Digital Control & Digital Filters. Lectures 21 & 22

Size: px
Start display at page:

Download "Digital Control & Digital Filters. Lectures 21 & 22"

Transcription

1 Digital Controls & Digital Filters Lectures 2 & 22, Professor Department of Electrical and Computer Engineering Colorado State University Spring 205

2 Review of Analog Filters-Cont. Types of Analog Filters: Butterworth 2 Chebyshev 3 Elliptic (Cauer) 4 Bessel Narrower Transition: () Elliptic, (2) Chebyshev, (3) Butterworth, (4) Bessel More linear phase over PB: () Bessel, (2) Butterworth, (3) Chebyshev, (4) Elliptic The first three filters have a common form of magnitude-squared function: A N ( ω 2 ) = +F ( ω 2 ) ω = ω ω c : Normalized frequency (ω c: Cutoff frequency ). Low-pass Butterworth Filters Maximally flat passband region All-pole filter For sharp cutoff, order must be large

3 Butterworth Filters Here F ( ω 2 ) = ω 2n and n: order or A N (ω 2 ) = ( ) + ωωc 2n ω = 0 = A N (0) = ω = ω c = A N (ω 2 c ) = 2 ω large = A N (ω 2 ) 0 Changing jω s in A N (ω 2 ) gives, A N ( s 2 ) = ) +( s 2n jωc Now, to find pole locations of this filter ( ) 2n s + jω c = 0 = sk = ( ) /2n jω c But, using ( ) /N = e j(2k )π/n, k [0, N ], we get s k = e j(2k )π/2n jω c = {sin (2k )π + j cos (2k )π }jω 2n 2n c, k [0, 2n ] There are n LH poles and n RH poles. The LH poles are the ones chosen according to the spectral factorization (or use tables).

4 Butterworth Filters-Cont. Disadvantages: Wide transition region (for low order filters). 2 Accuracy of approximation cannot be uniformly distributed in PB and SB regions. Example: Design a Butterworth LPF, H A(s), that has attenuation of at least 0dB at ω = 2ω c where ω c = A N ( ω 2 ) = + ω 2n A N (2 2 ) = +2 2n 0 log 0 A N (2 2 ) 0 = ( + 2 2n ) 0 = n =.58 = n = 2 From table: H N (s) = Denormalize, s s/ω c H A(s) = H N ( s ω c ) = s s s s+

5 Butterworth Filters-Cont. Short-Cut Method: The required filter order for providing a magnitude of /A (not in db) at frequency ω can be obtained using, n = log 0 (A2 ) 2 log 0 ( ω ωc ) For previous example, 20 log 0 /A = 0 db = A = 3.3 n = log 0 (3.32 ) 2 log 0 2 =.653 = n = 2

6 Review of Analog Filters-Cont. 2. Lowpass Chebyshev Filters Sharper cutoff or narrower transition region. Magnitude of error is equiripple over the passband (Type I) or over the stopband (Type II). Type I Chebyshev: Magnitude-squared function is given by A N ( ω 2 ) = H N (j ω) 2 = +F ( ω 2 ) where F ( ω 2 ) = ɛ 2 C 2 n( ω) ɛ: Ripple factor (determines ripple in passband) C n( ω): n th order Chebyshev polynomial C n( ω) = cos (n cos ω) for 0 ω (passband) C n( ω) = cosh (n cosh ω) for ω > (stopband) For any n, 0 C N ( ω) for 0 ω C N ( ω) > for ω > n = = C ( ω) = ω n = 2 = C 2( ω) = 2 ω 2 n = 3 = C 3( ω) = 4 ω 3 3 ω. i.e. C n( ω) is an odd/even polynomial when n is odd/even.

7 Chebyshev Filters-Cont. Chebyshev polynomials can be generated recursively using, C n+( ω) + C n ( ω) = 2 ωc n( ω) For n : even, C 2 n(0) = = A(0) = +ɛ 2 For n : odd, C 2 n(0) = 0 = A(0) = max H N (jω) = A max = : Max gain in passband min H N (jω) = A min = +ɛ : Min gain in passband 2 Define: A r db = 20 log max 0 A min = 0 log 0 ( + ɛ 2 ) : Loss in passband r(peak-to-peak) = A max A min = +ɛ 2

8 Chebyshev Filters-Cont. To find pole locations of the Chebyshev filter, change ω = s/j and set the denominator to zero, + ɛ 2 C 2 n(s/j) = 0 = cos (n cos ( s j )) = ± j ɛ But, using s k = σ k + jω k, we get σ k = sinh ϕ sin[ (2k )π 2n ] k [0, 2n ] ω k = cosh ϕ cos[ (2k )π 2n ] k [0, 2n ] where sinh ϕ = γ γ, cosh ϕ = γ+γ, and 2 2 γ = ( + +ɛ 2 ) /n. ɛ It is interesting to note that from equations for σ k and ω k, we have, σ 2 k sinh 2 ϕ + ω2 k cosh 2 ϕ = i.e. the poles are located on an ellipse in the s-plane.

