Physics 401. Fall 2017 Eugene V. Colla. 10/9/2017 Physics 401 1

Size: px
Start display at page:

Download "Physics 401. Fall 2017 Eugene V. Colla. 10/9/2017 Physics 401 1"

Transcription

1 Physics 41. Fall 17 Eugene V. Colla 1/9/17 Physics 41 1

2 Electrical RLC circuits Torsional Oscillator Damping Data Analysis 1/9/17 Physics 41

3 V R +V L +V C =V(t) If V(t)= R d d q(t) q(t) dt dt C C L q(t) +R q(t) + =, = V Damping term. Reflects energy dissipation in the resistor V R L V L V(t) scope 1. V C V C V(t) time 1/9/17 Physics 41 3

4 1 b < under-damped solution a R R 1, b L L LC U C (V) -1 f 1 1 R LC L time (ms) 1. b > overdamped solution 1. b = criticallydamped solution U C (V).8.4 U C (V) /9/17 Physics 41 4

5 permanent magnet Tension nut Tension bolt Disk comb Motor disk Piano wire Motor comb optical comb for read out Optical sensors 1/9/17 Physics 41 5

6 M wire L 1 L t R t disk Wires 1 and exert the torques t 1 and t on the disk of mass M t t t K K K K Gr L 1 4 θ : angular deflection of the disk r : radius of the wires L i : length of the wire I G: shear modulus of the wire K K1 K G r L1 L A typical shear modulus for steel is N/m K torsional spring constant 1/9/17 Physics 41 6

7 DAQ rate (Hz) Interface card Program window Program can accept only 1 points. If sampling rate is 5Hz the maximum time of data collection is s! 1/9/17 Physics 41 7

8 t t 1 4 g step 4 Equation Weight Residual Sum of Squares y = a + b*x No Weighting E-4 Pearson's r Adj. R-Square Value Standard Error 3 3 B Intercept Slope R (rad) (rad) slope m (kg) g=9.81m/s Slope=51.3rad/kg K=.971Nm/rad 1/9/17 Physics 41 8

9 R R Rope is too short! Avoid the over damping of the pendulum motion and any extra sources of friction. 1/9/17 Physics 41 9

10 Measuring of the electrostatic forces. t t 1 Charles-Augustin de Coulomb Coulomb's law q1 q 1 F ke ; k e r 4 Coulomb's torsion balance. Courtesy of Wikipedia 1/9/17 Physics 41 1

11 t1 t Measuring of the gravitational forces. Henry Cavendish ( ) F GmM r Gravitational Law Cavendish s result Cavendish torsion balance experiment. Courtesy of Wikipedia Currently accepted value G = m 3 kg 1 s, m 3 kg 1 s. 1/9/17 Physics 41 11

12 t t t K K K Gr Gr 1 1 K ; K K K 1 1 L1 L1 L If there is no dissipation: d I K dt If we know I we can calculate K (rad) 1-1 From time trace (t) we can find w it can be done by measuring period but better (and faster!) to perform the nonlinear fitting /9/17 Physics 41 1

13 1 (rad) rad w w 3.16 ; f.4975 Hz s 1 5 (rad) -1 Count Regular Residual (pend) 1/9/17 Physics 41 13

14 From SineDamp fitting f =.497Hz or w f 3.13 rad / s Resonance frequency can be also found by applying FFT on the raw data (rad) /9/17 Physics 41 14

15 Permanent magnet Damping term pendulum The solutions are exactly the same as in case of RLC circuit (three solutions) 1..5 Under damped case (rad) Model Equation Reduced Chi-Sqr SineDamp y=y + A*exp(-x /t)*sin(pi*(x-xc )/w).3473e-5 Adj. R-Square.9996 Value Standard Error pend y e-4 pend xc E-4 pend w E-4 pend t pend A /9/17 Physics 41 15

16 1..5 (rad) Type equation here. Model Equation Reduced Chi-Sqr SineDamp y=y + A*exp(-x /t)*sin(pi*(x-xc )/w).3473e-5 Adj. R-Square.9996 Value Standard Error pend y e-4 pend xc E-4 pend w E-4 pend t pend A from error propagation analysis 1 3 From SineDamp fitting exponential decay term is exp t t 1/9/17 Physics 41 16

17 Peaks coordinates are saved in the worksheet and can be used for analysis We can find the amplitudes of the wave using Peak Analyzer.8 ExpDec1.66 Model n (rad).6.4. Equation y = A1*e xp(-x/t1) Value Standard Error Y y E-4 Y A Y t ln(a n+1 /A n ) =.63± /9/17 Physics peak numbert

