Semiconductor Lasers EECE 484. Winter Dr. Lukas Chrostowski

Size: px
Start display at page:

Download "Semiconductor Lasers EECE 484. Winter Dr. Lukas Chrostowski"

Transcription

1 Semiconductor Lasers EECE 484 Winter 2013 Dr. Lukas Chrostowski 1

2 484 - Course Information Web Page: (password DBR, check for updates) + Piazza, Marking: Projects 40% Midterm 15% Homework 10% Instructor: Text: Midterm / Exam: Homework: Project: Lab Report: Final Exam 20% Lab Report 15% Dr. Lukas Chrostowski (office: Kaiser 4039, contact via Piazza) Photonics: Optical Electronics in Modern Communications by A. Yariv and P. Yeh, 6th Ed, 2007 Lecture notes 1 Midterm: in-class Exam: exam period ~ 6 homework assignments Laser Cavity Design & Fabrication Model a Semiconductor Laser 1 experimental (DFB laser characterization) 2

3 484 - Course Information Suggested additional texts: Teaching Assistant S.O. Kasap, Principles of Electronic Materials and Devices, 2005 Silicon Photonics Design, Lukas Chrostowski, Michael Hochberg, Book draft, 2012 Xu Wang 3

4 Material to be Covered Lasers & applications Optical communication Electromagnetics review Laser cavities Design Optical gain Semiconductor Lasers Distributed Feedback Lasers Vertical Cavity Lasers Tunable Lasers Fabrication of semiconductor lasers Semiconductor theory band diagrams hetero-junctions semiconductor engineering (e.g. quantum wells) 4

5 Course Outline Maxwells Equations Light confinement Optical Modes Fabry-Perot Resonators Design, Foundry Fabrication, Test Compact models: Laser: Rate Equations Semiconductor Optoelectronic Devices Lasers, Detectors, Amplifiers Semiconductor Theory Band Diagrams Carrier Density Distributions Quasi-Fermi Levels Light-Matter Interaction Optical Transitions (Emission, Absorption) Semiconductor Optical Gain Pumping (Current Injection) Applications Optical / Lightwave Communication Systems Biomedical 5

6 Learning Objectives At the end of this course, the student will be able to: Predict laser characteristics quantitatively and qualitatively Perform analytic calculations predicting the optical properties of laser cavities Design and test a laser cavity. Perform simulations of the laser rate equations to predict laser characteristics, including the impact of laser parameters on fiber propagation Experimentally characterize a laser 6

7 Laser Cavity Design & Fabrication Project Design a laser resonator cavity Objective: Design the highest possible Q factor cavity class competition Parts Waveguide and cavity modelling and design Peer feedback Mask layout Fabrication done by outside e-beam lithography facility February 1 st, Measurements done by TA Report 7

8 Waveguide Bragg Gratings Xu Wang Bragg gratings strip, rib waveguides 15 Single-mode BW: nm Highest ER: 30 db 20 Transmission (db) Wavelength (nm) Phase shifted gratings Transmission ~10 nm Wavelength (nm) 8

9 Model a Semiconductor Laser Project In Matlab, develop a rate equation model for a laser Use the model to predict the performance of the optical communication link e.g., Fibre to the Home at 10 Gb/s Central Office Digital Data Source 10 Gb/s Down-stream data link for Fiber to the Home (upstream is similar) Home Data Appliances (Internet, Telephone, Video on Demand) Laser Current Driver Optical Fiber Optical Fiber Receiver Electronics Semiconductor Laser Optical Splitter 1:32 Optical Detector 9

10 What s a laser? LASER = Light Amplification by Stimulated Emission of Radiation. A laser is an oscillator that operates at very high (optical) frequencies (usually in the range Hz, e.g. 192 THz). In common with an electronic circuit oscillator, a laser is constructed from an amplifier with positive feedback. Lasers are constructed using three essential elements: CAVITY positive feedback PUMP energy source GAIN ELEMENT optical frequency amplifier...output light beam % reflective mirror partially reflective mirror 10

11 Laser Properties Laser light is monochromatic i.e. single colour In contrast to rainbows, white light, etc Laser light is in the form a beam Laser Light 11

12 Optical Spectrum FM Radio/TV Shortwave Radio AM Broadcast Ultrasonic Sonic Visible Light Infrared Light Radar Ultraviolet X-Rays Frequency 1 khz 1 MHz 1 GHz 1 THz 1 YHz 1 ZHz Wavelength 1 Mm 1 km 1 m 1 mm 1 nm 1 pm µm nm Frequency Wavelength (vacuum) THz Near Infrared UV µm Longhaul Telecom Regional Telecom Local Area Networks 1550 nm 1310 nm 850 nm HeNe Lasers 633 nm CD Players 780 nm 12

