Statistical interpretation of Numerical Weather Prediction (NWP) output

Size: px
Start display at page:

Download "Statistical interpretation of Numerical Weather Prediction (NWP) output"

Transcription

1 Statistical interpretation of Numerical Weather Prediction (NWP) output 1

2 2

3 3

4 Four types of errors: Systematic errors Model errors Representativeness Synoptic errors Non-systematic errors Small scale noise 4

5 Even when we get rid of systematic errors, make the synoptic forecast perfect and only verify against representative observations the meso-scale 5 noise will still yield non-perfect forecasts

6 The two neighbouring stations Potsdam and Lindenberg outside Berlin are just 75 kilometres apart and are situated in almost the same environment. How well would a forecast based on the other one s observation verify? Other nearby stations were also used (Magdeburg, Dresden, Poznan and Stettin). They provided, together with the previous two data to calculate an average temperature as forecast. 6

7 Stettin 3 m Magdeburg 84 m Potsdam 99 m Lindenberg 115 m Poznan 92 m Dresden 226 m 7

8 Four tests were conducted all with the objective to estimate ( forecast ) the temperature at Lindenberg: 1.Using the observation from Potsdam as forecast 2.Using an average of all five surrounding stations 3.The same but with weights proportional to the square of the distance from Lindenberg 4.The same, but without using the observation from nearby Potsdam 8

9 Other weightings RMSE Potsdam s day & night observations applied on Lindenberg All five surrounding weighted observations 9

10 Other weightings SDE Potsdam s day & night observations applied on Lindenberg All five surrounding weighted observations 10

11 Other weightings MAE Potsdam s day & night observations applied on Lindenberg All five surrounding weighted observations 11

12 all kind of Potsdam s observation applied on Lindenberg All five surrounding weighted observations MAE ECMWF 12UTC + 12h and +24 h 12

13 all kind of Rather 0.6 Error=0 at t=0? 13

14 Conclusions from this observation investigation: 1. During favourable conditions the lowest RMSE and SDE would be around 0.8ºK, for MAE 0.6ºK 2. During seasons when the temperature depends quite a lot on the clouds the values increase to around 2ºK resp. 1½ºK. 3. Verified against a specific site, the weighted area average (3) provided the best forecast, whereas the neighboring station observation method (1) provided the worst. 14

15 Conclusions for all kinds of forecasts beyond a few hours: 1. Due to micro-scale variability the 2 metre temperature is at present not possible to forecast with higher accuracy than 0.8ºK (RMSE,SDE) or 0.6ºK (MAE). 2. Provided homogenous environment an area average forecast, applied to a specific site, might be superior to a site specific. 3. Site specificness only has meaning if the site is not representative to the area, if its climate is different to the area as a whole. 15

16 True and false error curves 16

17 Four types of errors: Systematic errors Model errors Representativeness Synoptic errors Non-systematic errors Small scale noise 17

18 18

19 There is much more to say about this - at some other time 19

20 Four types of errors: Systematic errors Model errors Representativeness Synoptic errors Non-systematic errors Small scale noise 20

21 21

22 RMSE errors of raw T399 grid point +24h forecasts 2007 for Tromsö airport [T] T The main contributor to the large RMSE for inland grid points are mean errors between up to -5º 22

23 RMSE after Kalman-2 filtering makes the quality almost the same for all grid points T

24 Statistical correction, calibration or interpretation: A heavily biased temperature forecast Tromsø (northern Norway) 24

25 The EPS plume after statistical correction Tromsø (northern Norway) 25

26 The forecast ( ) varies more than reality. The adaptive statistical filtering corrects for both mean error and overvariability Tromsø (northern Norway) 26

27 No simple, straight bias. The mean error depends on the forecast Tromsø (northern Norway) 27

28 Four types of errors: Systematic errors Model errors Representativeness Synoptic errors Non-systematic errors Small scale noise 28

29 29

30 The systematic errors we want to correct for are not only 1-dimensional flat biases... 30

31 Obs-T fc = correction Bias? T fc Corr = A(t) 31

32 Obs-T fc = correction Bias? T fc Corr = A(t) It appears as if the old bias has abruptly changed into a new one 32

33 Obs-T fc = correction Systematic error T fc Corr = A(t) + B(t) T fc In reality the systematic error has stayed more or less the same, but defined by two coefficients, A and B 33

34 Err Flat true bias Err 2-D systematic errors T fc T fc Apparent non-systematic errors.. Err Err but when projected into an additional dimension they appear to be systematic T fc T fc T850 fc 34

35 A very, very brief introduction to the adaptive procedure...before the break 35

36 T fc - obs 2-dim error equation Expected error T fc Last NWP forecast 36

37 T fc - obs 2-dim error equation Obs error Last verified NWP forecast T fc 37

38 T fc - obs 2-dim error equation T fc 38

39 T fc - obs 2-dim error equation Slightly modified values of A and B Next forecast Expected error T fc 39

40 The historical background to and its classical application 2nd lecture RSHU 40

41 The origin of the Kalman filter 1960 launching intercontinental ballistic missiles Track uncertainty Corrected track Observation error Airborne radar Ground radar Estimated position 2nd lecture RSHU 41

42 Latest observed position Remote observer Intended position True position 2nd lecture RSHU Estimated position 42

43 2nd lecture RSHU 43

44 2nd lecture RSHU 44

45 1-D corrects for mean errors ( biases ) but can also illustrate the basic philosophy, here in three ways 1. Pictorial description 2. Mathematical derivation 3. Graphical illustration 2nd lecture RSHU 45

46 How is it done? The pictorial version 2nd lecture RSHU 46

47 Obs-T fc = correction The filter makes a cold start i.e. no correction is applied The assumed covariance of a cold start T fc 2nd lecture RSHU 47

48 Obs-T fc = correction The latest verified numerical forecast The ideal correction (=the inverse of the error) and its error T fc The forecast 2nd lecture RSHU 48