18 1. Fitting to damp exponential decay function. Outcome: resonance frequency and decrement coefficient.. Applying FFT procedure. Result resonance frequency. 3. Using Origin Peak Analyzer we can find amplitudes and positions of the damped sine wave maximum end then plot the envelope. 4. You can directly obtain the envelope of the damped sine wave by using Origin (optional). 1/9/17 Physics 41 18

19 I K t Coulomb t Coulomb C Amplitude decreases by 4C/K per period linearly! ( t) C / K ( (4n 1) C / K)cos( wt) 1 ( n ) T t nt n 1,,... (rad) T/ ( t) C / K ( (4n 3) C / K)cos( wt) 1 ( n 1) T t ( n ) T n 1,,... d/dt (rad/s) /9/17 Physics 41 19

20 Amplitude decreases by 4C/K per period linearly! 3 Equation Weight Residual Sum of Squares y = a + b*x No Weighting.463 Pearson's r Adj. R-Square Value Standard Error Y Intercept Y Slope n /9/17 Physics 41

21 t Coulomb C K ~ if K C pendulum stops (rad) off (rad) - 4 1/9/17 Physics 41 1

22 I K tturb t C sgn( ) turb t n In case of n=1 viscous damping Logarithmic decrement in case of turbulent damping is no more constant and in case n= can be calculated as δ = 8C 3I Θ Expected result decrement decreases with decreasing of the amplitude 1/9/17 Physics 41

23 Analyzing the envelope of the damped oscillating time record we can calculate the log decrement factor 1/9/17 Physics 41 3

24 1/9/17 Physics 41 4

25 (rad) 4 - Raw data. Our goal: find the positions and amplitudes of the peaks X i,y i st Technique: using FindPeaks option (rad) /9/17 Physics 41 5

26 4 (rad) Local Maximum works well for not noisy oscillating dependencies 1/9/17 Physics 41 6

27 The details related to this project you can find in: \\engr-file-3\phyinst\apl Courses\PHYCS41\Students\6. Torsional oscillator\turbulent damping.opj New plot + labels as a result of finding the peaks Peaks data can be found in a Worksheet and using this data you can plot the dependence of amplitude on time Positive peaks Negative peaks 1/9/17 Physics 41 7

28 Original Data Envelope 4 (rad) - n (rad) /9/17 Physics 41 8

29 4 (rad) nd Technique: using Envelope option Origin will create the worksheet with interpolated (defined for the same x s as the raw data) envelope data 1/9/17 Physics 41 9

30 4 4 (rad) - (rad) Original data Envelope data 1/9/17 Physics 41 3

31 All these quasi periodic data can be analyzed using Fast Fourier Transform 4 Our goal: find the resonance frequency of the pendulum (rad) - -4 Origin window /9/17 Physics 41 31

32 4 The results of FFT you can find in the same Workbook which contains the raw data (rad) Click on corresponding graph and it will appear in separate window Magnitude vs. frequency plot 1/9/17 Physics 41 3

33 84 4 (rad) - Magnitude Linear scale Resonance frequency Frequency.4915 Spectrum better to present in log-log scale log-log scale.1.1 1/9/17 Physics

34 Result of measurement Systematic error.35 B.3.5. Correct value Random error P X i 1/9/17 Physics 41 34

35 Systematic error Q F S T 1 t g F 1 3 f c t g 1 1 9d 3 x 3 fc V g t t g g t rise 3 3 9d x S T V g t t g g t rise dq dq dq dq dq Q F S T S T df ds dt ds dt S T FT S FS T Q S T 1/9/17 Physics 41 35

36 Systematic error S T Q Q S T S d V 3 x g d 3 x S d V x g d x T t t t t t t t 5 3 g 1 rise g g rise g rise 1/9/17 Physics 41 36

37 Result of measurement Systematic error.35 B.3.5. Correct value Random error P X i Mean of {x i } Standard deviation of of {x i } 1 1 N xi i N 1 N 1 N 1 i x i Standard deviation of mean X N 1 1/9/17 Physics 41 37

Physics 401. Fall 2018 Eugene V. Colla. 10/8/2018 Physics 401 1

Physics 401. Fall 2018 Eugene V. Colla. 10/8/2018 Physics 401 1 Physics 41. Fall 18 Eugene V. Colla 1/8/18 Physics 41 1 Electrical RLC circuits Torsional Oscillator Damping Data Analysis 1/8/18 Physics 41 V R +V L +V C =V(t) If V(t)= R d d q(t) q(t) dt dt C C L q(t)