13 Semiconductor Laser Applications Internet Optical communications Telecom Datacom (millions) Computercom (billions) Other CD players Entertainment Machining Bio-Med Applications l Surgery l Disease detection l Environmental sensing l Drug discovery Q 13

14 Optical Telecommunications Lucent China Sumitomo Electric Industries, Ltd 14

15 History 1916 Albert Einstein Foundations for laser - spontaneous and stimulated emission 1953 Charles Townes 1st MASER demonstrated 1957 Gordon Gould (graduate student) Schalow & Townes 1964 Charles Townes, Nikolay Basov Aleksandr Prokhorov Optical wavelength LASER name, theory Nobel Prize in Physics "for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser-laser principle." 1960 Theodore H. Maiman 1st laser. Used a solid-state flashlamp-pumped synthetic ruby crystal to produce red laser light 1960 Ali Javan, et. al. 1st gas laser - HeNe. continuous operation Basov, Javan Robert Hall Nick Holonyak, Jr semiconductor laser diode proposed 1st NIR GaAs laser 1st visible laser 1970 Zhores Alfrerov heterojunction structure - semiconductor laser Room Temperature operation 15

16 The Ruby Laser First man made laser (built by Theodore Maiman in 1960). Optical pumping usually achieved with a xenon flashlamp (pulsed operation). energy fast transition (non-radiative) pump 29 cm -1 split metastable Theodore Maiman lived in level Vancouver in the last part of R 1 = 694.3nm his life, and died in R 2 = 692.7nm ground state 2010 was the 50 th anniversary of the laser 16

17 Recent History Laser designs: DFB laser Theory, Kogelnik and Shank (1972) Demonstration, A. Yariv et al. (1973) VCSEL (Surface emitting Laser) invention, K. Iga (1977) Room temperature operation (1988) Mass production (started in 1999) Materials Heterostructures, Quantum Wells, Quantum Dots Growth uniformity, composition, doping Work towards higher efficiency, higher power, higher speed, many wavelengths, etc. 17

18 850 nm Vertical Cavity Laser (VCSEL) Lasers fabricated at UBC in the AMPEL Nanofab 18

19 Atom Models Classical (Billiard ball) Bohr debroglie (shell model) Schroedinger PhET.colorado.edu hydrogen-atom 19

20 Hydrogen Atom Electron energy in the hydrogen atom is quantized. n is a quantum number: 1, 2, 3, 4 Each defined state has a wave-function From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap ( McGraw-Hill, 2005) 20

21 Hydrogen Atom Electronic transitions Transitions from one energy level to another occur via energy loss or gain (e.g., via photons) From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap ( McGraw-Hill, 2005) 21

22 Hydrogen Atom An atom can become excited by a collision with another atom. When it returns to its ground energy state, the atom emits a photon. From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap ( McGraw-Hill, 2005) 22

23 Concept of Spontaneous Emission N 2 = population density of energy level 2. N 2 E 2 (i.e. # of electrons per cm 3 ) N 1 E 1 (h = x J.s) An electron can spontaneously fall from energy level E 2 to E 1. A photon of wavelength λ photon is emitted in the process. The photon is emitted in a random direction. The probability of a spontaneous jump is given quantitively by the so-called Einstein A coefficient. A 21 = probability per second of a spontaneous jump from level 2 to level 1. 23

24 Process of Stimulated Emission Electron transitions can be stimulated by the action of an external radiation field. N 2 external field ρ(v) hv 21 hv 21 N 1 ρ(v) = energy density of the applied radiation field at frequency v. (energy per unit volume per unit frequency interval: J.m -3.Hz -1 ). E 2 hv 21 E 1 output photons have: same direction same frequency same phase 24

25 Process of Stimulated Absorption Electrons can also make stimulated transitions in the upward direction between energy levels of an atom by absorbing energy from ρ(v) : N 2 E 2 external field ρ(v) hv 21 N 1 E 1 25

26 Summary: three types of transitions E 2 E 1 spontaneous emission stimulated absorption stimulated emission contributes to noise inside a laser loss mechanism amplification mechanism All three processes occur simultaneously inside a laser. What about LEDs? Detectors? Optical Amplifiers? 26

27 Optical Amplification PUMPING MECHANISM I(0) amplifying laser medium I(L) z=0 z=l z Can we calculate the output intensity using Stimulated emission provides optical amplification. We can calculate the intensity at position L, given the gain function γ 0 : 27

28 Condition for Lasing Gain = Loss For self-sustaining oscillations, the optical power lost through the mirrors must be replenished by the gain medium. Gain Loss e.g., Electronic Oscillator 28