49 Obs-T fc = correction The latest verified numerical forecast T fc makes the filter change its value and the initial uncertainty is shrunk 2nd lecture RSHU 49

50 Obs-T fc = correction T fc The correction is defined by the relative size of the observation uncertainty and the filter uncertainty 2nd lecture RSHU 50

51 Obs-T fc = correction The ideal correction (=the inverse of the error) and its error T fc A new forecast makes the filter change its value and the initial uncertainty is shrunk 2nd lecture RSHU 51

52 Obs-T fc = correction T fc The correction is again defined from the relative size of the observation uncertainty and the filter uncertainty 2nd lecture RSHU 52

53 Obs-T fc = correction Finally we end up with the filter oscillating around a mean state with a certain variance (uncertainty) correction Bias T fc This uncertainty have a lower threshold and can never be = 0, which would lock the Kalman filter 2nd lecture RSHU 53

54 How is it done? The mathematical derivation 2nd lecture RSHU 54

55 Y τ =the observed forecast error at verification time τ Y Tfc Tobs Y τ is the sum of the ideal correction χ τ and the noise ν τ Y v 2nd lecture RSHU 55

56 We introduce the first guess values X τ/τ-1 = A τ X τ/τ-1 where A τ = 1-F 1, where F 1 << 1 and Q τ/τ-1 to be discussed later The difference between the first guess value X τ/τ-1 and the observed value Y τ must obviously affect how much we shall modify X τ/τ-1 2nd lecture RSHU 56

57 We now introduce δ τ (0 <δ τ < 1) which indicates how much of the difference between Y τ and X τ/τ-1 that shall modify X τ/τ-1 X X ( Y X 1) / / 1 / Assume that the error in our estimation of χ τ is ε τ X / which yields X ( Y X 1) / 1 / 2nd lecture RSHU 57

58 And with the noise term Y v we get X ( v X 1) / 1 / and after rearrangement of the terms X ) ( 1 )( / 1 v 2nd lecture RSHU 58

59 The (co) variance term which indicates the (un) certainty of our estimation The uncertainty of Y v depends on sub-grid turbulence, non-systematic synoptic errors or measurement errors, what we choose to call the observation error D τ cov( v ) D 2nd lecture RSHU 59

60 cov( ) cov( X ) / Q / and cov( X ) / 1 Q / 1 and cov( v ) D...yields: Q 1 ) 2 / ( Q / 1 2 D 2nd lecture RSHU 60

61 We differentiate Q 1 ) 2 / ( Q / 1 2 D with respect to δτ dq d / 2(1 ) Q / 1 2 D 2nd lecture RSHU 61

62 from dq d / 2(1 ) Q / 1 2 D we get min D ( 1 ) Q / 1 0 min D Q / 1 Q / 1 Which is the final result 2nd lecture RSHU 62

63 1 / 1 / min Q D Q 2 2 / / 1 ) 1 ( D Q Q / / ) 1 ( D Q Q with and the updated forward (co)variances become 2nd lecture RSHU 63

64 How is it done? The graphical illustration 2nd lecture RSHU 64

65 Assume an unknown process χ which can be 1-dim (the mean error or bias of NWP) or N- dim (the N coefficients in an error correction equation) τ-1 τ τ+1 χ 2nd lecture RSHU 65

66 We have at τ-1 an estimated value X τ-1/τ-1 of the unknown process χ with variance Q τ-1/τ-1 Q τ-1/τ-1 X τ-1/τ-1 τ-1 τ τ+1 χ 2nd lecture RSHU 66

67 We carry X forward in time by a linear model A, assuming that the variance increases slightly X τ-1/τ-1 Q τ-1/τ-1 +C A X τ-1/τ-1 τ-1 τ τ+1 χ 2nd lecture RSHU 67

68 We have a predicted estimate, X τ/τ-1 and Q τ/τ-1 similar to the first guess in numerical weather prediction Q τ/τ-1 X τ/τ-1 τ-1 τ τ+1 χ 2nd lecture RSHU 68

69 The observation Y τ, with variance D, of the unknown process χ will modify the first guess value X τ/τ-1 Q τ/τ-1 X τ/τ-1 Y τ D χ τ-1 τ τ+1 2nd lecture RSHU 69

70 The weighting together of D and Q τ/τ-1 yields a variance of the new estimation X τ/τ and Q τ/τ Q τ/τ-1 X τ/τ Q τ/τ D χ τ-1 τ τ+1 2nd lecture RSHU 70

71 The new estimation of X τ/τ and Q τ/τ Q τ/τ X τ/τ τ-1 τ τ+1 χ 2nd lecture RSHU 71

72 The new estimation starts with predicting X τ+1/τ and Q τ+1/τ χ X τ/τ A τ Q τ/τ +c X τ+1/τ Q τ+1/τ τ-1 τ τ+1 2nd lecture RSHU 72

73 ...and a new observation arrives χ A τ Q τ/τ +c X τ+1/τ Q τ+1/τ New Y τ τ-1 τ τ+1 2nd lecture RSHU 73

74 But there are fundamental differences between 1- dimensional filtering and multi-dimensional 74

75 24 hour 2 m temperature forecast for Kiruna in Lapland winter The verification yielded RMSE=5.0 2nd lecture RSHU 75

76 A 1-dimensional Kalman filter reduces an overall bias Correction out of step The corrections yielded a reduction of the mean error from 2.6 to 0.3 and RMSE from 5.0 to 4.2 2nd lecture RSHU 76

77 A 2-dimensional Kalman filter system also improves the forecasts of the extremes Correction not out of step Two good achievements: The Kalman filtering has reduced two systematic errors: a positive mean error and an underestimation of the variability 2nd lecture RSHU 77