More information

Physics 401, Spring 2016 Eugene V. Colla

Physics 401, Spring 2016 Eugene V. Colla Physics 41, Spring 16 Eugene V. Colla.8 (rad). -.8 1 3 4 5 6 7 8 time (s) 1.Driven torsional oscillator. Equations.Setup. Kinematics 3.Resonance 4.Beats 5.Nonlinear effects 6.Comments 3/7/16 3/7/16 3 Tacoma

More information

Basic Error Analysis. Physics 401 Fall 2018 Eugene V Colla

Basic Error Analysis. Physics 401 Fall 2018 Eugene V Colla Basic Error Analysis Physics 401 Fall 2018 Eugene V Colla Errors and uncertainties The Reading Error Accuracy and precession Systematic and statistical errors Fitting errors Appendix. Working with oil

More information

Basic Error Analysis. Physics 401 Fall 2017 Eugene V Colla

Basic Error Analysis. Physics 401 Fall 2017 Eugene V Colla Basic Error Analysis Physics 401 Fall 2017 Eugene V Colla Errors and uncertainties The Reading Error Accuracy and precession Systematic and statistical errors Fitting errors Appendix. Working with oil

More information

The Torsion Pendulum (One or two weights)

The Torsion Pendulum (One or two weights) The Torsion Pendulum (One or two weights) Exercises I through V form the one-weight experiment. Exercises VI and VII, completed after Exercises I -V, add one weight more. Preparatory Questions: 1. The

More information

Investigating the Relationship Between Cavendish Temperature Fluctuation and Torsional Oscillation

Investigating the Relationship Between Cavendish Temperature Fluctuation and Torsional Oscillation Investigating the Relationship Between Cavendish Temperature Fluctuation and Torsional Oscillation John Grasel 4 March 2010 Abstract The Cavendish apparatus measures the gravitational attraction between

More information

Basic Error Analysis. Physics 401 Spring 2015 Eugene V Colla

Basic Error Analysis. Physics 401 Spring 2015 Eugene V Colla Basic Error Analysis Physics 401 Spring 2015 Eugene V Colla Errors and uncertainties The Reading Error Accuracy and precession Systematic and statistical errors Fitting errors Appendix. Working with oil

More information

(a) Torsional spring-mass system. (b) Spring element.

(a) Torsional spring-mass system. (b) Spring element. m v s T s v a (a) T a (b) T a FIGURE 2.1 (a) Torsional spring-mass system. (b) Spring element. by ky Wall friction, b Mass M k y M y r(t) Force r(t) (a) (b) FIGURE 2.2 (a) Spring-mass-damper system. (b)

More information

The Torsion Pendulum

The Torsion Pendulum Page 1 of 9 The Torsion Pendulum Introduction: This experiment helps to relate many of the concepts that we see in everyday life. Damped oscillations and pendulums are an everyday occurrence. You will

More information

RLC Circuits. 1 Introduction. 1.1 Undriven Systems. 1.2 Driven Systems

RLC Circuits. 1 Introduction. 1.1 Undriven Systems. 1.2 Driven Systems RLC Circuits Equipment: Capstone, 850 interface, RLC circuit board, 4 leads (91 cm), 3 voltage sensors, Fluke mulitmeter, and BNC connector on one end and banana plugs on the other Reading: Review AC circuits

More information

Physics 401 Classical Physics Laboratory. Experiment 5. Transients and Oscillations in RLC Circuits. I. Introduction II. Theory...

Physics 401 Classical Physics Laboratory. Experiment 5. Transients and Oscillations in RLC Circuits. I. Introduction II. Theory... University of Illinois at Urbana-Champaign Physics 401 Classical Physics Laboratory Department of Physics Experiment 5 Transients and Oscillations in RLC Circuits I. Introduction... II. Theory... 3 b 0

More information

Chapter 15. Oscillatory Motion

Chapter 15. Oscillatory Motion Chapter 15 Oscillatory Motion Part 2 Oscillations and Mechanical Waves Periodic motion is the repeating motion of an object in which it continues to return to a given position after a fixed time interval.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2003 Experiment 17: RLC Circuit (modified 4/15/2003) OBJECTIVES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2003 Experiment 17: RLC Circuit (modified 4/15/2003) OBJECTIVES MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Spring 3 Experiment 7: R Circuit (modified 4/5/3) OBJECTIVES. To observe electrical oscillations, measure their frequencies, and verify energy

More information

2.4 Models of Oscillation

2.4 Models of Oscillation 2.4 Models of Oscillation In this section we give three examples of oscillating physical systems that can be modeled by the harmonic oscillator equation. Such models are ubiquitous in physics, but are

More information

Oscillatory Motion SHM

Oscillatory Motion SHM Chapter 15 Oscillatory Motion SHM Dr. Armen Kocharian Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A