29 Course Outline Maxwells Equations Light confinement Optical Modes Fabry-Perot Resonators Design, Foundry Fabrication, Test Compact models: Laser: Rate Equations Semiconductor Optoelectronic Devices Lasers, Detectors, Amplifiers Semiconductor Theory Band Diagrams Carrier Density Distributions Quasi-Fermi Levels Light-Matter Interaction Optical Transitions (Emission, Absorption) Semiconductor Optical Gain Pumping (Current Injection) Applications Optical / Lightwave Communication Systems Biomedical 29

30 Semiconductor Laser 1) Optics light propagation, reflections, waveguides, optical modes, resonator (Ch. 1-4, 12) 2) Optical Gain in a 2 level atomic system (Ch. 5) 3) Laser Theory Fabry-Perot Laser (Ch. 6) 4) Semiconductor Lasers Semiconductor theory (parts of Ch. 15, 16) Real devices (DFBs, VCSELs), performance Design, Fabrication 1) Optical resonator 3) Light out Semiconductor: 4) Active layer 2) Optical gain 30

31 Laser Candle Analogy Legend: 1 student with arms waving = 1 electron in the excited state with arms down = 1 electron in the ground state with a flame = 1 photon Processes: Spontaneous emission = student lights a candle (with lighter) Stimulated emission = student A s candle lights student B s candle Absorption = student s candle is extinguished student becomes an excited electron Photons have: Direction, Polarization, Wavelength/frequency Cavity: two walls, one partially reflective 31

Engineering Medical Optics BME136/251 Winter 2017

Engineering Medical Optics BME136/251 Winter 2017 Engineering Medical Optics BME136/251 Winter 2017 Monday/Wednesday 2:00-3:20 p.m. Beckman Laser Institute Library, MSTB 214 (lab) Teaching Assistants (Office hours: Every Tuesday at 2pm outside of the

More information

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]

More information

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

L.A.S.E.R. LIGHT AMPLIFICATION. EMISSION of RADIATION

L.A.S.E.R. LIGHT AMPLIFICATION. EMISSION of RADIATION Lasers L.A.S.E.R. LIGHT AMPLIFICATION by STIMULATED EMISSION of RADIATION History of Lasers and Related Discoveries 1917 Stimulated emission proposed by Einstein 1947 Holography (Gabor, Physics Nobel Prize

More information

Mansoor Sheik-Bahae. Class meeting times: Mondays, Wednesdays 17:30-18:45 am; Physics and Astronomy, Room 184

Mansoor Sheik-Bahae. Class meeting times: Mondays, Wednesdays 17:30-18:45 am; Physics and Astronomy, Room 184 Mansoor Sheik-Bahae Office: Physics & Astronomy Rm. 1109 (North Wing) Phone: 277-2080 E-mail: msb@unm.edu To see me in my office, please make an appointment (call or email). Class meeting times: Mondays,

More information

Spontaneous and Stimulated Transitions

Spontaneous and Stimulated Transitions Laser Physics I PH481/581-VT (Mirov) Spontaneous and Stimulated Transitions Lectures 1-2 Fall 2015 C. Davis, Lasers and Electro-optics 1 A laser is an oscillator of optical frequencies that concentrates

More information

F. Elohim Becerra Chavez

F. Elohim Becerra Chavez F. Elohim Becerra Chavez Email:fbecerra@unm.edu Office: P&A 19 Phone: 505 277-2673 Lectures: Tuesday and Thursday, 9:30-10:45 P&A Room 184. Textbook: Laser Electronics (3rd Edition) by Joseph T. Verdeyen.

More information

Principles of Lasers. Cheng Wang. Phone: Office: SEM 318

Principles of Lasers. Cheng Wang. Phone: Office: SEM 318 Principles of Lasers Cheng Wang Phone: 20685263 Office: SEM 318 wangcheng1@shanghaitech.edu.cn The course 2 4 credits, 64 credit hours, 16 weeks, 32 lectures 70% exame, 30% project including lab Reference:

More information

Laser History. In 1916, Albert Einstein predicted the existence of stimulated emission, based on statistical physics considerations.

Laser History. In 1916, Albert Einstein predicted the existence of stimulated emission, based on statistical physics considerations. Laser History In 1916, Albert Einstein predicted the existence of stimulated emission, based on statistical physics considerations. Einstein, A., Zur Quantentheorie der Strahlung, Physikalische Gesellschaft

More information

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission. Lecture 10 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

Lasers & Holography. Ulrich Heintz Brown University. 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1

Lasers & Holography. Ulrich Heintz Brown University. 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1 Lasers & Holography Ulrich Heintz Brown University 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1 Lecture schedule Date Topic Thu, Jan 28 Introductory meeting Tue, Feb 2 Safety training Thu, Feb 4 Lab

More information

Signal regeneration - optical amplifiers

Signal regeneration - optical amplifiers Signal regeneration - optical amplifiers In any atom or solid, the state of the electrons can change by: 1) Stimulated absorption - in the presence of a light wave, a photon is absorbed, the electron is