78 Why does the improvement not show up in the verification? The corrections still yielded a reduction of the mean error from 2.6 to 0.3 but the RMSE from 5.0 only to 4.6 and not to 4.2 as with the 1-D 2nd lecture RSHU Is the 2-D worse than the 1-D?? 78

79 END of part I 79

II. Frequentist probabilities

II. Frequentist probabilities II. Frequentist probabilities II.4 Statistical interpretation or calibration 1 II.4.1 What is statistical interpretation doing? 2 In light of a (non-perfect) forecast performance corrections are applied

More information

III Subjective probabilities. III.4. Adaptive Kalman filtering. Probability Course III:4 Bologna 9-13 February 2015

III Subjective probabilities. III.4. Adaptive Kalman filtering. Probability Course III:4 Bologna 9-13 February 2015 III Subjective probabilities III.4. Adaptive Kalman filtering III.4.1 A 2-dimensional Kalman filter system Obs-Tfc= correction Bias? Corr = A(t) Tfc It appears as if the old bias has abruptly changed into

More information

Application and verification of ECMWF products 2010

Application and verification of ECMWF products 2010 Application and verification of ECMWF products Hydrological and meteorological service of Croatia (DHMZ) Lovro Kalin. Summary of major highlights At DHMZ, ECMWF products are regarded as the major source

More information

Application and verification of ECMWF products 2010

Application and verification of ECMWF products 2010 Application and verification of ECMWF products 2010 Icelandic Meteorological Office (www.vedur.is) Guðrún Nína Petersen 1. Summary of major highlights Medium range weather forecasts issued at IMO are mainly

More information

Application and verification of ECMWF products in Norway 2008

Application and verification of ECMWF products in Norway 2008 Application and verification of ECMWF products in Norway 2008 The Norwegian Meteorological Institute 1. Summary of major highlights The ECMWF products are widely used by forecasters to make forecasts for

More information

Application and verification of ECMWF products 2009

Application and verification of ECMWF products 2009 Application and verification of ECMWF products 2009 Danish Meteorological Institute Author: Søren E. Olufsen, Deputy Director of Forecasting Services Department and Erik Hansen, forecaster M.Sc. 1. Summary

More information

Application and verification of ECMWF products 2015

Application and verification of ECMWF products 2015 Application and verification of ECMWF products 2015 Hungarian Meteorological Service 1. Summary of major highlights The objective verification of ECMWF forecasts have been continued on all the time ranges

More information

Application and verification of ECMWF products 2009

Application and verification of ECMWF products 2009 Application and verification of ECMWF products 2009 RHMS of Serbia 1. Summary of major highlights ECMWF products are operationally used in Hydrometeorological Service of Serbia from the beginning of 2003.

More information

Application and verification of ECMWF products 2009

Application and verification of ECMWF products 2009 Application and verification of ECMWF products 2009 Icelandic Meteorological Office (www.vedur.is) Gu rún Nína Petersen 1. Summary of major highlights Medium range weather forecasts issued at IMO are mainly

More information

Application and verification of ECMWF products 2012

Application and verification of ECMWF products 2012 Application and verification of ECMWF products 2012 Instituto Português do Mar e da Atmosfera, I.P. (IPMA) 1. Summary of major highlights ECMWF products are used as the main source of data for operational

More information

Application and verification of ECMWF products: 2010

Application and verification of ECMWF products: 2010 Application and verification of ECMWF products: 2010 Hellenic National Meteorological Service (HNMS) F. Gofa, D. Tzeferi and T. Charantonis 1. Summary of major highlights In order to determine the quality

More information

STATISTICAL MODELS and VERIFICATION

STATISTICAL MODELS and VERIFICATION STATISTICAL MODELS and VERIFICATION Mihaela NEACSU & Otilia DIACONU ANM/LMN/AMASC COSMO-September 2013 Mihaela NEACSU & Otilia DIACONU (ANM/LMN/AMASC) MOS & VERIF COSMO-September 2013 1 / 48 SUMMARY 1

More information

Application and verification of ECMWF products 2009

Application and verification of ECMWF products 2009 Application and verification of ECMWF products 2009 Hungarian Meteorological Service 1. Summary of major highlights The objective verification of ECMWF forecasts have been continued on all the time ranges

More information

Application and verification of ECMWF products 2011

Application and verification of ECMWF products 2011 Application and verification of ECMWF products 2011 Icelandic Meteorological Office (www.vedur.is) Guðrún Nína Petersen 1. Summary of major highlights Medium range weather forecasts issued at IMO are mainly

More information

Application and verification of ECMWF products 2008

Application and verification of ECMWF products 2008 Application and verification of ECMWF products 2008 RHMS of Serbia 1. Summary of major highlights ECMWF products are operationally used in Hydrometeorological Service of Serbia from the beginning of 2003.

More information

A one-dimensional Kalman filter for the correction of near surface temperature forecasts

A one-dimensional Kalman filter for the correction of near surface temperature forecasts Meteorol. Appl. 9, 437 441 (2002) DOI:10.1017/S135048270200401 A one-dimensional Kalman filter for the correction of near surface temperature forecasts George Galanis 1 & Manolis Anadranistakis 2 1 Greek

More information

ECMWF products to represent, quantify and communicate forecast uncertainty

ECMWF products to represent, quantify and communicate forecast uncertainty ECMWF products to represent, quantify and communicate forecast uncertainty Using ECMWF s Forecasts, 2015 David Richardson Head of Evaluation, Forecast Department David.Richardson@ecmwf.int ECMWF June 12,

More information

Application and verification of ECMWF products in Austria

Application and verification of ECMWF products in Austria Application and verification of ECMWF products in Austria Central Institute for Meteorology and Geodynamics (ZAMG), Vienna Alexander Kann, Klaus Stadlbacher 1. Summary of major highlights Medium range

More information

The Hungarian Meteorological Service has made

The Hungarian Meteorological Service has made ECMWF Newsletter No. 129 Autumn 11 Use of ECMWF s ensemble vertical profiles at the Hungarian Meteorological Service István Ihász, Dávid Tajti The Hungarian Meteorological Service has made extensive use

More information

Application and verification of ECMWF products 2016

Application and verification of ECMWF products 2016 Application and verification of ECMWF products 2016 RHMS of Serbia 1 Summary of major highlights ECMWF forecast products became the backbone in operational work during last several years. Starting from

More information

Application and verification of ECMWF products 2014

Application and verification of ECMWF products 2014 Application and verification of ECMWF products 2014 Israel Meteorological Service (IMS), 1. Summary of major highlights ECMWF deterministic runs are used to issue most of the operational forecasts at IMS.