More information

The Coupled Pendulum Experiment

The Coupled Pendulum Experiment The Coupled Pendulum Experiment In this lab you will briefly study the motion of a simple pendulum, after which you will couple two pendulums and study the properties of this system. 1. Introduction to

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical

More information

EE 242 EXPERIMENT 8: CHARACTERISTIC OF PARALLEL RLC CIRCUIT BY USING PULSE EXCITATION 1

EE 242 EXPERIMENT 8: CHARACTERISTIC OF PARALLEL RLC CIRCUIT BY USING PULSE EXCITATION 1 EE 242 EXPERIMENT 8: CHARACTERISTIC OF PARALLEL RLC CIRCUIT BY USING PULSE EXCITATION 1 PURPOSE: To experimentally study the behavior of a parallel RLC circuit by using pulse excitation and to verify that

More information

Chapter 14 Periodic Motion

Chapter 14 Periodic Motion Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

More information

PHYSICS 211 LAB #8: Periodic Motion

PHYSICS 211 LAB #8: Periodic Motion PHYSICS 211 LAB #8: Periodic Motion A Lab Consisting of 6 Activities Name: Section: TA: Date: Lab Partners: Circle the name of the person to whose report your group printouts will be attached. Individual

More information

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom.

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom. Practice 3 NAME STUDENT ID LAB GROUP PROFESSOR INSTRUCTOR Vibrations of systems of one degree of freedom with damping QUIZ 10% PARTICIPATION & PRESENTATION 5% INVESTIGATION 10% DESIGN PROBLEM 15% CALCULATIONS

More information

MODULE I. Transient Response:

MODULE I. Transient Response: Transient Response: MODULE I The Transient Response (also known as the Natural Response) is the way the circuit responds to energies stored in storage elements, such as capacitors and inductors. If a capacitor

More information

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Periodic Motion. Periodic motion is motion of an object that. regularly repeats Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems

More information

2.4 Harmonic Oscillator Models

2.4 Harmonic Oscillator Models 2.4 Harmonic Oscillator Models In this section we give three important examples from physics of harmonic oscillator models. Such models are ubiquitous in physics, but are also used in chemistry, biology,

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

More information

Handout 10: Inductance. Self-Inductance and inductors

Handout 10: Inductance. Self-Inductance and inductors 1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

More information

Forced oscillation - Pohl s pendulum with measure Dynamics. Equipment TEP

Forced oscillation - Pohl s pendulum with measure Dynamics. Equipment TEP Forced oscillation - Pohl s pendulum TEP Related topics Angular velocity, characteristic frequency, resonance frequency, torsional pendulum, torsional oscillation, restoring torque, damped/undamped free

More information

Laboratory handout 5 Mode shapes and resonance

Laboratory handout 5 Mode shapes and resonance laboratory handouts, me 34 82 Laboratory handout 5 Mode shapes and resonance In this handout, material and assignments marked as optional can be skipped when preparing for the lab, but may provide a useful

More information

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations ymy/013 Building Intuition Even though there are an infinite number of differential equations, they all share common characteristics that allow intuition

More information

Torsion Spring Oscillator with Dry Friction

Torsion Spring Oscillator with Dry Friction Torsion Spring Oscillator with Dry Friction Manual Eugene Butikov Annotation. The manual includes a description of the simulated physical system and a summary of the relevant theoretical material for students

More information

Physics 12 August 1998 Provincial Examination

Physics 12 August 1998 Provincial Examination Physics 12 August 1998 Provincial Examination ANSWER KEY / SCORING GUIDE Organizers CURRICULUM: Sub-Organizers 1. Vector Kinematics in Two Dimensions A, B and Dynamics and Vector Dynamics C, D 2. Work,

More information

Gravitational Torsion Pendulum

Gravitational Torsion Pendulum Gravitational Torsion Pendulum Andrew Mark Allen - 05370299 December 5, 2011 Abstract The aim of this experiment is to measure the gravitational constant G using a torsion pendulum, which we found to be

More information

Driven Harmonic Oscillator

Driven Harmonic Oscillator Driven Harmonic Oscillator Physics 6B Lab Experiment 1 APPARATUS Computer and interface Mechanical vibrator and spring holder Stands, etc. to hold vibrator Motion sensor C-209 spring Weight holder and

More information

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is Dr. Alain Brizard College Physics I (PY 10) Oscillations Textbook Reference: Chapter 14 sections 1-8. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring

More information

4.2 Homogeneous Linear Equations

4.2 Homogeneous Linear Equations 4.2 Homogeneous Linear Equations Homogeneous Linear Equations with Constant Coefficients Consider the first-order linear differential equation with constant coefficients a 0 and b. If f(t) = 0 then this

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 8 Natural and Step Responses of RLC Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 8.1 Introduction to the Natural Response

More information

Lecture 39. PHYC 161 Fall 2016

Lecture 39. PHYC 161 Fall 2016 Lecture 39 PHYC 161 Fall 016 Announcements DO THE ONLINE COURSE EVALUATIONS - response so far is < 8 % Magnetic field energy A resistor is a device in which energy is irrecoverably dissipated. By contrast,

More information

a. Follow the Start-Up Procedure in the laboratory manual. Note the safety rules.

a. Follow the Start-Up Procedure in the laboratory manual. Note the safety rules. Lab #1 - Free Vibration Name: Date: Section / Group: Procedure Steps (from lab manual): a. Follow the Start-Up Procedure in the laboratory manual. Note the safety rules. b. Locate the various springs and

More information

Manufacturing Equipment Control

Manufacturing Equipment Control QUESTION 1 An electric drive spindle has the following parameters: J m = 2 1 3 kg m 2, R a = 8 Ω, K t =.5 N m/a, K v =.5 V/(rad/s), K a = 2, J s = 4 1 2 kg m 2, and K s =.3. Ignore electrical dynamics

More information

24 m / s. 4. The units N / kg are used for A. net force. B. gravitational force. C. electric field strength. D. gravitational field strength.

24 m / s. 4. The units N / kg are used for A. net force. B. gravitational force. C. electric field strength. D. gravitational field strength. PHYSICS 12 JUNE 2004 PROVINCIAL EXAMINATION PART A: MULTIPLE CHOICE 1. Which of the following is a scalar quantity? A. work B. force C. velocity D. momentum 2. An astronaut on the moon throws a 5.0 kg

More information

The Cavendish Experiment

The Cavendish Experiment June 7, 2001 Massachusetts Institute of Technology Physics Department 8.13/8.14 2001/2002 Junior Physics Laboratory Experiment #006 The Cavendish Experiment Measurement of the Gravitational Constant PREPARATORY

More information

Measuring the Universal Gravitational Constant, G

Measuring the Universal Gravitational Constant, G Measuring the Universal Gravitational Constant, G Introduction: The universal law of gravitation states that everything in the universe is attracted to everything else. It seems reasonable that everything

More information

Experiment 5. Simple Harmonic Motion

Experiment 5. Simple Harmonic Motion Reading and Problems: Chapters 7,8 Problems 7., 8. Experiment 5 Simple Harmonic Motion Goals. To understand the properties of an oscillating system governed by Hooke s Law.. To study the effects of friction

More information

SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO

SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO Half-Yearly Exam 2013 Subject: Physics Level: Advanced Time: 3hrs Name: Course: Year: 1st This paper carries 200 marks which are 80% of

More information

Name: Lab Partner: Section: Simple harmonic motion will be examined in this experiment.

Name: Lab Partner: Section: Simple harmonic motion will be examined in this experiment. Chapter 10 Simple Harmonic Motion Name: Lab Partner: Section: 10.1 Purpose Simple harmonic motion will be examined in this experiment. 10.2 Introduction A periodic motion is one that repeats itself in

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations Chapter Goal: To understand systems that oscillate with simple harmonic motion. Slide 14-2 Chapter 14 Preview Slide 14-3 Chapter 14 Preview Slide 14-4 Chapter 14 Preview Slide 14-5

More information

Chapter 14: Periodic motion

Chapter 14: Periodic motion Chapter 14: Periodic motion Describing oscillations Simple harmonic motion Energy of simple harmonic motion Applications of simple harmonic motion Simple pendulum & physical pendulum Damped oscillations

More information

Chapter 15 Periodic Motion

Chapter 15 Periodic Motion Chapter 15 Periodic Motion Slide 1-1 Chapter 15 Periodic Motion Concepts Slide 1-2 Section 15.1: Periodic motion and energy Section Goals You will learn to Define the concepts of periodic motion, vibration,

More information

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 15 Lecture RANDALL D. KNIGHT Chapter 15 Oscillations IN THIS CHAPTER, you will learn about systems that oscillate in simple harmonic

More information

HB Coupled Pendulums Lab Coupled Pendulums

HB Coupled Pendulums Lab Coupled Pendulums HB 04-19-00 Coupled Pendulums Lab 1 1 Coupled Pendulums Equipment Rotary Motion sensors mounted on a horizontal rod, vertical rods to hold horizontal rod, bench clamps to hold the vertical rods, rod clamps

More information

43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms,

43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, 43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, A) her moment of inertia increases and her rotational kinetic energy remains the same.

