Measurement of the Gravitational Constant

Size: px
Start display at page:

Download "Measurement of the Gravitational Constant"

Transcription

1 Measurement of the Gravitational Constant Dylan L. Renaud and Albert Fraser Department of Physics, New Jersey Institute of Technology, Newark, New Jersey, 070 USA (Dated: May, 07) The gravitational constant, G, is determined by using a compact variation of the Cavendish apparatus. The influence of calibrating the device s torsion balance is investigated experimentally by analyzing smooth (calibrated) and disturbed (un-calibrated) oscillation data. Analysis of smooth oscillations yields a value for G with an error of approximately 33.4% relative to the current standard established by the Committee on Data for Science and Technology (CODATA). Similar analysis for the case of disturbed oscillations produces a value of G with a relative error of nearly 54%. I. INTRODUCTION Gravity is one of the most extensively studied phenomena in nature. At the macroscopic level, the observation of the interplay of the gravitational force and finite mass systems is commonplace. The trajectory of a falling object, orbits of celestial bodies, and motion of a pendulum all exhibit explicit dependencies on gravity. In lay terminology, gravity is generally described as a force by which systems with mass attract one another. However, as elucidated by Einstein in his seminal works on general relativity, it is now known that gravity s influence extends to massless systems, such as light, and even space itself []. Needless to say, a proper understanding of this ever-present phenomenon is vital for the development of a complete description of the observable universe and nature itself. The first documented effort towards a quantitative description of gravity was the product of Sir Isaac Newton and Robert Hooke in 666. Newton, spurred on by the suggestion of Hooke that gravity was an attractive force who s magnitude depended on the inverse square of the distance between interacting systems [], began by investigating planetary motion. Through observations of bodies in the solar system, Newton developed and empirically confirmed a number of mathematical relations that ultimately served to validate the previously a-priori inverse square law [3]. One of the first experimental ventures into measuring the gravitational constant was performed by Henry Cavendish in 798 [4]. Following after the work of geologist John Michell and Francis John Hyde Wollaston, Cavendish developed an apparatus to measure the nearly imperceptible gravitational attraction between a pair of small and large lead spheres. Cavendish s device consisted of a torsion balance - a wooden rod suspended by a thin wire - with two small lead spheres at the ends. A significantly larger spherical lead mass was then positioned near each small sphere. The attraction between each large and corresponding small sphere caused the balance to rotate, thereby precipitating the twisting of the thin wire. After twisting through a particular angle, the torque induced on the balance by the gravitational attraction was balanced by the oppositely-directed torsion torque. Measurement of this angle, along with the imparted torque, allowed for the calculation of G. The present work replicates Cavendish s original experiment while utilizing a more compact apparatus. In general, there are three methods which may be utilized to obtain G using Cavendish s system. These methods are known as the measurement by deflection, measurement by equilibrium, and measurement by acceleration techniques [5]. In the present work, only the final deflection method is utilized. Here, the complete oscillations of the torsion-balance are measured until they have died out in order to obtain the period of oscillation. This period, in combination with the equilibrium position (angle about which the oscillations occur) are used to then determine G. II. THEORY In the Cavendish experiment, two large masses (M) are rotated into extreme positions (I and II - shown in FIG. ). Each large mass then exhibits a gravitational force on its corresponding neighboring small mass (m) of magnitude F = GmM b () where G is the gravitational constant and b is the distance between the centers of mass of the neighboring large and small masses. This force imparts a torque on the small mass-dumbbell system with net magnitude τ = F d () with d being the distance between either small mass and the point of rotation. A torsion band - a thin piece of wire - provides an equal and opposite torque to maintain the system s equilibrium. This balancing torque takes the form τ tor = κθ (3) where κ is the torsion constant of the band and θ is the total angle through which it is rotated [5]. Utilizing eq. (), (), and (3) and solving for G yields the following Correspondence dlr6@njit.edu G = κθb dmm (4)

2 which contains two parameters, κ and θ, who s values are to be experimentally obtained. The torsion constant κ is related to the period of the measured motion by κ = 8π m d + 5 r T (5) where T is the period of oscillation of small massdumbbell system. The solid angle θ is obtained by θ = (6) L denotes the distance from mirror in FIG. to the region of measurement, while denotes the difference in equilibrium points for the two extreme positions of the large masses. Through careful measurement of both and T, the gravitational constant may be determined. Finally, through inclusion of an additional correction factor [5], the gravitational constant becomes where b is defined as G 0 = G b (7) III. b 3 b = (b + 4d ) 3 EXPERIMENTAL METHODS (8) FIG. : Experimental set-up of Cavendish apparatus. The parameters L, S, and S indicate the distance from the mirror to the -meter stick, first equilibrium position, and second equilibrium position, respectively. A. Experimental Set-up Klinger Educational Products Gravitation Torsion Balance, shown in FIG., is utilized for experimentation. The device s two small masses are spatially calibrated to be parallel to the device s plastic faces (not shown). This is done in order to ensure that neither of the small masses collides with either of the plastic faces during oscillations. A HeNe laser (633 nm) is directed to the internal mirror of the Gravitation Torsion Balance. The reflected beam then travels to a -meter measuring stick to determine the oscillatory behaviour of the smallmass dumbbell system. B. Measurements Measurement of linear oscillations is performed in conjunction with an audible stopwatch with beep cycles every 5 seconds. The position of the laser on the -meter stick is noted at each beep and subsequently recorded. Equilibrium positions are determined by observing the position of the laser after oscillations have been sufficiently damped (i.e. no visible motion of laser spot). To ensure that oscillations have been adequately damped, the system is left alone for approximately 4 hrs before measurement of each equilibrium position. IV. RESULTS AND DISCUSSION A. Undisturbed Oscillations Angular oscillation data for the small-mass dumbbell system is provided in FIG.. The measured linear oscillations, (x(t) [cm]), are converted into angular oscillations, (φ(t) [ ]), by way of the relation φ(t) = tan ( x(t) S L ) (9) Due to the apparent damped behaviour of the oscillations, the angular data is fitted with a damped sinusoidal function in order to obtain the period ( ) π φ(t) = ae bt sin c t d + e (0) where c is the desired period of oscillation. In implementing the fit, the period is bounded such that c [600, 60] to guide the Levenberg-Marquardt fitting algorithm. The coefficient of determination, R, and parameter values are included in FIG.. The torsion constant, κ, is obtained by using the fitted value for the period with eq. (5). Calculation of the torsion angle, θ, is achieved using the equilibrium positions,