More information

Application and verification of ECMWF products in Austria

Application and verification of ECMWF products in Austria Application and verification of ECMWF products in Austria Central Institute for Meteorology and Geodynamics (ZAMG), Vienna Alexander Kann 1. Summary of major highlights Medium range weather forecasts in

More information

State of the art of wind forecasting and planned improvements for NWP Helmut Frank (DWD), Malte Mülller (met.no), Clive Wilson (UKMO)

State of the art of wind forecasting and planned improvements for NWP Helmut Frank (DWD), Malte Mülller (met.no), Clive Wilson (UKMO) State of the art of wind forecasting and planned improvements for NWP Helmut Frank (DWD), Malte Mülller (met.no), Clive Wilson (UKMO) thanks to S. Bauernschubert, U. Blahak, S. Declair, A. Röpnack, C.

More information

Observations needed for verification of additional forecast products

Observations needed for verification of additional forecast products Observations needed for verification of additional forecast products Clive Wilson ( & Marion Mittermaier) 12th Workshop on Meteorological Operational Systems, ECMWF, 2-6 November 2009 Additional forecast

More information

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier Miscellaneous Regarding reading materials Reading materials will be provided as needed If no assigned reading, it means I think the material from class is sufficient Should be enough for you to do your

More information

Validation of 2-meters temperature forecast at cold observed conditions by different NWP models

Validation of 2-meters temperature forecast at cold observed conditions by different NWP models Validation of 2-meters temperature forecast at cold observed conditions by different NWP models Evgeny Atlaskin Finnish Meteorological Institute / Russian State Hydrometeorological University OUTLINE Background

More information

Integration of WindSim s Forecasting Module into an Existing Multi-Asset Forecasting Framework

Integration of WindSim s Forecasting Module into an Existing Multi-Asset Forecasting Framework Chad Ringley Manager of Atmospheric Modeling Integration of WindSim s Forecasting Module into an Existing Multi-Asset Forecasting Framework 26 JUNE 2014 2014 WINDSIM USER S MEETING TONSBERG, NORWAY SAFE

More information

Assimilation of radar reflectivity

Assimilation of radar reflectivity Assimilation of radar reflectivity Axel Seifert Deutscher Wetterdienst, Offenbach, Germany Convective-scale NWP at DWD: Plans for 2020 Storm-scale ICON-RUC-EPS: hourly 12h ensemble forecasts based on short

More information

Application and verification of ECMWF products 2015

Application and verification of ECMWF products 2015 Application and verification of ECMWF products 2015 Turkish State Meteorological Service Unal TOKA,Yelis CENGIZ 1. Summary of major highlights The verification of ECMWF products has continued as in previous

More information

Application and verification of ECMWF products in Austria

Application and verification of ECMWF products in Austria Application and verification of ECMWF products in Austria Central Institute for Meteorology and Geodynamics (ZAMG), Vienna Alexander Kann 1. Summary of major highlights Medium range weather forecasts in

More information

Verification of ECMWF products at the Deutscher Wetterdienst (DWD)

Verification of ECMWF products at the Deutscher Wetterdienst (DWD) Verification of ECMWF products at the Deutscher Wetterdienst (DWD) DWD Martin Göber 1. Summary of major highlights The usage of a combined GME-MOS and ECMWF-MOS continues to lead to a further increase

More information

Application and verification of ECMWF products 2012

Application and verification of ECMWF products 2012 Application and verification of ECMWF products 2012 Met Eireann, Glasnevin Hill, Dublin 9, Ireland. J.Hamilton 1. Summary of major highlights The verification of ECMWF products has continued as in previous

More information

Introduction to Data Assimilation. Saroja Polavarapu Meteorological Service of Canada University of Toronto

Introduction to Data Assimilation. Saroja Polavarapu Meteorological Service of Canada University of Toronto Introduction to Data Assimilation Saroja Polavarapu Meteorological Service of Canada University of Toronto GCC Summer School, Banff. May 22-28, 2004 Outline of lectures General idea Numerical weather prediction

More information

Application and verification of ECMWF products 2016

Application and verification of ECMWF products 2016 Application and verification of ECMWF products 2016 Icelandic Meteorological Office (www.vedur.is) Bolli Pálmason and Guðrún Nína Petersen 1. Summary of major highlights Medium range weather forecasts

More information

Application and verification of ECMWF products in Serbia

Application and verification of ECMWF products in Serbia Application and verification of ECMWF products in Serbia Hydrometeorological Service of Serbia 1. Summary of major highlights ECMWF products are operationally used in Hydrometeorological Service of Serbia

More information

Application and verification of ECMWF products at the Finnish Meteorological Institute

Application and verification of ECMWF products at the Finnish Meteorological Institute Application and verification of ECMWF products 2010 2011 at the Finnish Meteorological Institute by Juhana Hyrkkènen, Ari-Juhani Punkka, Henri Nyman and Janne Kauhanen 1. Summary of major highlights ECMWF

More information

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation

Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Enhancing information transfer from observations to unobserved state variables for mesoscale radar data assimilation Weiguang Chang and Isztar Zawadzki Department of Atmospheric and Oceanic Sciences Faculty