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

Modeling and Experimentation: Mass-Spring-Damper System Dynamics

Modeling and Experimentation: Mass-Spring-Damper System Dynamics Modeling and Experimentation: Mass-Spring-Damper System Dynamics Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin July 20, 2014 Overview 1 This lab is meant to

More information

Vibrations and Waves MP205, Assignment 4 Solutions

Vibrations and Waves MP205, Assignment 4 Solutions Vibrations and Waves MP205, Assignment Solutions 1. Verify that x = Ae αt cos ωt is a possible solution of the equation and find α and ω in terms of γ and ω 0. [20] dt 2 + γ dx dt + ω2 0x = 0, Given x

More information

OSCILLATIONS ABOUT EQUILIBRIUM

OSCILLATIONS ABOUT EQUILIBRIUM OSCILLATIONS ABOUT EQUILIBRIUM Chapter 13 Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION SIMPLE HARMONI MOTION hallenging MQ questions by The Physics afe ompiled and selected by The Physics afe 1 Simple harmonic motion is defined as the motion of a particle such that A its displacement x from

More information

Two-Mass, Three-Spring Dynamic System Investigation Case Study

Two-Mass, Three-Spring Dynamic System Investigation Case Study Two-ass, Three-Spring Dynamic System Investigation Case Study easurements, Calculations, anufacturer's Specifications odel Parameter Identification Which Parameters to Identify? What Tests to Perform?

More information

THE subject of the analysis is system composed by

THE subject of the analysis is system composed by MECHANICAL VIBRATION ASSIGNEMENT 1 On 3 DOF system identification Diego Zenari, 182160, M.Sc Mechatronics engineering Abstract The present investigation carries out several analyses on a 3-DOF system.

More information

Pulses in transmission lines

Pulses in transmission lines Pulses in transmission lines Physics 401, Fall 2018 Eugene V. Colla Definition Distributed parameters network Pulses in transmission line Wave equation and wave propagation Reflections. Resistive load

More information

AP Physics 1 Second Semester Final Exam Review

AP Physics 1 Second Semester Final Exam Review AP Physics 1 Second Semester Final Exam Review Chapter 7: Circular Motion 1. What does centripetal mean? What direction does it indicate?. Does the centripetal force do work on the object it is rotating?

More information

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is 1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

More information

Lab 11. Spring-Mass Oscillations

Lab 11. Spring-Mass Oscillations Lab 11. Spring-Mass Oscillations Goals To determine experimentally whether the supplied spring obeys Hooke s law, and if so, to calculate its spring constant. To find a solution to the differential equation

More information

Laboratory handouts, ME 340

Laboratory handouts, ME 340 Laboratory handouts, ME 340 This document contains summary theory, solved exercises, prelab assignments, lab instructions, and report assignments for Lab 4. 2014-2016 Harry Dankowicz, unless otherwise

More information

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

More information

Lab 12. Spring-Mass Oscillations

Lab 12. Spring-Mass Oscillations Lab 12. Spring-Mass Oscillations Goals To determine experimentally whether the supplied spring obeys Hooke s law, and if so, to calculate its spring constant. To determine the spring constant by another

More information

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th ) Conceptual Q: 4 (7), 7 (), 8 (6) Physics 4 HW Set Chapter 5 Serway 8 th ( 7 th ) Q4(7) Answer (c). The equilibrium position is 5 cm below the starting point. The motion is symmetric about the equilibrium

More information

PHYSICAL SCIENCES PART A

PHYSICAL SCIENCES PART A PHYSICAL SCIENCES PART A 1. The calculation of the probability of excitation of an atom originally in the ground state to an excited state, involves the contour integral iωt τ e dt ( t τ ) + Evaluate the

More information

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 330 Exams David M. McClendon Department of Mathematics Ferris State University Last updated to include exams from Fall 07 Contents Contents General information about these exams 3 Exams from Fall

More information

Lab 01: Harmonic Motion I. Theory: Three experiments. The first we measure the oscillation of a spring, the second of a rubber band (non-linear).