3 3 Measured Fit - eq. (0) φ [rad] 0 R = a =.9 b = 8.55e 4 c = 604 d =.04 e = ,000,00,400,600,800,000,00 t [s] G κ θ T S S dg dκ dθ [m 3 kg s ] [N m rad ] [rad] [± s] [±.5 cm] [±.5 cm] [m 3 kg s ] [N m rad ] [rad] 4.44e- 8.4e e e-.7e-09 9.e-04 L b r d M [±.3 cm] [mm] [mm] [mm] [kg] FIG. : Undisturbed oscillations. Table shows measured and provided (m, r, d and M) parameters. S and S, in conjunction with eq. (6). In calculating these values, theoretical error may is determined by considering the propagation of error caused by uncertainty in the obtained values for T, S, and S. For κ, the propagation relation is. While determination of uncertainty in the calculated value of G can be obtained from the uncertainties yielded by eq. () and (), a more direct method entails combining eq. (4), (5), and (6). The explicit uncertainty relation then takes the form ( ) δκ dκ = (dt ) δt ( 6π m d + = 5 r T 3 ) (dt ) () where dt is the uncertainty in the period. While propagation of error in θ yields ( ) ( ) ( ) δθ δθ δθ dθ = (ds ) δs + (ds ) δs + (dl) δl ( ) ( ) ( ) = (ds ) + (ds ) + (dl) = ( ) (ds ) + (ds ) + (dl) () Here, ds and ds are the uncertainties in the measured equilibrium positions. Both observed and calculated uncertainties are provided in the table accompanying FIG. ( ) δg dg = (ds ) δs + δg ) (ds ) δs +... ( ) ( ) δg δg (dt ) + (dl) δt δl ( = π b d + ) 5 r T (ds ) +... (π b d + ) 5 r T (ds ) +... ( π b d + ) 5 r T 3 (dt ) +... ( π b d + ) 5 r (dl) T ML d = π b d + 5 r (ds T ) + (ds ) +... ( ) ( ) T (dt ) + L (dl) (3)

4 4 B. Disturbed Oscillations In the case that the two small masses are not spatially calibrated as outlined in sec. III A, the oscillations shown in FIG. will no longer be smooth. As the dumbbell system oscillates, the masses collide with the device s plastic faces, resulting in apparent disturbed oscillations. An example of this behavior is provided in FIG Measured Fit - eq. (4) this occurs proves difficult, as shown by the small number of data points prior to the first bounce in FIG. 3. In the present study, this method is not implemented due to the inability to measure the oscillations in the required manner. Method requires fitting the data with a damped sine squared term. If the system is left to oscillate, collisions will cause the appearance of several sharp bounces. The resulting behavior resembles that of a squared sinusoidal waveform with an exponentially decaying envelope. For this reason, in fitting the data, a function of the form R = φ(t) = ae bt sin ( π c t d ) + e (4) φ [rad] 0 4 bounce is considered. Eq. (4) differs in form from that of eq. (0) only by the squared sine term. The fitting period, c, may then be used in a manner identical to that proposed in sec. IV A in order to obtain G. The obtained values for T and G are provided in the table accompanying FIG. 3. The respective uncertainties are approximately the same as those calculated in sec. IV A t [s] C. Comparison of Disturbed and Undisturbed Oscillations G [m 3 kg s ] [± s] 3.0e- 73 FIG. 3: Disturbed oscillations. Shaded regions indicate data points excluded during fitting. Table shows calculated values for G and T obtained from disturbed oscillation data. Under such circumstances, it may still be possible to determine the period of the oscillations by one of two methods:. Fitting of sinusoidal waveform through the first half of the initial oscillation. Fitting using a damped squared sinusoidal waveform Concerning case, prior to a collision between an internal dumbbell mass and a plastic face, the movement of the internal mass is identical to that found in an undisturbed system. Therefore, fitting the curve at a time period prior to the first sharp bounce - shown in FIG. 3 - should result in an approximate period similar to that of an undisturbed system. The primary challenge that accompanies this method resides in the fact that measurements must commence at the exact moment the large external masses are rotated, or equivalently, before one of the small internal masses collides with a plastic face. Obtaining a significant number of measurements before T Calculated values of G for both disturbed and undisturbed oscillations can be compared with the consensus value for G established by the Committee on Data for Science and Technology (CODATA) [6]. Here, the precision of the CODATA value is limited to agree with that of our measurements. The relative errors for the two calculations are then (.73) 6.67 for undisturbed oscillations, and (.73) 6.67 = 33.4% (5) = 53.5% (6) for disturbed oscillations. Considering the uncertainty, the relative error of the undisturbed oscillation value for G comes to % that of the CODATA value. While a relatively large discrepancy exists between our measured values, the latter falls within the uncertainty of the former. Nonetheless, discrepancies can be attributed to a non-trivial influence of the plastic face during collisions. For this reason, the squared-sine fitting method is suggested to be a poorer method for accurately obtaining the period necessary to calculate G. V. CONCLUSION The gravitational constant, G, has been measured using a compact version of the Cavendish apparatus. Analysis of data for smooth oscillations yields a value for G with a relative error of approximately 33%. Similar