More information

Application and verification of ECMWF products 2013

Application and verification of ECMWF products 2013 Application and verification of EMWF products 2013 Hellenic National Meteorological Service (HNMS) Flora Gofa and Theodora Tzeferi 1. Summary of major highlights In order to determine the quality of the

More information

Met Office convective-scale 4DVAR system, tests and improvement

Met Office convective-scale 4DVAR system, tests and improvement Met Office convective-scale 4DVAR system, tests and improvement Marco Milan*, Marek Wlasak, Stefano Migliorini, Bruce Macpherson Acknowledgment: Inverarity Gordon, Gareth Dow, Mike Thurlow, Mike Cullen

More information

Calibration with MOS at DWD

Calibration with MOS at DWD Calibration with MOS at DWD ECMWF Calibration Meeting 12 February 2015 Reinhold Hess, Jenny Glashof, Cristina Primo Deutscher Wetterdienst Calibration with MOS at DWD Outline Overview of MOS Systems at

More information

Simo Järvenoja s inheritance

Simo Järvenoja s inheritance Long-term verification of HIRLAM at FMI Simo Järvenoja s inheritance Kalle Eerola Finnish Meteorological Institute Contents Introduction Simo Järvenoja s inheritance, part 1 Simo Järvenoja s inheritance,

More information

Application and verification of ECMWF products in Croatia - July 2007

Application and verification of ECMWF products in Croatia - July 2007 Application and verification of ECMWF products in Croatia - July 2007 By Lovro Kalin, Zoran Vakula and Josip Juras (Hydrological and Meteorological Service) 1. Summary of major highlights At Croatian Met

More information

SPECIAL PROJECT PROGRESS REPORT

SPECIAL PROJECT PROGRESS REPORT SPECIAL PROJECT PROGRESS REPORT Progress Reports should be 2 to 10 pages in length, depending on importance of the project. All the following mandatory information needs to be provided. Reporting year

More information

The Impact of Horizontal Resolution and Ensemble Size on Probabilistic Forecasts of Precipitation by the ECMWF EPS

The Impact of Horizontal Resolution and Ensemble Size on Probabilistic Forecasts of Precipitation by the ECMWF EPS The Impact of Horizontal Resolution and Ensemble Size on Probabilistic Forecasts of Precipitation by the ECMWF EPS S. L. Mullen Univ. of Arizona R. Buizza ECMWF University of Wisconsin Predictability Workshop,

More information

Estimation of Forecat uncertainty with graphical products. Karyne Viard, Christian Viel, François Vinit, Jacques Richon, Nicole Girardot

Estimation of Forecat uncertainty with graphical products. Karyne Viard, Christian Viel, François Vinit, Jacques Richon, Nicole Girardot Estimation of Forecat uncertainty with graphical products Karyne Viard, Christian Viel, François Vinit, Jacques Richon, Nicole Girardot Using ECMWF Forecasts 8-10 june 2015 Outline Introduction Basic graphical

More information

and hydrological applications

and hydrological applications Overview of QPE/QPF techniques and hydrological applications Siriluk Chumchean Department of Civil Engineering Mahanakorn University of Technology Typhoon Committee Roving Seminar 2011, Malaysia (20-23

More information

The Development of Guidance for Forecast of. Maximum Precipitation Amount

The Development of Guidance for Forecast of. Maximum Precipitation Amount The Development of Guidance for Forecast of Maximum Precipitation Amount Satoshi Ebihara Numerical Prediction Division, JMA 1. Introduction Since 198, the Japan Meteorological Agency (JMA) has developed

More information

Interpolation of daily mean air temperature data via spatial and non-spatial copulas

Interpolation of daily mean air temperature data via spatial and non-spatial copulas Interpolation of daily mean air temperature data via spatial and non-spatial copulas F. Alidoost, A. Stein f.alidoost@utwente.nl 6 July 2017 Research problem 2 Assessing near-real time crop and irrigation

More information

Heavier summer downpours with climate change revealed by weather forecast resolution model

Heavier summer downpours with climate change revealed by weather forecast resolution model SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE2258 Heavier summer downpours with climate change revealed by weather forecast resolution model Number of files = 1 File #1 filename: kendon14supp.pdf File

More information

Application and verification of ECMWF products 2015

Application and verification of ECMWF products 2015 Application and verification of ECMWF products 2015 Instituto Português do Mar e da Atmosfera, I.P. 1. Summary of major highlights At Instituto Português do Mar e da Atmosfera (IPMA) ECMWF products are

More information

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006 Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems Eric Kostelich Data Mining Seminar, Feb. 6, 2006 kostelich@asu.edu Co-Workers Istvan Szunyogh, Gyorgyi Gyarmati, Ed Ott, Brian

More information

Application and verification of ECMWF products 2017

Application and verification of ECMWF products 2017 Application and verification of ECMWF products 2017 Finnish Meteorological Institute compiled by Weather and Safety Centre with help of several experts 1. Summary of major highlights FMI s forecasts are

More information

Introduction to Data Assimilation

Introduction to Data Assimilation Introduction to Data Assimilation Alan O Neill Data Assimilation Research Centre University of Reading What is data assimilation? Data assimilation is the technique whereby observational data are combined

More information

Aspects of the practical application of ensemble-based Kalman filters

Aspects of the practical application of ensemble-based Kalman filters Aspects of the practical application of ensemble-based Kalman filters Lars Nerger Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany and Bremen Supercomputing Competence Center

More information

Current Status of COMS AMV in NMSC/KMA

Current Status of COMS AMV in NMSC/KMA Current Status of COMS AMV in NMSC/KMA Eunha Sohn, Sung-Rae Chung, Jong-Seo Park Satellite Analysis Division, NMSC/KMA soneh0431@korea.kr COMS AMV of KMA/NMSC has been produced hourly since April 1, 2011.

