ARTIFICIAL BEE COLONY ALGORITHM AND ARTIFICIAL SHOWERING ALGORITHM M. Luqman, M. Saeed and Javaid Ali Department

More information

Quantum-Inspired Differential Evolution with Particle Swarm Optimization for Knapsack Problem

Quantum-Inspired Differential Evolution with Particle Swarm Optimization for Knapsack Problem JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 31, 1757-1773 (2015) Quantum-Inspired Differential Evolution with Particle Swarm Optimization for Knapsack Problem DJAAFAR ZOUACHE 1 AND ABDELOUAHAB MOUSSAOUI

More information

arxiv: v1 [math.ap] 26 Mar 2013

arxiv: v1 [math.ap] 26 Mar 2013 Analytic solutions of fractional differential equations by operational methods arxiv:134.156v1 [math.ap] 26 Mar 213 Roberto Garra 1 & Federico Polito 2 (1) Dipartimento di Scienze di Base e Applicate per

More information

ARTIFICIAL INTELLIGENCE

ARTIFICIAL INTELLIGENCE BABEŞ-BOLYAI UNIVERSITY Faculty of Computer Science and Mathematics ARTIFICIAL INTELLIGENCE Solving search problems Informed local search strategies Nature-inspired algorithms March, 2017 2 Topics A. Short

More information

Performance Evaluation of IIR Filter Design Using Multi-Swarm PSO

Performance Evaluation of IIR Filter Design Using Multi-Swarm PSO Proceedings of APSIPA Annual Summit and Conference 2 6-9 December 2 Performance Evaluation of IIR Filter Design Using Multi-Swarm PSO Haruna Aimi and Kenji Suyama Tokyo Denki University, Tokyo, Japan Abstract

More information

Discrete Evaluation and the Particle Swarm Algorithm.

Discrete Evaluation and the Particle Swarm Algorithm. Abstract Discrete Evaluation and the Particle Swarm Algorithm. Tim Hendtlass and Tom Rodgers, Centre for Intelligent Systems and Complex Processes, Swinburne University of Technology, P. O. Box 218 Hawthorn

More information

Applying Particle Swarm Optimization to Adaptive Controller Leandro dos Santos Coelho 1 and Fabio A. Guerra 2

Applying Particle Swarm Optimization to Adaptive Controller Leandro dos Santos Coelho 1 and Fabio A. Guerra 2 Applying Particle Swarm Optimization to Adaptive Controller Leandro dos Santos Coelho 1 and Fabio A. Guerra 2 1 Production and Systems Engineering Graduate Program, PPGEPS Pontifical Catholic University

More information

A FUZZY NEURAL NETWORK MODEL FOR FORECASTING STOCK PRICE

A FUZZY NEURAL NETWORK MODEL FOR FORECASTING STOCK PRICE A FUZZY NEURAL NETWORK MODEL FOR FORECASTING STOCK PRICE Li Sheng Institute of intelligent information engineering Zheiang University Hangzhou, 3007, P. R. China ABSTRACT In this paper, a neural network-driven

More information

An Efficient Numerical Method for Solving. the Fractional Diffusion Equation

An Efficient Numerical Method for Solving. the Fractional Diffusion Equation Journal of Applied Mathematics & Bioinformatics, vol.1, no.2, 2011, 1-12 ISSN: 1792-6602 (print), 1792-6939 (online) International Scientific Press, 2011 An Efficient Numerical Method for Solving the Fractional

More information

Tuning of Extended Kalman Filter for nonlinear State Estimation

Tuning of Extended Kalman Filter for nonlinear State Estimation OSR Journal of Computer Engineering (OSR-JCE) e-ssn: 78-0661,p-SSN: 78-877, Volume 18, ssue 5, Ver. V (Sep. - Oct. 016), PP 14-19 www.iosrjournals.org Tuning of Extended Kalman Filter for nonlinear State

More information

A Method of HVAC Process Object Identification Based on PSO

A Method of HVAC Process Object Identification Based on PSO 2017 3 45 313 doi 10.3969 j.issn.1673-7237.2017.03.004 a a b a. b. 201804 PID PID 2 TU831 A 1673-7237 2017 03-0019-05 A Method of HVAC Process Object Identification Based on PSO HOU Dan - lin a PAN Yi

More information

HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION. 1. Introduction

HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION. 1. Introduction International Journal of Analysis and Applications ISSN 229-8639 Volume 0, Number (206), 9-6 http://www.etamaths.com HOMOTOPY PERTURBATION METHOD FOR SOLVING THE FRACTIONAL FISHER S EQUATION MOUNTASSIR

More information

Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm

Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm Bharat Solanki Abstract The optimal capacitor placement problem involves determination of the location, number, type

More information