5 5 analysis for the case of disturbed oscillations using the damped squared sinusoidal waveform method produces a value of G with a relative error of nearly 54%. This indicates the significance of proper calibration of the devices internal masses prior to measurement. Regardless, it is shown that it is possible to utilize oscillations influenced by un-desirable external factors to approximate G. [] Albert Einstein. Relativity: The special and general theory. [] Cohen I. Bernard and George Edwin Smith. The Cambridge Companion to Newton. Cambridge University Press, 00. [3] Isaac Newton. The principia: mathematical principles of natural philosophy, 999. [4] Henry Cavendish. Experiments to determine the density of the earth. by henry cavendish, esq. frs and as. Philosophical Transactions of the Royal Society of London, 88:469 56, 798. [5] Cavendish methods. [6] NIST. Newtonian constant of gravitation, 04.

Measuring Newton's Constant of Universal Gravitation using a Gravitational Torsion Balance

Measuring Newton's Constant of Universal Gravitation using a Gravitational Torsion Balance Journal of the Advanced Undergraduate Physics Laboratory Investigation Volume 1 Issue 1 Article 5 2013 Measuring Newton's Constant of Universal Gravitation using a Gravitational Torsion Balance Zachary

More information

THE CAVENDISH EXPERIMENT Physics 258/259

THE CAVENDISH EXPERIMENT Physics 258/259 TM 1977, DSH 1988, 2005 THE CAVENDISH EXPERIMENT Physics 258/259 A sensitive torsion balance is used to measure the Newtonian gravitational constant G. The equations of motion of the torsion balance are

More information

The Cavendish Experiment

The Cavendish Experiment June 7, 2001 Massachusetts Institute of Technology Physics Department 8.13/8.14 2001/2002 Junior Physics Laboratory Experiment #006 The Cavendish Experiment Measurement of the Gravitational Constant PREPARATORY

More information

Determining the gravitational constant G using a gravitational torsion balance

Determining the gravitational constant G using a gravitational torsion balance Determining the gravitational constant G using a gravitational torsion balance Alexander Bredikin Department of Physics and Astronomy, Ithaca College, Ithaca, New York 1485 (Dated: May 8, 217) A gravitational

More information

Investigating the Relationship Between Cavendish Temperature Fluctuation and Torsional Oscillation

Investigating the Relationship Between Cavendish Temperature Fluctuation and Torsional Oscillation Investigating the Relationship Between Cavendish Temperature Fluctuation and Torsional Oscillation John Grasel 4 March 2010 Abstract The Cavendish apparatus measures the gravitational attraction between

More information

Gravitational Torsion Pendulum

Gravitational Torsion Pendulum Gravitational Torsion Pendulum Andrew Mark Allen - 05370299 December 5, 2011 Abstract The aim of this experiment is to measure the gravitational constant G using a torsion pendulum, which we found to be

More information

Gravitational Constant Brett Waite and Daniel Klinge

Gravitational Constant Brett Waite and Daniel Klinge Gravitational Constant Brett Waite and Daniel Klinge The universal gravitational constant was discovered by Henry Cavendish during the years of 1797-1798 His goal was to determine the density of the earth

More information

Oscillatory Motion SHM

Oscillatory Motion SHM Chapter 15 Oscillatory Motion SHM Dr. Armen Kocharian Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A

More information

Chapter 14 Periodic Motion

Chapter 14 Periodic Motion Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

More information

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Periodic Motion. Periodic motion is motion of an object that. regularly repeats Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems

More information

Chapter 15. Oscillatory Motion

Chapter 15. Oscillatory Motion Chapter 15 Oscillatory Motion Part 2 Oscillations and Mechanical Waves Periodic motion is the repeating motion of an object in which it continues to return to a given position after a fixed time interval.