More information

Systematic Errors in the ECMWF Forecasting System

Systematic Errors in the ECMWF Forecasting System Systematic Errors in the ECMWF Forecasting System Thomas Jung ECMWF Introduction Two principal sources of forecast error: Uncertainties in the initial conditions Model error How to identify model errors?

More information

Evaluation of Satellite Precipitation Products over the Central of Vietnam

Evaluation of Satellite Precipitation Products over the Central of Vietnam Evaluation of Satellite Precipitation Products over the Central of Vietnam Long Trinh-Tuan (1), Jun Matsumoto (1,2), Thanh Ngo-Duc (3) (1) Department of Geography, Tokyo Metropolitan University, Japan.

More information

Peter P. Neilley. And. Kurt A. Hanson. Weather Services International, Inc. 400 Minuteman Road Andover, MA 01810

Peter P. Neilley. And. Kurt A. Hanson. Weather Services International, Inc. 400 Minuteman Road Andover, MA 01810 6.4 ARE MODEL OUTPUT STATISTICS STILL NEEDED? Peter P. Neilley And Kurt A. Hanson Weather Services International, Inc. 400 Minuteman Road Andover, MA 01810 1. Introduction. Model Output Statistics (MOS)

More information

SOME STEP OF QUALITY CONTROL OF UPPER-AIR NETWORK DATA IN CHINA. Zhiqiang Zhao

SOME STEP OF QUALITY CONTROL OF UPPER-AIR NETWORK DATA IN CHINA. Zhiqiang Zhao SOME STEP OF QUALITY CONTROL OF UPPER-AIR NETWORK DATA IN CHINA Zhiqiang Zhao China Meteorological Administration (CMA) 46, Zhongguancun Nandajie, Beijing, 100081,China Tel: 8610-68407362, Fax: 8610-62179786,

More information

Application and verification of the ECMWF products Report 2007

Application and verification of the ECMWF products Report 2007 Application and verification of the ECMWF products Report 2007 National Meteorological Administration Romania 1. Summary of major highlights The medium range forecast activity within the National Meteorological

More information

Application and verification of ECMWF products in Croatia

Application and verification of ECMWF products in Croatia Application and verification of ECMWF products in Croatia August 2008 1. Summary of major highlights At Croatian Met Service, ECMWF products are the major source of data used in the operational weather

More information

Since the early 1980s, numerical prediction of road. Real-Time Road Ice Prediction and Its Improvement in Accuracy Through a Self-Learning Process

Since the early 1980s, numerical prediction of road. Real-Time Road Ice Prediction and Its Improvement in Accuracy Through a Self-Learning Process Real-Time Road Ice Prediction and Its Improvement in Accuracy Through a Self-Learning Process J. Shao and P. J. Lister, Vaisala TMI, United Kingdom In winter road maintenance, it is important for highway

More information

Assimilation of MSG visible and near-infrared reflectivity in KENDA/COSMO

Assimilation of MSG visible and near-infrared reflectivity in KENDA/COSMO Assimilation of MSG visible and near-infrared reflectivity in KENDA/COSMO Leonhard Scheck1,2, Tobias Necker1,2, Pascal Frerebeau2, Bernhard Mayer2, Martin Weissmann1,2 1) Hans-Ertl-Center for Weather Research,

More information

Application and verification of ECMWF products 2016

Application and verification of ECMWF products 2016 Application and verification of ECMWF products 2016 Hellenic National Meteorological Service (HNMS) Flora Gofa and Panagiotis Skrimizeas 1. Summary of major highlights In order to determine the quality

More information

ABSTRACT 3 RADIAL VELOCITY ASSIMILATION IN BJRUC 3.1 ASSIMILATION STRATEGY OF RADIAL

ABSTRACT 3 RADIAL VELOCITY ASSIMILATION IN BJRUC 3.1 ASSIMILATION STRATEGY OF RADIAL REAL-TIME RADAR RADIAL VELOCITY ASSIMILATION EXPERIMENTS IN A PRE-OPERATIONAL FRAMEWORK IN NORTH CHINA Min Chen 1 Ming-xuan Chen 1 Shui-yong Fan 1 Hong-li Wang 2 Jenny Sun 2 1 Institute of Urban Meteorology,

More information

Developments at DWD: Integrated water vapour (IWV) from ground-based GPS

Developments at DWD: Integrated water vapour (IWV) from ground-based GPS 1 Working Group on Data Assimilation 2 Developments at DWD: Integrated water vapour (IWV) from ground-based Christoph Schraff, Maria Tomassini, and Klaus Stephan Deutscher Wetterdienst, Frankfurter Strasse

More information

(Statistical Forecasting: with NWP). Notes from Kalnay (2003), appendix C Postprocessing of Numerical Model Output to Obtain Station Weather Forecasts

(Statistical Forecasting: with NWP). Notes from Kalnay (2003), appendix C Postprocessing of Numerical Model Output to Obtain Station Weather Forecasts 35 (Statistical Forecasting: with NWP). Notes from Kalnay (2003), appendix C Postprocessing of Numerical Model Output to Obtain Station Weather Forecasts If the numerical model forecasts are skillful,

More information

Performance of the ocean wave ensemble forecast system at NCEP 1

Performance of the ocean wave ensemble forecast system at NCEP 1 Performance of the ocean wave ensemble forecast system at NCEP 1 Degui Cao 2,3, Hendrik L. Tolman, Hsuan S.Chen, Arun Chawla 2 and Vera M. Gerald NOAA /National Centers for Environmental Prediction Environmental

More information

Jordan G. Powers Kevin W. Manning. Mesoscale and Microscale Meteorology Laboratory National Center for Atmospheric Research Boulder, CO

Jordan G. Powers Kevin W. Manning. Mesoscale and Microscale Meteorology Laboratory National Center for Atmospheric Research Boulder, CO Jordan G. Powers Kevin W. Manning Mesoscale and Microscale Meteorology Laboratory National Center for Atmospheric Research Boulder, CO Background : Model for Prediction Across Scales Global atmospheric

More information

Standardized Anomaly Model Output Statistics Over Complex Terrain.