More information

Modern optics Lasers

Modern optics Lasers Chapter 13 Phys 322 Lecture 36 Modern optics Lasers Reminder: Please complete the online course evaluation Last lecture: Review discussion (no quiz) LASER = Light Amplification by Stimulated Emission of

More information

Phys 2310 Fri. Dec. 12, 2014 Today s Topics. Begin Chapter 13: Lasers Reading for Next Time

Phys 2310 Fri. Dec. 12, 2014 Today s Topics. Begin Chapter 13: Lasers Reading for Next Time Phys 2310 Fri. Dec. 12, 2014 Today s Topics Begin Chapter 13: Lasers Reading for Next Time 1 Reading this Week By Fri.: Ch. 13 (13.1, 13.3) Lasers, Holography 2 Homework this Week No Homework this chapter.

More information

Optoelectronics ELEC-E3210

Optoelectronics ELEC-E3210 Optoelectronics ELEC-E3210 Lecture 3 Spring 2017 Semiconductor lasers I Outline 1 Introduction 2 The Fabry-Pérot laser 3 Transparency and threshold current 4 Heterostructure laser 5 Power output and linewidth

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 due today April 11 th class will be at 2PM instead of

More information

F. Elohim Becerra Chavez

F. Elohim Becerra Chavez F. Elohim Becerra Chavez Email:fbecerra@unm.edu Office: P&A 19 Phone: 505 277-2673 Lectures: Monday and Wednesday, 5:30-6:45 pm P&A Room 184. Textbook: Many good ones (see webpage) Lectures follow order

More information

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1

More information

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Chemistry Instrumental Analysis Lecture 5. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 5 Light Amplification by Stimulated Emission of Radiation High Intensities Narrow Bandwidths Coherent Outputs Applications CD/DVD Readers Fiber Optics Spectroscopy

More information

Phys 2310 Mon. Dec. 4, 2017 Today s Topics. Begin supplementary material: Lasers Reading for Next Time

Phys 2310 Mon. Dec. 4, 2017 Today s Topics. Begin supplementary material: Lasers Reading for Next Time Phys 2310 Mon. Dec. 4, 2017 Today s Topics Begin supplementary material: Lasers Reading for Next Time 1 By Wed.: Reading this Week Lasers, Holography 2 Homework this Week No Homework this chapter. Finish

More information

Special Topics: Photonics and Laser Applications in Engineering ENSC (Undergraduate) (3-0-2) (Graduate) (3-0-0)

Special Topics: Photonics and Laser Applications in Engineering ENSC (Undergraduate) (3-0-2) (Graduate) (3-0-0) Special Topics: Photonics and Laser Applications in Engineering ENSC 460-4 (Undergraduate) (3-0-2) 894-3 (Graduate) (3-0-0) Glenn Chapman, Rm 8831; email glennc@cs.sfu.ca Professor Schedule For 2003-3

More information

Chapter 5. Semiconductor Laser

Chapter 5. Semiconductor Laser Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must

More information

What do we study and do?

What do we study and do? What do we study and do? Light comes from electrons transitioning from higher energy to lower energy levels. Wave-particle nature of light Wave nature: refraction, diffraction, interference (labs) Particle

More information

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light What are Lasers? What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light emitted in a directed beam Light is coherenent

More information

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light What are Lasers? What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light emitted in a directed beam Light is coherenent

More information

Instructor: Welcome to. Phys 774: Principles of Spectroscopy. Fall How can we produce EM waves? Spectrum of Electromagnetic Radiation and Light

Instructor: Welcome to. Phys 774: Principles of Spectroscopy. Fall How can we produce EM waves? Spectrum of Electromagnetic Radiation and Light Welcome to Phys 774: Principles of Spectroscopy Fall 2007 Instructor: Andrei Sirenko Associate Professor at the Dept. of Physics, NJIT http://web.njit.edu/~sirenko 476 Tiernan Office hours: After the classes

More information

Photonics and Optical Communication

Photonics and Optical Communication Photonics and Optical Communication (Course Number 300352) Spring 2007 Optical Source Dr. Dietmar Knipp Assistant Professor of Electrical Engineering http://www.faculty.iu-bremen.de/dknipp/ 1 Photonics

More information

OPTICAL GAIN AND LASERS

OPTICAL GAIN AND LASERS OPTICAL GAIN AND LASERS 01-02-1 BY DAVID ROCKWELL DIRECTOR, RESEARCH & DEVELOPMENT fsona COMMUNICATIONS MARCH 6, 2001 OUTLINE 01-02-2 I. DEFINITIONS, BASIC CONCEPTS II. III. IV. OPTICAL GAIN AND ABSORPTION

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

Semiconductor Lasers for Optical Communication

Semiconductor Lasers for Optical Communication Semiconductor Lasers for Optical Communication Claudio Coriasso Manager claudio.coriasso@avagotech.com Turin Technology Centre 10Gb/s DFB Laser MQW 1 Outline 1) Background and Motivation Communication

More information

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017. A. F. J. Levi 1 Engineering Quantum Mechanics. Fall 2017. TTh 9.00 a.m. 10.50 a.m., VHE 210. Web site: http://alevi.usc.edu Web site: http://classes.usc.edu/term-20173/classes/ee EE539: Abstract and Prerequisites

More information

In a metal, how does the probability distribution of an electron look like at absolute zero?