More information

Measuring the Universal Gravitational Constant, G

Measuring the Universal Gravitational Constant, G Measuring the Universal Gravitational Constant, G Introduction: The universal law of gravitation states that everything in the universe is attracted to everything else. It seems reasonable that everything

More information

Chapter 8. Centripetal Force and The Law of Gravity

Chapter 8. Centripetal Force and The Law of Gravity Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration

More information

Chapter 13: Oscillatory Motions

Chapter 13: Oscillatory Motions Chapter 13: Oscillatory Motions Simple harmonic motion Spring and Hooe s law When a mass hanging from a spring and in equilibrium, the Newton s nd law says: Fy ma Fs Fg 0 Fs Fg This means the force due

More information

Oscillations. Oscillations and Simple Harmonic Motion

Oscillations. Oscillations and Simple Harmonic Motion Oscillations AP Physics C Oscillations and Simple Harmonic Motion 1 Equilibrium and Oscillations A marble that is free to roll inside a spherical bowl has an equilibrium position at the bottom of the bowl

More information

Earth s Magnetic Field Adapted by MMWaite from Measurement of Earth's Magnetic Field [Horizontal Component] by Dr. Harold Skelton

Earth s Magnetic Field Adapted by MMWaite from Measurement of Earth's Magnetic Field [Horizontal Component] by Dr. Harold Skelton Adapted by MMWaite from Measurement of Earth's Magnetic Field [Horizontal Component] by Dr. Harold Skelton Object: The purpose of this lab is to determine the horizontal component of the Earth s Magnetic

More information

Chapter 15. Oscillations

Chapter 15. Oscillations Chapter 15 Oscillations 15.1 Simple Harmonic Motion Oscillatory Motion: Motion which is periodic in time; motion that repeats itself in time. Examples: SHM: Power line oscillates when the wind blows past.

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical

More information

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are

More information

Chapter 13. Universal Gravitation 13.1: Newton's Law of Universal Gravitation 13.2: Free-Fall Acceleration and the Gravitational Force

Chapter 13. Universal Gravitation 13.1: Newton's Law of Universal Gravitation 13.2: Free-Fall Acceleration and the Gravitational Force Chapter 13 Universal Gravitation 13.1: Newton's Law of Universal Gravitation 13.2: Free-Fall Acceleration and the Gravitational Force 1 Planetary Motion A large amount of data had been collected by 1687.

More information

Chapter 15 Oscillations

Chapter 15 Oscillations Chapter 15 Oscillations Summary Simple harmonic motion Hook s Law Energy F = kx Pendulums: Simple. Physical, Meter stick Simple Picture of an Oscillation x Frictionless surface F = -kx x SHM in vertical

More information

= y(x, t) =A cos (!t + kx)

= y(x, t) =A cos (!t + kx) A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8

More information

Physics Mechanics. Lecture 32 Oscillations II

Physics Mechanics. Lecture 32 Oscillations II Physics 170 - Mechanics Lecture 32 Oscillations II Gravitational Potential Energy A plot of the gravitational potential energy U g looks like this: Energy Conservation Total mechanical energy of an object

More information

IU2. Modul Universal constants. Gravitational constants

IU2. Modul Universal constants. Gravitational constants IU2 Modul Universal constants Gravitational constants In addition to his formulation of the law of motion ISSAC NEWTON S, perhaps his greatest contribution to physics was the discovery of the general common

More information

6.1 Newtonian Gravitation

6.1 Newtonian Gravitation 6.1 Newtonian Gravitation Early in the formation of our galaxy, tiny gravitational effects between particles began to draw matter together into slightly denser configurations. Those, in turn, exerted even

More information

11 Newton s Law of Universal Gravitation

11 Newton s Law of Universal Gravitation Physics 1A, Fall 2003 E. Abers 11 Newton s Law of Universal Gravitation 11.1 The Inverse Square Law 11.1.1 The Moon and Kepler s Third Law Things fall down, not in some other direction, because that s

More information

Wilberforce Pendulum (One or two weights)

Wilberforce Pendulum (One or two weights) Wilberforce Pendulum (One or two weights) For a 1 weight experiment do Part 1 (a) and (b). For a weight experiment do Part1 and Part Recommended readings: 1. PHY15 University of Toronto. Selected Material

More information

The distance of the object from the equilibrium position is m.

The distance of the object from the equilibrium position is m. Answers, Even-Numbered Problems, Chapter..4.6.8.0..4.6.8 (a) A = 0.0 m (b).60 s (c) 0.65 Hz Whenever the object is released from rest, its initial displacement equals the amplitude of its SHM. (a) so 0.065

More information

Problem Set Number 01, MIT (Winter-Spring 2018)

Problem Set Number 01, MIT (Winter-Spring 2018) Problem Set Number 01, 18.377 MIT (Winter-Spring 2018) Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139) February 28, 2018 Due Thursday, March 8, 2018. Turn it in (by 3PM) at the Math.

More information

Fundamentals Physics. Chapter 15 Oscillations

Fundamentals Physics. Chapter 15 Oscillations Fundamentals Physics Tenth Edition Halliday Chapter 15 Oscillations 15-1 Simple Harmonic Motion (1 of 20) Learning Objectives 15.01 Distinguish simple harmonic motion from other types of periodic motion.

More information

Lab 10: Harmonic Motion and the Pendulum

Lab 10: Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum 119 Name Date Partners Lab 10: Harmonic Motion and the Pendulum OVERVIEW A body is said to be in a position of stable equilibrium if, after displacement in any direction,

More information

11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0.