Standardized Anomaly Model Output Statistics Over Complex Terrain. Standardized Anomaly Model Output Statistics Over Complex Terrain Reto.Stauffer@uibk.ac.at Outline statistical ensemble postprocessing introduction to SAMOS new snow amount forecasts in Tyrol sub-seasonal

More information

All-sky observations: errors, biases, representativeness and gaussianity

All-sky observations: errors, biases, representativeness and gaussianity All-sky observations: errors, biases, representativeness and gaussianity Alan Geer, Peter Bauer, Philippe Lopez Thanks to: Bill Bell, Niels Bormann, Anne Foullioux, Jan Haseler, Tony McNally Slide 1 ECMWF-JCSDA

More information

WG1 Overview. PP KENDA for km-scale EPS: LETKF. current DA method: nudging. radar reflectivity (precip): latent heat nudging 1DVar (comparison)

WG1 Overview. PP KENDA for km-scale EPS: LETKF. current DA method: nudging. radar reflectivity (precip): latent heat nudging 1DVar (comparison) WG1 Overview Deutscher Wetterdienst, D-63067 Offenbach, Germany current DA method: nudging PP KENDA for km-scale EPS: LETKF radar reflectivity (precip): latent heat nudging 1DVar (comparison) radar radial

More information

ENSEMBLE FLOOD INUNDATION FORECASTING: A CASE STUDY IN THE TIDAL DELAWARE RIVER

ENSEMBLE FLOOD INUNDATION FORECASTING: A CASE STUDY IN THE TIDAL DELAWARE RIVER ENSEMBLE FLOOD INUNDATION FORECASTING: A CASE STUDY IN THE TIDAL DELAWARE RIVER Michael Gomez & Alfonso Mejia Civil and Environmental Engineering Pennsylvania State University 10/12/2017 Mid-Atlantic Water

More information

Application of Radar QPE. Jack McKee December 3, 2014

Application of Radar QPE. Jack McKee December 3, 2014 Application of Radar QPE Jack McKee December 3, 2014 Topics Context Precipitation Estimation Techniques Study Methodology Preliminary Results Future Work Questions Introduction Accurate precipitation data

More information

Application and verification of ECMWF products 2016

Application and verification of ECMWF products 2016 Application and verification of ECMWF products 2016 Turkish State Meteorological Service Ünal TOKA, Mustafa BAŞARAN, Yelis CENGİZ 1. Summary of major highlights The verification of ECMWF products has continued

More information

METinfo Verification of Operational Weather Prediction Models December 2017 to February 2018 Mariken Homleid and Frank Thomas Tveter

METinfo Verification of Operational Weather Prediction Models December 2017 to February 2018 Mariken Homleid and Frank Thomas Tveter METinfo No. /8 ISSN 89-79X Meteorology Verification of Operational Weather Prediction Models December 7 to February 8 Mariken Homleid and Frank Thomas Tveter Photo: Jan Erik Haugen Contents Introduction

More information

METinfo Verification of Operational Weather Prediction Models June to August 2017 Mariken Homleid and Frank Thomas Tveter

METinfo Verification of Operational Weather Prediction Models June to August 2017 Mariken Homleid and Frank Thomas Tveter METinfo No. /7 ISSN 89-79X Meteorology Verification of Operational Weather Prediction Models June to August 7 Mariken Homleid and Frank Thomas Tveter Contents Introduction Models..............................................

More information

The Forecasting Challenge. The Forecasting Challenge CEEM,

The Forecasting Challenge. The Forecasting Challenge CEEM, Using NWP forecasts at multiple grid points to assist power system operators to predict large rapid changes in wind power Nicholas Cutler. n.cutler@unsw.edu.au 9 th April, 2008 CEEM, 2008 The Forecasting

More information

M.Sc. in Meteorology. Numerical Weather Prediction

M.Sc. in Meteorology. Numerical Weather Prediction M.Sc. in Meteorology UCD Numerical Weather Prediction Prof Peter Lynch Meteorology & Climate Cehtre School of Mathematical Sciences University College Dublin Second Semester, 2005 2006. Text for the Course

More information

Adaptive Kalman filtering of 2-metre temperature and 10-metre wind-speed forecasts in Iceland

Adaptive Kalman filtering of 2-metre temperature and 10-metre wind-speed forecasts in Iceland Meteorol. Appl. 11, 173 187 (2004) DOI:10.1017/S1350482704001252 Adaptive Kalman filtering of 2-metre temperature and 10-metre wind-speed forecasts in Iceland Philippe Crochet Icelandic Meteorological

More information

Systematic strategies for real time filtering of turbulent signals in complex systems

Systematic strategies for real time filtering of turbulent signals in complex systems Systematic strategies for real time filtering of turbulent signals in complex systems Statistical inversion theory for Gaussian random variables The Kalman Filter for Vector Systems: Reduced Filters and

More information

WMO Aeronautical Meteorology Scientific Conference 2017

WMO Aeronautical Meteorology Scientific Conference 2017 Session 1 Science underpinning meteorological observations, forecasts, advisories and warnings 1.6 Observation, nowcast and forecast of future needs 1.6.1 Advances in observing methods and use of observations

More information

Application and verification of ECMWF products 2016

Application and verification of ECMWF products 2016 Application and verification of ECMWF products 2016 Meteorological and Hydrological Service of Croatia Lovro Kalin and Zoran Vakula 1. Summary of major highlights At Meteorological and Hydrological Service

More information

Assessment of Ensemble Forecasts

Assessment of Ensemble Forecasts Assessment of Ensemble Forecasts S. L. Mullen Univ. of Arizona HEPEX Workshop, 7 March 2004 Talk Overview Ensemble Performance for Precipitation Global EPS and Mesoscale 12 km RSM Biases, Event Discrimination