In a metal, how does the probability distribution of an electron look like at absolute zero? 1 Lecture 6 Laser 2 In a metal, how does the probability distribution of an electron look like at absolute zero? 3 (Atom) Energy Levels For atoms, I draw a lower horizontal to indicate its lowest energy

More information

Other Devices from p-n junctions

Other Devices from p-n junctions Memory (5/7 -- Glenn Alers) Other Devices from p-n junctions Electron to Photon conversion devices LEDs and SSL (5/5) Lasers (5/5) Solid State Lighting (5/5) Photon to electron conversion devices Photodectors

More information

Distributed feedback semiconductor lasers

Distributed feedback semiconductor lasers Distributed feedback semiconductor lasers John Carroll, James Whiteaway & Dick Plumb The Institution of Electrical Engineers SPIE Optical Engineering Press 1 Preface Acknowledgments Principal abbreviations

More information

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi Lecture - 1 Context and Scope of the Course (Refer Slide Time: 00:44) Welcome to this course

More information

Unit-2 LASER. Syllabus: Properties of lasers, types of lasers, derivation of Einstein A & B Coefficients, Working He-Ne and Ruby lasers.

Unit-2 LASER. Syllabus: Properties of lasers, types of lasers, derivation of Einstein A & B Coefficients, Working He-Ne and Ruby lasers. Unit-2 LASER Syllabus: Properties of lasers, types of lasers, derivation of Einstein A & B Coefficients, Working He-Ne and Ruby lasers. Page 1 LASER: The word LASER is acronym for light amplification by

More information

EE 232 Lightwave Devices Lecture 1: Overview and Introduction

EE 232 Lightwave Devices Lecture 1: Overview and Introduction EE 232 Lightwave Devices Lecture 1: Overview and Introduction Instructor: Ming C. Wu University of California, Berkeley Electrical Engineering and Computer Sciences Dept. EE232 Lecture 1-1 Course Information

More information

Introduction to Laser Material Processing. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Introduction to Laser Material Processing. ME 677: Laser Material Processing Instructor: Ramesh Singh 1 Introduction to Laser Material Processing 1 Outline Brief History Design of Laser cavity Stability Types of Lasers 2 Laser History 1917 - Albert Einstein: Theoretical prediction of stimulated emission

More information

Chapter-4 Stimulated emission devices LASERS

Chapter-4 Stimulated emission devices LASERS Semiconductor Laser Diodes Chapter-4 Stimulated emission devices LASERS The Road Ahead Lasers Basic Principles Applications Gas Lasers Semiconductor Lasers Semiconductor Lasers in Optical Networks Improvement

More information

Diode Lasers and Photonic Integrated Circuits

Diode Lasers and Photonic Integrated Circuits Diode Lasers and Photonic Integrated Circuits L. A. COLDREN S. W. CORZINE University of California Santa Barbara, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

Semiconductor Lasers II

Semiconductor Lasers II Semiconductor Lasers II Materials and Structures Edited by Eli Kapon Institute of Micro and Optoelectronics Department of Physics Swiss Federal Institute oftechnology, Lausanne OPTICS AND PHOTONICS ACADEMIC

More information

LASERS. Amplifiers: Broad-band communications (avoid down-conversion)

LASERS. Amplifiers: Broad-band communications (avoid down-conversion) L- LASERS Representative applications: Amplifiers: Broad-band communications (avoid down-conversion) Oscillators: Blasting: Energy States: Hydrogen atom Frequency/distance reference, local oscillators,

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 17.

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 17. FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 17 Optical Sources- Introduction to LASER Fiber Optics, Prof. R.K. Shevgaonkar,

More information

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

General Chemistry by Ebbing and Gammon, 8th Edition

General Chemistry by Ebbing and Gammon, 8th Edition Chem 1045 General Chemistry by Ebbing and Gammon, 8th Edition George W.J. Kenney, Jr Last Update: 26-Mar-2009 Chapter 7: Quantum Theory of the Atom These Notes are to SUPPLIMENT the Text, They do NOT Replace

More information

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state Lecture 15 Stimulated Emission Devices- Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency?