11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0. A harmonic wave propagates horizontally along a taut string of length! = 8.0 m and mass! = 0.23 kg. The vertical displacement of the string along its length is given by!!,! = 0.1!m cos 1.5!!! +!0.8!!,

More information

For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is

For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is Experiment 14 The Physical Pendulum The period of oscillation of a physical pendulum is found to a high degree of accuracy by two methods: theory and experiment. The values are then compared. Theory For

More information

Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion:

Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion: Chapter 14 Oscillations Oscillations Introductory Terminology Simple Harmonic Motion: Kinematics Energy Examples of Simple Harmonic Oscillators Damped and Forced Oscillations. Resonance. Periodic Motion

More information

LINEAR AND NONLINEAR EFFECTS ON THE NEWTONIAN GRAVITATIONAL CONSTANT AS DEDUCED FROM THE TORSION BALANCE

LINEAR AND NONLINEAR EFFECTS ON THE NEWTONIAN GRAVITATIONAL CONSTANT AS DEDUCED FROM THE TORSION BALANCE International Journal of Modern Physics A Vol., No. 9 (007) 5391 5400 c World Scientific Publishing Company Int. J. Mod. Phys. A 007.:5391-5400. Downloaded from www.worldscientific.com by UNIVERSITY OF

More information

Simple and Physical Pendulums Challenge Problem Solutions

Simple and Physical Pendulums Challenge Problem Solutions Simple and Physical Pendulums Challenge Problem Solutions Problem 1 Solutions: For this problem, the answers to parts a) through d) will rely on an analysis of the pendulum motion. There are two conventional

More information

Chapter 15 - Oscillations

Chapter 15 - Oscillations The pendulum of the mind oscillates between sense and nonsense, not between right and wrong. -Carl Gustav Jung David J. Starling Penn State Hazleton PHYS 211 Oscillatory motion is motion that is periodic

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Torsional Pendulum and Moment of Inertia Introduction A torsional pendulum, or torsional oscillator, consists of a disk-like mass suspended from a thin rod or wire. When the mass is twisted

More information

A Boxer s Punch. A Senior Project. presented to. the Faculty of the Physics Department. California Polytechnic State University, San Luis Obispo

A Boxer s Punch. A Senior Project. presented to. the Faculty of the Physics Department. California Polytechnic State University, San Luis Obispo A Boxer s Punch A Senior Project presented to the Faculty of the Physics Department California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Bachelor

More information

General classifications:

General classifications: General classifications: Physics is perceived as fundamental basis for study of the universe Chemistry is perceived as fundamental basis for study of life Physics consists of concepts, principles and notions,

More information

OSCILLATIONS.

OSCILLATIONS. OSCILLATIONS Periodic Motion and Oscillatory motion If a body repeats its motion along a certain path, about a fixed point, at a definite interval of time, it is said to have a periodic motion If a body

More information

Cavendish Experiment Proposal

Cavendish Experiment Proposal 1 Cavendish Experiment Proposal October 19 th 2017 This proposal has been prepared by Brian C. Ferrari, Team Leader with the help of Cody Jordan, Ryan Sirimanne and Ahad Bawany In behalf of the Society

More information

Rotational Kinematics

Rotational Kinematics Rotational Kinematics Rotational Coordinates Ridged objects require six numbers to describe their position and orientation: 3 coordinates 3 axes of rotation Rotational Coordinates Use an angle θ to describe

More information

GRAVITATIONAL TORSION BALANCE

GRAVITATIONAL TORSION BALANCE Instruction Manual and Experiment Guide for the PASCO scientific Model SE-9633B 012-05750A 1/95 GRAVITATIONAL TORSION BALANCE 1995 PASCO scientific $10.00 10101 Foothills Blvd. P.O. Box 619011 Roseville,

More information

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc. Chapter 13 Lecture Essential University Physics Richard Wolfson nd Edition Oscillatory Motion Slide 13-1 In this lecture you ll learn To describe the conditions under which oscillatory motion occurs To

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 20: Rotational Motion Slide 20-1 Recap: center of mass, linear momentum A composite system behaves as though its mass is concentrated

More information

AP Physics C Mechanics

AP Physics C Mechanics 1 AP Physics C Mechanics Simple Harmonic Motion 2015 12 05 www.njctl.org 2 Table of Contents Click on the topic to go to that section Spring and a Block Energy of SHM SHM and UCM Simple and Physical Pendulums

More information

本教材僅供教學使用, 勿做其他用途, 以維護智慧財產權

本教材僅供教學使用, 勿做其他用途, 以維護智慧財產權 本教材內容主要取自課本 Physics for Scientists and Engineers with Modern Physics 7th Edition. Jewett & Serway. 注意 本教材僅供教學使用, 勿做其他用途, 以維護智慧財產權 教材網址 : https://sites.google.com/site/ndhugp1 1 Chapter 15 Oscillatory Motion

More information

Chapter 15 Periodic Motion

Chapter 15 Periodic Motion Chapter 15 Periodic Motion Slide 1-1 Chapter 15 Periodic Motion Concepts Slide 1-2 Section 15.1: Periodic motion and energy Section Goals You will learn to Define the concepts of periodic motion, vibration,

More information

December 04, Monday Gravitational force.notebook. Gravitational Force. Return to Table of Contents.