Lab 01: Harmonic Motion I. Theory: Three experiments. The first we measure the oscillation of a spring, the second of a rubber band (non-linear). Dr. W. Pezzaglia Physics 8C Lab, Spring 04 Page Las Positas College Lab # Harmonic Motion 04Jan3 Lab 0: Harmonic Motion I. Theory: Three experiments. The first we measure the oscillation of a spring, the

More information

Module 24: Outline. Expt. 8: Part 2:Undriven RLC Circuits

Module 24: Outline. Expt. 8: Part 2:Undriven RLC Circuits Module 24: Undriven RLC Circuits 1 Module 24: Outline Undriven RLC Circuits Expt. 8: Part 2:Undriven RLC Circuits 2 Circuits that Oscillate (LRC) 3 Mass on a Spring: Simple Harmonic Motion (Demonstration)

More information

Damped harmonic oscillator

Damped harmonic oscillator Prof. O. B. Wright, Mechanics Notes Damped harmonic oscillator Differential equation Assume the mass on a spring is subject to a frictional drag force -'dx/dt. (This force always points in the opposite

More information

Physics 2310 Lab #3 Driven Harmonic Oscillator

Physics 2310 Lab #3 Driven Harmonic Oscillator Physics 2310 Lab #3 Driven Harmonic Oscillator M. Pierce (adapted from a lab by the UCLA Physics & Astronomy Department) Objective: The objective of this experiment is to characterize the behavior of a

More information

Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Solutions to PHY2049 Exam 2 (Nov. 3, 2017) Solutions to PHY2049 Exam 2 (Nov. 3, 207) Problem : In figure a, both batteries have emf E =.2 V and the external resistance R is a variable resistor. Figure b gives the electric potentials V between the

More information

Chapter 13: Oscillatory Motions

Chapter 13: Oscillatory Motions Chapter 13: Oscillatory Motions Simple harmonic motion Spring and Hooe s law When a mass hanging from a spring and in equilibrium, the Newton s nd law says: Fy ma Fs Fg 0 Fs Fg This means the force due

More information

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK What is SIMULINK? SIMULINK is a software package for modeling, simulating, and analyzing

More information

Mechanical Resonance and Chaos

Mechanical Resonance and Chaos Mechanical Resonance and Chaos You will use the apparatus in Figure 1 to investigate regimes of increasing complexity. Figure 1. The rotary pendulum (from DeSerio, www.phys.ufl.edu/courses/phy483l/group_iv/chaos/chaos.pdf).

More information

MATH 251 Week 6 Not collected, however you are encouraged to approach all problems to prepare for exam

MATH 251 Week 6 Not collected, however you are encouraged to approach all problems to prepare for exam MATH 51 Week 6 Not collected, however you are encouraged to approach all problems to prepare for exam A collection of previous exams could be found at the coordinator s web: http://www.math.psu.edu/tseng/class/m51samples.html

More information

The Damped Pendulum. Physics 211 Lab 3 3/18/2016

The Damped Pendulum. Physics 211 Lab 3 3/18/2016 PHYS11 Lab 3 Physics 11 Lab 3 3/18/16 Objective The objective of this lab is to record the angular position of the pendulum vs. time with and without damping. The data is then analyzed and compared to

More information

Periodic motion Oscillations. Equilibrium position

Periodic motion Oscillations. Equilibrium position Periodic motion Oscillations Equilibrium position Any kinds of motion repeat themselves over and over: the vibration of a quartz crystal in a watch, the swinging pendulum of a grandfather clock, the sound

More information

WORK SHEET FOR MEP311

WORK SHEET FOR MEP311 EXPERIMENT II-1A STUDY OF PRESSURE DISTRIBUTIONS IN LUBRICATING OIL FILMS USING MICHELL TILTING PAD APPARATUS OBJECTIVE To study generation of pressure profile along and across the thick fluid film (converging,

More information

KEY SOLUTION. 05/07/01 PHYSICS 223 Exam #1 NAME M 1 M 1. Fig. 1a Fig. 1b Fig. 1c

KEY SOLUTION. 05/07/01 PHYSICS 223 Exam #1 NAME M 1 M 1. Fig. 1a Fig. 1b Fig. 1c KEY SOLUTION 05/07/01 PHYSICS 223 Exam #1 NAME Use g = 10 m/s 2 in your calculations. Wherever appropriate answers must include units. 1. Fig. 1a shows a spring, 20 cm long. The spring gets compressed

More information

General Physics I. Lecture 12: Applications of Oscillatory Motion. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 12: Applications of Oscillatory Motion. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 1: Applications of Oscillatory Motion Prof. WAN, Xin ( 万歆 ) inwan@zju.edu.cn http://zimp.zju.edu.cn/~inwan/ Outline The pendulum Comparing simple harmonic motion and uniform circular

More information

Pulses in transmission lines

Pulses in transmission lines Pulses in transmission lines Physics 401, Fall 013 Eugene V. Colla Definition Distributed parameters networ Pulses in transmission line Wave equation and wave propagation eflections. esistive load Thévenin's