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency? Name: Unit 5- Light and Energy Electromagnetic Spectrum Notes Electromagnetic radiation is a form of energy that emits wave-like behavior as it travels through space. Amplitude (a)- Wavelength (λ)- Which

More information

Interested in exploring science or math teaching as a career?

Interested in exploring science or math teaching as a career? Interested in exploring science or math teaching as a career? Start with Step 1: EDUC 2020 (1 credit) Real experience teaching real kids! No commitment to continue with education courses Registration priority

More information

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase

More information

LASERS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam

LASERS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam LASERS Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam General Objective To understand the principle, characteristics and types

More information

Distinguished Visiting Scientist Program. Prof. Michel Piché Université Laval, Québec

Distinguished Visiting Scientist Program. Prof. Michel Piché Université Laval, Québec Institute for Optical Sciences University of Toronto Distinguished Visiting Scientist Program Prof. Michel Piché Université Laval, Québec Lecture-4: The discovery of the laser The discovery of the laser

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

PHYSICS nd TERM Outline Notes (continued)

PHYSICS nd TERM Outline Notes (continued) PHYSICS 2800 2 nd TERM Outline Notes (continued) Section 6. Optical Properties (see also textbook, chapter 15) This section will be concerned with how electromagnetic radiation (visible light, in particular)

More information

Emission Spectra of the typical DH laser

Emission Spectra of the typical DH laser Emission Spectra of the typical DH laser Emission spectra of a perfect laser above the threshold, the laser may approach near-perfect monochromatic emission with a spectra width in the order of 1 to 10

More information

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase

More information

Laserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik

Laserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik Laserphysik Prof. Yong Lei & Dr. Yang Xu Fachgebiet Angewandte Nanophysik, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Heisenbergbau V 202, Unterpörlitzer Straße

More information

Materialwissenschaft und Nanotechnologie. Introduction to Lasers

Materialwissenschaft und Nanotechnologie. Introduction to Lasers Materialwissenschaft und Nanotechnologie Introduction to Lasers Dr. Andrés Lasagni Lehrstuhl für Funktionswerkstoffe Sommersemester 007 1-Introduction to LASER Contents: Light sources LASER definition

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #6 is assigned, due April 23 rd Final exam May 2 Semiconductor

More information

Fiber lasers and amplifiers. by: Khanh Kieu

Fiber lasers and amplifiers. by: Khanh Kieu Fiber lasers and amplifiers by: Khanh Kieu Project #7: EDFA Pump laser Er-doped fiber Input WDM Isolator Er-doped fiber amplifier Output Amplifier construction Gain, ASE, Output vs pump Co- or counter

More information

Introduction to Semiconductor Integrated Optics

Introduction to Semiconductor Integrated Optics Introduction to Semiconductor Integrated Optics Hans P. Zappe Artech House Boston London Contents acknowledgments reface itroduction Chapter 1 Basic Electromagnetics 1 1.1 General Relationships 1 1.1.1

More information

Study on Quantum Dot Lasers and their advantages

Study on Quantum Dot Lasers and their advantages Study on Quantum Dot Lasers and their advantages Tae Woo Kim Electrical and Computer Engineering University of Illinois, Urbana Champaign Abstract Basic ideas for understanding a Quantum Dot Laser were

More information

-I (PH 6151) UNIT-V PHOTONICS AND FIBRE OPTICS

-I (PH 6151) UNIT-V PHOTONICS AND FIBRE OPTICS Engineering Physics -I (PH 6151) UNIT-V PHOTONICS AND FIBRE OPTICS Syllabus: Lasers Spontaneous and stimulated emission Population Inversion -Einstein s co-efficient (Derivation)- types of lasers-nd-yag,co

More information

Quantum electronics. Nobel Lecture, December 11, 1964 A.M. P ROCHOROV

Quantum electronics. Nobel Lecture, December 11, 1964 A.M. P ROCHOROV A.M. P ROCHOROV Quantum electronics Nobel Lecture, December 11, 1964 One may assume as generally accepted that quantum electronics started to 1,2 exist at the end of 1954 - beginning of 1955. Just by that

More information

EE485 Introduction to Photonics

EE485 Introduction to Photonics Pattern formed by fluorescence of quantum dots EE485 Introduction to Photonics Photon and Laser Basics 1. Photon properties 2. Laser basics 3. Characteristics of laser beams Reading: Pedrotti 3, Sec. 1.2,

More information

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes Introduction to semiconductor nanostructures Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes What is a semiconductor? The Fermi level (chemical potential of the electrons) falls

More information

ECE 484 Semiconductor Lasers

ECE 484 Semiconductor Lasers ECE 484 Semiconductor Lasers Dr. Lukas Chrostowski Department of Electrical and Computer Engineering University of British Columbia January, 2013 Module Learning Objectives: Understand the importance of