December 04, Monday Gravitational force.notebook. Gravitational Force. Return to Table of Contents. Gravitational Force https://www.njctl.org/video/?v=ip_u0xqvp04 Return to Table of Contents 1 Newton s Law of Universal Gravitation It has been well known since ancient times that Earth is a sphere and

More information

E = K + U. p mv. p i = p f. F dt = p. J t 1. a r = v2. F c = m v2. s = rθ. a t = rα. r 2 dm i. m i r 2 i. I ring = MR 2.

E = K + U. p mv. p i = p f. F dt = p. J t 1. a r = v2. F c = m v2. s = rθ. a t = rα. r 2 dm i. m i r 2 i. I ring = MR 2. v = v i + at x = x i + v i t + 1 2 at2 E = K + U p mv p i = p f L r p = Iω τ r F = rf sin θ v 2 = v 2 i + 2a x F = ma = dp dt = U v dx dt a dv dt = d2 x dt 2 A circle = πr 2 A sphere = 4πr 2 V sphere =

More information

Wilberforce Pendulum (One or two weights)

Wilberforce Pendulum (One or two weights) Wilberforce Pendulum (One or two weights) For a 1 weight experiment do Part 1 (a) and (b). For a 2 weight experiment do Part1 and Part 2 Recommended readings: 1. R.A.Serway and J.W.Jewett, Jr. Physics

More information

Lab M1: The Simple Pendulum

Lab M1: The Simple Pendulum Spring 2003 M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as

More information

Lab 1: Damped, Driven Harmonic Oscillator

Lab 1: Damped, Driven Harmonic Oscillator 1 Introduction Lab 1: Damped, Driven Harmonic Oscillator The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

More information

Course Name: AP Physics. Team Names: Jon Collins. Velocity Acceleration Displacement

Course Name: AP Physics. Team Names: Jon Collins. Velocity Acceleration Displacement Course Name: AP Physics Team Names: Jon Collins 1 st 9 weeks Objectives Vocabulary 1. NEWTONIAN MECHANICS and lab skills: Kinematics (including vectors, vector algebra, components of vectors, coordinate

More information

Lab 1: damped, driven harmonic oscillator

Lab 1: damped, driven harmonic oscillator Lab 1: damped, driven harmonic oscillator 1 Introduction The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

More information

Physics 5A Final Review Solutions

Physics 5A Final Review Solutions Physics A Final Review Solutions Eric Reichwein Department of Physics University of California, Santa Cruz November 6, 0. A stone is dropped into the water from a tower 44.m above the ground. Another stone

More information

HW Chapter 5 Q 7,8,18,21 P 4,6,8. Chapter 5. The Law of Universal Gravitation Gravity

HW Chapter 5 Q 7,8,18,21 P 4,6,8. Chapter 5. The Law of Universal Gravitation Gravity HW Chapter 5 Q 7,8,18,21 P 4,6,8 Chapter 5 The Law of Universal Gravitation Gravity Newton s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that

More information

!T = 2# T = 2! " The velocity and acceleration of the object are found by taking the first and second derivative of the position:

!T = 2# T = 2!  The velocity and acceleration of the object are found by taking the first and second derivative of the position: A pendulum swinging back and forth or a mass oscillating on a spring are two examples of (SHM.) SHM occurs any time the position of an object as a function of time can be represented by a sine wave. We

More information

Differential Equations (Math 217) Practice Midterm 1

Differential Equations (Math 217) Practice Midterm 1 Differential Equations (Math 217) Practice Midterm 1 September 20, 2016 No calculators, notes, or other resources are allowed. There are 14 multiple-choice questions, worth 5 points each, and two hand-graded

More information

Unforced Oscillations

Unforced Oscillations Unforced Oscillations Simple Harmonic Motion Hooke s Law Newton s Second Law Method of Force Competition Visualization of Harmonic Motion Phase-Amplitude Conversion The Simple Pendulum and The Linearized

More information

Northwestern Connecticut Community College Course Syllabus

Northwestern Connecticut Community College Course Syllabus Northwestern Connecticut Community College Course Syllabus Course Title: Introductory Physics Course #: PHY 110 Course Description: 4 credits (3 class hours and 3 laboratory hours per week) Physics 110

More information

Coupled Torsion Pendulum

Coupled Torsion Pendulum PHYSICS THROUGH TECHING LB IX Coupled Torsion Pendulum S.R. PTHRE, *.M. SHKER, **.K. MISHR *, C.S. DIGHE *** * Homi Bhabha Centre for Science Education (TIFR) V.N. Purav Marg, Mankhurd. Mumbai 400088 e.mail:

More information

r CM = ir im i i m i m i v i (2) P = i

r CM = ir im i i m i m i v i (2) P = i Physics 121 Test 3 study guide Thisisintendedtobeastudyguideforyourthirdtest, whichcoverschapters 9, 10, 12, and 13. Note that chapter 10 was also covered in test 2 without section 10.7 (elastic collisions),

More information

Simple Harmonic Motion

Simple Harmonic Motion 1. Object Simple Harmonic Motion To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2. Apparatus Assorted weights

More information

The... of a particle is defined as its change in position in some time interval.