More information

Simple Harmonic Motion

Simple Harmonic Motion 3/5/07 Simple Harmonic Motion 0. The Ideal Spring and Simple Harmonic Motion HOOKE S AW: RESTORING FORCE OF AN IDEA SPRING The restoring force on an ideal spring is F x k x spring constant Units: N/m 3/5/07

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

Physics Mechanics. Lecture 32 Oscillations II

Physics Mechanics. Lecture 32 Oscillations II Physics 170 - Mechanics Lecture 32 Oscillations II Gravitational Potential Energy A plot of the gravitational potential energy U g looks like this: Energy Conservation Total mechanical energy of an object

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 Inductance Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit

More information

Unit 7: Oscillations

Unit 7: Oscillations Text: Chapter 15 Unit 7: Oscillations NAME: Problems (p. 405-412) #1: 1, 7, 13, 17, 24, 26, 28, 32, 35 (simple harmonic motion, springs) #2: 45, 46, 49, 51, 75 (pendulums) Vocabulary: simple harmonic motion,

More information

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc. Chapter 13 Lecture Essential University Physics Richard Wolfson nd Edition Oscillatory Motion Slide 13-1 In this lecture you ll learn To describe the conditions under which oscillatory motion occurs To

More information

Figure XP3.1 (a) Mass in equilibrium, (b) Freebody diagram, (c) Kinematic constraint relation Example Problem 3.1 Figure XP3.1 illustrates a mass m

Figure XP3.1 (a) Mass in equilibrium, (b) Freebody diagram, (c) Kinematic constraint relation Example Problem 3.1 Figure XP3.1 illustrates a mass m LECTURE 7. MORE VIBRATIONS ` Figure XP3.1 (a) Mass in equilibrium, (b) Freebody diagram, (c) Kinematic constraint relation Example Problem 3.1 Figure XP3.1 illustrates a mass m that is in equilibrium and

More information

Pre-AP Physics Review Problems

Pre-AP Physics Review Problems Pre-AP Physics Review Problems SECTION ONE: MULTIPLE-CHOICE QUESTIONS (50x2=100 points) 1. The graph above shows the velocity versus time for an object moving in a straight line. At what time after t =

More information

SF016: PAST YEAR PSPM QUESTIONS

SF016: PAST YEAR PSPM QUESTIONS GRAPH QUESTIONS PSPM I 005/006 NO. 9 9. An experiment was carried out to determine the Young s modulus of a metal wire of length 3.0 and diameter 0.8. A vernier scale was used to measure its extension.

More information

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 240 Fall 2005: Exam #3 Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above 2. This will be

More information

Chapter 10 Lecture Outline. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 10 Lecture Outline. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10 Lecture Outline Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 10: Elasticity and Oscillations Elastic Deformations Hooke s Law Stress and

More information

=================~ NONHOMOGENEOUS LINEAR EQUATIONS. rn y" - y' - 6y = 0. lid y" + 2y' + 2y = 0, y(o) = 2, y'(0) = I

=================~ NONHOMOGENEOUS LINEAR EQUATIONS. rn y - y' - 6y = 0. lid y + 2y' + 2y = 0, y(o) = 2, y'(0) = I ~ EXERCISES rn y" - y' - 6y = 0 3. 4y" + y = 0 5. 9y" - 12y' + 4y = 0 2. y" + 4 y' + 4 y = 0 4. y" - 8y' + 12y = 0 6. 25y" + 9y = 0 dy 8. dt2-6 d1 + 4y = 0 00 y" - 4y' + By = 0 10. y" + 3y' = 0 [ITJ2-+2--y=0

More information

Good Vibes: Introduction to Oscillations

Good Vibes: Introduction to Oscillations Good Vibes: Introduction to Oscillations Description: Several conceptual and qualitative questions related to main characteristics of simple harmonic motion: amplitude, displacement, period, frequency,

More information

Assessment Schedule 2011 Physics: Demonstrate understanding of mechanical systems (90521)

Assessment Schedule 2011 Physics: Demonstrate understanding of mechanical systems (90521) NCEA Level 3 Physics (9052) 20 page of 5 Assessment Schedule 20 Physics: Demonstrate understanding of mechanical systems (9052) Evidence Statement Q Evidence Achievement Merit Excellence ONE (a) f = 4500

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Physics 8.01 Fall Term 2006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Physics 8.01 Fall Term 2006 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.01 Fall Term 2006 Momentum Demonstration Purpose of the Experiment: In this experiment you allow two carts to collide on a level track

More information

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark EXAM 1 WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark Autumn 2018 Name: Each multiple-choice question is worth 3 marks. 1. A light beam is deflected by two mirrors, as shown. The incident beam

More information