More information

QUESTION BANK IN PHYSICS

QUESTION BANK IN PHYSICS QUESTION BANK IN PHYSICS LASERS. Name some properties, which make laser light different from ordinary light. () {JUN 5. The output power of a given laser is mw and the emitted wavelength is 630nm. Calculate

More information

LASER. Light Amplification by Stimulated Emission of Radiation

LASER. Light Amplification by Stimulated Emission of Radiation LASER Light Amplification by Stimulated Emission of Radiation Laser Fundamentals The light emitted from a laser is monochromatic, that is, it is of one color/wavelength. In contrast, ordinary white light

More information

Ms. Monika Srivastava Doctoral Scholar, AMR Group of Dr. Anurag Srivastava ABV-IIITM, Gwalior

Ms. Monika Srivastava Doctoral Scholar, AMR Group of Dr. Anurag Srivastava ABV-IIITM, Gwalior By Ms. Monika Srivastava Doctoral Scholar, AMR Group of Dr. Anurag Srivastava ABV-IIITM, Gwalior Unit 2 Laser acronym Laser Vs ordinary light Characteristics of lasers Different processes involved in lasers

More information

Review of Optical Properties of Materials

Review of Optical Properties of Materials Review of Optical Properties of Materials Review of optics Absorption in semiconductors: qualitative discussion Derivation of Optical Absorption Coefficient in Direct Semiconductors Photons When dealing

More information

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell?

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell? Chemistry Ms. Ye Name Date Block Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell? 1 st shell 2 nd shell 3 rd shell 4 th shell

More information

Optics, Optoelectronics and Photonics

Optics, Optoelectronics and Photonics Optics, Optoelectronics and Photonics Engineering Principles and Applications Alan Billings Emeritus Professor, University of Western Australia New York London Toronto Sydney Tokyo Singapore v Contents

More information

Introduction to Laser Material Processing. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Introduction to Laser Material Processing. ME 677: Laser Material Processing Instructor: Ramesh Singh 1 Introduction to Laser Material Processing 1 Outline Brief History Design of Laser cavity Stability Types of Lasers 2 Laser History 1917 - Albert Einstein: Theoretical prediction of stimulated emission

More information

ICPY471. November 20, 2017 Udom Robkob, Physics-MUSC

ICPY471. November 20, 2017 Udom Robkob, Physics-MUSC ICPY471 19 Laser Physics and Systems November 20, 2017 Udom Robkob, Physics-MUSC Topics Laser light Stimulated emission Population inversion Laser gain Laser threshold Laser systems Laser Light LASER=

More information

EE 232 Lightwave Devices Lecture 1: Overview and Introduction. Course Information (1)

EE 232 Lightwave Devices Lecture 1: Overview and Introduction. Course Information (1) EE 232 Lightwave Devices Lecture 1: Overview and Introduction Instructor: Ming C. Wu University of California, Berkeley Electrical Engineering and Computer Sciences Dept. EE232 Lecture 1-1 Course Information

More information

Chapter 39. Particles Behaving as Waves

Chapter 39. Particles Behaving as Waves Chapter 39 Particles Behaving as Waves 39.1 Electron Waves Light has a dual nature. Light exhibits both wave and particle characteristics. Louis de Broglie postulated in 1924 that if nature is symmetric,

More information

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

ELECTRONIC DEVICES AND CIRCUITS SUMMARY ELECTRONIC DEVICES AND CIRCUITS SUMMARY Classification of Materials: Insulator: An insulator is a material that offers a very low level (or negligible) of conductivity when voltage is applied. Eg: Paper,

More information

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour (Cu) All operate by vaporizing metal in container Helium

More information

LASER. Light Amplification by Stimulated Emission of Radiation

LASER. Light Amplification by Stimulated Emission of Radiation LASER Light Amplification by Stimulated Emission of Radiation Energy Level, Definitions The valence band is the highest filled band The conduction band is the next higher empty band The energy gap has

More information

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1. Introduction Types of electron emission, Dunnington s method, different types of spectra, Fraunhoffer

More information

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful Main Requirements of the Laser Optical Resonator Cavity Laser Gain Medium of 2, 3 or 4 level types in the Cavity Sufficient means of Excitation (called pumping) eg. light, current, chemical reaction Population

More information

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall Due on Nov 20, 2014 by 5:00 PM

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall Due on Nov 20, 2014 by 5:00 PM School of Electrical and Computer Engineering, Cornell University ECE 533: Semiconductor Optoelectronics Fall 14 Homewor 8 Due on Nov, 14 by 5: PM This is a long -wee homewor (start early). It will count

More information

23. Lasers II. Four-level systems are the best for lasers. Steady-state conditions: - threshold. - longitudinal modes. Some laser examples