More information

The Ensemble-MOS of Deutscher Wetterdienst

The Ensemble-MOS of Deutscher Wetterdienst The Ensemble-MOS of Deutscher Wetterdienst 15th EMS/12th ECAM Session ECAM1 07 September 2015 Reinhold Hess, Jenny Glashoff, and Bernhard K. Reichert Deutscher Wetterdienst The Ensemble-MOS of Deutscher

More information

Strategic Radar Enhancement Project (SREP) Forecast Demonstration Project (FDP) The future is here and now

Strategic Radar Enhancement Project (SREP) Forecast Demonstration Project (FDP) The future is here and now Strategic Radar Enhancement Project (SREP) Forecast Demonstration Project (FDP) The future is here and now Michael Berechree National Manager Aviation Weather Services Australian Bureau of Meteorology

More information

Effects of Model Resolution and Statistical Postprocessing on Shelter Temperature and Wind Forecasts

Effects of Model Resolution and Statistical Postprocessing on Shelter Temperature and Wind Forecasts AUGUST 2011 M Ü LL ER 1627 Effects of Model Resolution and Statistical Postprocessing on Shelter Temperature and Wind Forecasts M. D. MÜLLER Institute of Meteorology, Climatology and Remote Sensing, University

More information

Basic Verification Concepts

Basic Verification Concepts Basic Verification Concepts Barbara Brown National Center for Atmospheric Research Boulder Colorado USA bgb@ucar.edu May 2017 Berlin, Germany Basic concepts - outline What is verification? Why verify?

More information

Studying the relationship between synthetic NWP-derived AMVs and model winds

Studying the relationship between synthetic NWP-derived AMVs and model winds Studying the relationship between synthetic NWP-derived AMVs and model winds Peter Lean 1 Stefano Migliorini 1 and Graeme Kelly 2 1 EUMETSAT Fellow, University of Reading, UK 2 Met Office, UK Background

More information

The Impacts of GPS Radio Occultation Data on the Analysis and Prediction of Tropical Cyclones. Bill Kuo, Xingqin Fang, and Hui Liu UCAR COSMIC

The Impacts of GPS Radio Occultation Data on the Analysis and Prediction of Tropical Cyclones. Bill Kuo, Xingqin Fang, and Hui Liu UCAR COSMIC The Impacts of GPS Radio Occultation Data on the Analysis and Prediction of Tropical Cyclones Bill Kuo, Xingqin Fang, and Hui Liu UCAR COSMIC GPS Radio Occultation α GPS RO observations advantages for

More information

Direct assimilation of all-sky microwave radiances at ECMWF

Direct assimilation of all-sky microwave radiances at ECMWF Direct assimilation of all-sky microwave radiances at ECMWF Peter Bauer, Alan Geer, Philippe Lopez, Deborah Salmond European Centre for Medium-Range Weather Forecasts Reading, Berkshire, UK Slide 1 17

More information

Importance of Numerical Weather Prediction in Variable Renewable Energy Forecast

Importance of Numerical Weather Prediction in Variable Renewable Energy Forecast Importance of Numerical Weather Prediction in Variable Renewable Energy Forecast Dr. Abhijit Basu (Integrated Research & Action for Development) Arideep Halder (Thinkthrough Consulting Pvt. Ltd.) September

More information

15 day VarEPS introduced at. 28 November 2006

15 day VarEPS introduced at. 28 November 2006 Comprehensive study of the calibrated EPS products István Ihász Hungarian Meteorological Service Thanks to Máté Mile Zoltán Üveges & Gergő Kiss Mihály Szűcs Topics 15 day VarEPS introduced at the ECMWF

More information

New applications using real-time observations and ECMWF model data

New applications using real-time observations and ECMWF model data New applications using real-time observations and ECMWF model data 12 th Workshop on Meteorological Operational Systems Wim van den Berg [senior meteorological researcher, project coordinator] Overview

More information

Application and verification of ECMWF products 2016

Application and verification of ECMWF products 2016 Application and verification of ECMWF products 2016 Met Eireann, Glasnevin Hill, Dublin 9, Ireland. J.Hamilton 1. Summary of major highlights The verification of ECMWF products has continued as in previous

More information

The benefits and developments in ensemble wind forecasting

The benefits and developments in ensemble wind forecasting The benefits and developments in ensemble wind forecasting Erik Andersson Slide 1 ECMWF European Centre for Medium-Range Weather Forecasts Slide 1 ECMWF s global forecasting system High resolution forecast

More information

Integrating METRo into a winter maintenance weather forecast system covering Finland, Sweden and Russia

Integrating METRo into a winter maintenance weather forecast system covering Finland, Sweden and Russia ID: 0051 Integrating METRo into a winter maintenance weather forecast system covering Finland, Sweden and Russia S. Karanko, I. Alanko and M. Manninen Foreca Ltd, Helsinki, Finland Corresponding author

More information

Verification of wind forecasts of ramping events

Verification of wind forecasts of ramping events Verification of wind forecasts of ramping events Matt Pocernich Research Application Laboratory - NCAR pocernic@ucar.edu Thanks to Brice Lambi, Seth Linden and Gregory Roux Key Points A single verification

More information

ALARO 0 experience in Romania

ALARO 0 experience in Romania ALARO 0 experience in Romania D. Banciu, A. Craciun, M. Pietrisi, S. Tascu National Meteorological Administration ALARO-0 Configuration setup ALARO-Romania: L49, 240x240 grid points ( x=6.5 km), Lambert

More information

Feature-specific verification of ensemble forecasts

Feature-specific verification of ensemble forecasts Feature-specific verification of ensemble forecasts www.cawcr.gov.au Beth Ebert CAWCR Weather & Environmental Prediction Group Uncertainty information in forecasting For high impact events, forecasters

More information