The... of a particle is defined as its change in position in some time interval. Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

More information

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th ) Conceptual Q: 4 (7), 7 (), 8 (6) Physics 4 HW Set Chapter 5 Serway 8 th ( 7 th ) Q4(7) Answer (c). The equilibrium position is 5 cm below the starting point. The motion is symmetric about the equilibrium

More information

OSCILLATIONS ABOUT EQUILIBRIUM

OSCILLATIONS ABOUT EQUILIBRIUM OSCILLATIONS ABOUT EQUILIBRIUM Chapter 13 Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion (FIZ 101E - Summer 2018) July 29, 2018 Contents 1 Introduction 2 2 The Spring-Mass System 2 3 The Energy in SHM 5 4 The Simple Pendulum 6 5 The Physical Pendulum 8 6 The Damped Oscillations

More information

Unit 7: Oscillations

Unit 7: Oscillations Text: Chapter 15 Unit 7: Oscillations NAME: Problems (p. 405-412) #1: 1, 7, 13, 17, 24, 26, 28, 32, 35 (simple harmonic motion, springs) #2: 45, 46, 49, 51, 75 (pendulums) Vocabulary: simple harmonic motion,

More information

Northwestern CT Community College Course Syllabus. Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221

Northwestern CT Community College Course Syllabus. Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221 Northwestern CT Community College Course Syllabus Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221 Course Description: 4 credits (3 class hours and 3 laboratory hours per week) Physics

More information

Experiment 2: The Speed of Light

Experiment 2: The Speed of Light Experiment 2: The Speed of Light Modern Physics Laboratory Department of Physics and Astronomy Austin Peay State University September 12, 2006 Abstract In this experiment you will determine the value of

More information

Torque and Simple Harmonic Motion

Torque and Simple Harmonic Motion Torque and Simple Harmonic Motion Recall: Fixed Axis Rotation Angle variable Angular velocity Angular acceleration Mass element Radius of orbit Kinematics!! " d# / dt! " d 2 # / dt 2!m i Moment of inertia

More information

Sample paper 1. Question 1. What is the dimensional formula of torque? A. MLT -2 B. MT -2 C. ML 2 T -2 D. MLT -1 E. ML 3 T -2.

Sample paper 1. Question 1. What is the dimensional formula of torque? A. MLT -2 B. MT -2 C. ML 2 T -2 D. MLT -1 E. ML 3 T -2. Sample paper 1 Question 1 What is the dimensional formula of torque? A. MLT -2 B. MT -2 C. ML 2 T -2 D. MLT -1 E. ML 3 T -2 Correct Answer: C Torque is the turning effect of force applied on a body. It

More information

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003 Lecture XXVI Morris Swartz Dept. of Physics and Astronomy Johns Hopins University morris@jhu.edu November 5, 2003 Lecture XXVI: Oscillations Oscillations are periodic motions. There are many examples of

More information

LAST TIME: Simple Pendulum:

LAST TIME: Simple Pendulum: LAST TIME: Simple Pendulum: The displacement from equilibrium, x is the arclength s = L. s / L x / L Accelerating & Restoring Force in the tangential direction, taking cw as positive initial displacement

More information

Good Vibes: Introduction to Oscillations

Good Vibes: Introduction to Oscillations Good Vibes: Introduction to Oscillations Description: Several conceptual and qualitative questions related to main characteristics of simple harmonic motion: amplitude, displacement, period, frequency,

More information

Simple Harmonic Motion

Simple Harmonic Motion Physics 7B-1 (A/B) Professor Cebra Winter 010 Lecture 10 Simple Harmonic Motion Slide 1 of 0 Announcements Final exam will be next Wednesday 3:30-5:30 A Formula sheet will be provided Closed-notes & closed-books

More information

CHAPTER 12 OSCILLATORY MOTION

CHAPTER 12 OSCILLATORY MOTION CHAPTER 1 OSCILLATORY MOTION Before starting the discussion of the chapter s concepts it is worth to define some terms we will use frequently in this chapter: 1. The period of the motion, T, is the time

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Somnath Bharadwaj and S. Pratik Khastgir Department of Physics and Meteorology IIT Kharagpur Module : Oscillations Lecture : Oscillations Oscillations are ubiquitous. It would be

More information

TOPIC E: OSCILLATIONS SPRING 2019

TOPIC E: OSCILLATIONS SPRING 2019 TOPIC E: OSCILLATIONS SPRING 2019 1. Introduction 1.1 Overview 1.2 Degrees of freedom 1.3 Simple harmonic motion 2. Undamped free oscillation 2.1 Generalised mass-spring system: simple harmonic motion

More information

Chapter 7. Rotational Motion and The Law of Gravity

Chapter 7. Rotational Motion and The Law of Gravity Chapter 7 Rotational Motion and The Law of Gravity 1 The Radian The radian is a unit of angular measure The radian can be defined as the arc length s along a circle divided by the radius r s θ = r 2 More

More information

LAB 10 - HARMONIC MOTION AND THE PENDULUM

LAB 10 - HARMONIC MOTION AND THE PENDULUM L10-1 Name Date Partners LAB 10 - HARMONIC MOION AND HE PENDULUM θ L Groove marking the center of mass Photogate s = 0 s F tan mg θ OVERVIEW Figure 1 A body is said to be in a position of stable equilibrium

More information

Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be.

Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be. Chapter 4 Energy and Stability 4.1 Energy in 1D Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be T = 1 2 mẋ2 and the potential energy

More information

Lab 10 - Harmonic Motion and the Pendulum

Lab 10 - Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum L10-1 Name Date Partners Lab 10 - Harmonic Motion and the Pendulum L (measured from the suspension point to the center of mass) Groove marking the center of mass

More information

Weighing the earth. Computerized Cavendish Balance (TEL-Atomic RP2111). Data-acquisition system (We use PASCO ScienceWorkshop).

Weighing the earth. Computerized Cavendish Balance (TEL-Atomic RP2111). Data-acquisition system (We use PASCO ScienceWorkshop). Aim: Subjects: Diagram: To show the experiment of Cavendish. 1L10 (Universal Gravitational Constant) A B quipment: Safety: Computerized Cavendish Balance (TL-Atomic RP111). Data-acquisition system (We

More information

d 2 x dt 2 = ω2 x x(t) = A cos(ωt + φ) k m ω spring = E SHO = 1 2 ka2 L g T = 2π F g = G m 1m 2 r 2 g = F g m = G m r 2

d 2 x dt 2 = ω2 x x(t) = A cos(ωt + φ) k m ω spring = E SHO = 1 2 ka2 L g T = 2π F g = G m 1m 2 r 2 g = F g m = G m r 2 F s = k s I ring = MR 2 I disk = 1 2 MR2 I sphere = 2 5 MR2 d 2 x dt 2 = ω2 x x(t) = A cos(ωt + φ) ω = 2πf = 2π T U g = G m 1m 2 r ( 4π T 2 2 = GM ) r I rod,cm = 1 12 ML2 I rod,end = 1 ML2 I = I CM + MR

More information

Quantitative Skills in AP Physics 1

Quantitative Skills in AP Physics 1 This chapter focuses on some of the quantitative skills that are important in your AP Physics 1 course. These are not all of the skills that you will learn, practice, and apply during the year, but these

More information

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014 1 Rotational Dynamics Why do objects spin? Objects can travel in different ways: Translation all points on the body travel in parallel paths Rotation all points on the body move around a fixed point An

More information

Lab 16 Forces: Hooke s Law

Lab 16 Forces: Hooke s Law Lab 16 Forces: Hooke s Law Name Partner s Name 1. Introduction/Theory Consider Figure 1a, which shows a spring in its equilibrium position that is, the spring is neither compressed nor stretched. If we

More information

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws Lecture 13 REVIEW Physics 106 Spring 2006 http://web.njit.edu/~sirenko/ What should we know? Vectors addition, subtraction, scalar and vector multiplication Trigonometric functions sinθ, cos θ, tan θ,

More information

S13 PHY321: Final May 1, NOTE: Show all your work. No credit for unsupported answers. Turn the front page only when advised by the instructor!

S13 PHY321: Final May 1, NOTE: Show all your work. No credit for unsupported answers. Turn the front page only when advised by the instructor! Name: Student ID: S13 PHY321: Final May 1, 2013 NOTE: Show all your work. No credit for unsupported answers. Turn the front page only when advised by the instructor! The exam consists of 6 problems (60

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 11 Last Lecture Angular velocity, acceleration " = #$ #t = $ f %$ i t f % t i! = " f # " i t!" #!x $ 0 # v 0 Rotational/ Linear analogy "s = r"# v t = r" $ f

More information

SIMPLE PENDULUM AND PROPERTIES OF SIMPLE HARMONIC MOTION

SIMPLE PENDULUM AND PROPERTIES OF SIMPLE HARMONIC MOTION SIMPE PENDUUM AND PROPERTIES OF SIMPE HARMONIC MOTION Purpose a. To investigate the dependence of time period of a simple pendulum on the length of the pendulum and the acceleration of gravity. b. To study

More information

Simple Pendulum. L Length of pendulum; this is from the bottom of the pendulum support to center of mass of the bob.

Simple Pendulum. L Length of pendulum; this is from the bottom of the pendulum support to center of mass of the bob. Simple Pendulum Many mechanical systems exhibit motion that is periodic. Generally, this is because the system has been displaced from an equilibrium position and is subject to a restoring force. When

More information

Determining the Acceleration Due to Gravity with a Simple Pendulum

Determining the Acceleration Due to Gravity with a Simple Pendulum Determining the Acceleration Due to Gravity with a Simple Pendulum Quintin T. Nethercott and M. Evelynn Walton Department of Physics, University of Utah, Salt Lake City, 84112, UT, USA (Dated: March 6,

More information

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy ics Tuesday, ember 2, 2002 Ch 11: Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy Announcements Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements This

More information

Static Equilibrium, Gravitation, Periodic Motion

Static Equilibrium, Gravitation, Periodic Motion This test covers static equilibrium, universal gravitation, and simple harmonic motion, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. 60 A B 10 kg A mass of 10

More information

Single Particle Motion

Single Particle Motion Single Particle Motion C ontents Uniform E and B E = - guiding centers Definition of guiding center E gravitation Non Uniform B 'grad B' drift, B B Curvature drift Grad -B drift, B B invariance of µ. Magnetic

More information

Physics 22: Homework 1

Physics 22: Homework 1 Physics 22: Homework 1 The following problems encompass the topics of charge, as well as electrostatic forces, torques, and fields. 1. What is the total charge of all the electrons in 1.2 mol of diatomic

More information