23. Lasers II. Four-level systems are the best for lasers. Steady-state conditions: - threshold. - longitudinal modes. Some laser examples 23. Lasers II Four-level systems are the best for lasers Steady-state conditions: - threshold - longitudinal modes Some laser examples The teleforce ray will send concentrated beams of particles through

More information

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985 Paper Review IEEE Journal of Quantum Electronics, Feb 1985 Contents Semiconductor laser review High speed semiconductor laser Parasitic elements limitations Intermodulation products Intensity noise Large

More information

Photonic Devices. Light absorption and emission. Transitions between discrete states

Photonic Devices. Light absorption and emission. Transitions between discrete states Light absorption and emission Photonic Devices Transitions between discrete states Transition rate determined by the two states: Fermi s golden rule Absorption and emission of a semiconductor Vertical

More information

Electromagnetic waves

Electromagnetic waves Lecture 21 Electromagnetic waves Atomic Physics Atomic Spectra Lasers Applications Electromagnetic Waves Electromagnetic Waves composed of electric and magnetic fields can be created by an oscillating

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

22. Lasers. Stimulated Emission: Gain. Population Inversion. Rate equation analysis. Two-level, three-level, and four-level systems

22. Lasers. Stimulated Emission: Gain. Population Inversion. Rate equation analysis. Two-level, three-level, and four-level systems . Lasers Stimulated Emission: Gain Population Inversion Rate equation analysis Two-level, three-level, and four-level systems What is a laser? LASER: Light Amplification by Stimulated Emission of Radiation

More information

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected Semiconductor Lasers Comparison with LEDs The light emitted by a laser is generally more directional, more intense and has a narrower frequency distribution than light from an LED. The external efficiency

More information

LASER. Light Amplification by Stimulated Emission of Radiation. Principle and applications

LASER. Light Amplification by Stimulated Emission of Radiation. Principle and applications LASER Light Amplification by Stimulated Emission of Radiation Principle and applications Stimulated Emission process which makes lasers possible, was proposed in 1917 by Albert Einstein. No one realized

More information

S. Blair February 15,

S. Blair February 15, S Blair February 15, 2012 66 32 Laser Diodes A semiconductor laser diode is basically an LED structure with mirrors for optical feedback This feedback causes photons to retrace their path back through

More information

Preview from Notesale.co.uk Page 1 of 38

Preview from Notesale.co.uk Page 1 of 38 F UNDAMENTALS OF PHOTONICS Module 1.1 Nature and Properties of Light Linda J. Vandergriff Director of Photonics System Engineering Science Applications International Corporation McLean, Virginia Light

More information

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1 Chapter 6 Quantum Theory and the Electronic Structure of Atoms Part 1 The nature of light Quantum theory Topics Bohr s theory of the hydrogen atom Wave properties of matter Quantum mechanics Quantum numbers

More information

UNIT I: Electronic Materials.

UNIT I: Electronic Materials. SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: SEMICONDUCTOR PHYSICS (18HS0851) Course & Branch: B.Tech

More information

Unit I LASER Engineering Physics

Unit I LASER Engineering Physics Introduction LASER stands for light Amplification by Stimulated Emission of Radiation. The theoretical basis for the development of laser was provided by Albert Einstein in 1917. In 1960, the first laser

More information

Quantum Dot Lasers. Jose Mayen ECE 355

Quantum Dot Lasers. Jose Mayen ECE 355 Quantum Dot Lasers Jose Mayen ECE 355 Overview of Presentation Quantum Dots Operation Principles Fabrication of Q-dot lasers Advantages over other lasers Characteristics of Q-dot laser Types of Q-dot lasers

More information

Chapter9. Amplification of light. Lasers Part 2

Chapter9. Amplification of light. Lasers Part 2 Chapter9. Amplification of light. Lasers Part 06... Changhee Lee School of Electrical and Computer Engineering Seoul National Univ. chlee7@snu.ac.kr /9 9. Stimulated emission and thermal radiation The

More information

The Photon Concept. Modern Physics [2] How are x-rays produced? Gamma rays. X-ray and gamma ray photons. X-rays & gamma rays How lasers work

The Photon Concept. Modern Physics [2] How are x-rays produced? Gamma rays. X-ray and gamma ray photons. X-rays & gamma rays How lasers work Modern Physics [2] X-rays & gamma rays How lasers work Medical applications of lasers Applications of high power lasers Medical imaging techniques CAT scans MRI s The Photon Concept a beam of light waves

More information

progressive electromagnetic wave

progressive electromagnetic wave LECTURE 11 Ch17 A progressive electromagnetic wave is a self-supporting, energy-carrying disturbance that travels free of its source. The light from the Sun travels through space (no medium) for only 8.3

More information