9 Chebyshev Filters-Cont. Example: Design a Chebyshev Type I filter with db ripple in passband and attenuation of at least 20dB at ω = 2ω c, f c = 3kHz. r = 0 log 0 ( + ɛ 2 ) = = ɛ = log ɛ 2 Cn 2 (2) Since in stopband, ɛ 2 C 2 n(2) Thus, 0 log 0 ɛ log 0 C 2 n(2) 20 log 0 [cosh(n cosh 2)] log 0 ɛ =.2935 = n cosh or n 2.8 = n = 3 Use Table.4 (for r = db) H N (s) = s s s Denormalize: ω c = 2π = 6π 0 3 Rad/Sec s s ω c H A(s) = s s s+0.493

10 Review of Analog Filters-Cont. Short-Cut Method: If the magnitude of minimum stopband loss is /A at frequency ω r, then the order can be found using n = log 0 (g+ g 2 ) log 0 (ω r+ ωr 2 ) where g = A 2 ɛ 2 3. Elliptic Filters: Characteristics are: Equiripple both in passband and stopband. 2 Excellent transition region. The magnitude-squared function for elliptic filters is: A( ω 2 ) = +ɛ 2 R 2 n ( ω,κ ) R n( ω, κ ) : Chebyshev rational function with roots that are related to Jacobi elliptic functions hence called elliptic filters. κ ɛ/ A 2 : selectivity factor

11 Elliptic Filters Define transition ratio p = ωc ω r. Then the order of the elliptic filter to meet ɛ, A (as defined before) and ω c, ω r specs is: n = K(p)K( κ 2 ) K(κ )K( p 2 ) K(.): Complete elliptic integral of the st kind, K(x) = 0 Remarks: ( t 2 ) /2 ( xt 2 ) /2 dt In this filter, ɛ (ripple factor) determines the passband ripple, while the combination of ɛ and κ specify the stopband ripple. 2 To obtain equiripple in both passband and stopband elliptic filters must have poles on jω axis. 3 When κ the elliptic rational function becomes a Chebyshev polynomial, and therefore the filter becomes a Chebyshev Type I filter, with ripple factor ɛ. Disadvantages: Nonlinear phase characteristics. 2 Delay varies with frequency.

12 Review of Analog Filters-Cont. 4. Bessel Filters: Excellent phase characteristic (nearly linear). Wide transition region (disadvantage). Cutoff Frequency changes as function of n (disadvantage). All-pole filter with transfer function, H A (s) = d0 B n(s) where B n (s): n th order Bessel Polynomial B n (s) = n d i s i d i = i=0 (2n i)! 2 n i i!(n i)!, i [0, n] Bessel polynomials satisfy, B n (s) = (2n )B n (s) + s 2 B n 2 (s) with B 0 (s) = 0, B (s) = s + Cutoff Frequency varies as function of order n, ω c d /n 0

13 Recursive Using Bilinear z-mapping Idea: Analog systems are implemented using integrators, multipliers, and adders. Map every integrator H I(s) = /s (or h I(t) = u s(t)) to the digital domain. Convolution integral: y(t) = Let 0 < t < t 2, then t 2 y(t 2) = x(τ)h I(t τ)dτ y(t ) = 0 t 0 x(τ)h I(t τ)dτ y(t 2) y(t ) = x(τ)dτ =Area t (t 2 t ) t 2 t 0 x(τ)h I(t τ)dτ [x(t 2 ) + x(t 2)] Trapezoidal rule of integration. Let t = (n )T, t 2 = nt y(nt ) y((n )T ) = T [x((n )T ) + x(nt )] 2

14 Bilinear z-mapping-cont. Take z-transform: Y (z) z Y (z) = T 2 [z X(z) + X(z)] H I(z) = Y (z) = T (+z ) = T z+ X(z) 2 z 2 z Thus the mapping from s-domain to z-domain is: /s T 2 (z+) (z ) s 2 T ( z ) (+z ) : Bilinear z-mapping Once H A(s) prototype is described: H D(z) = H A(s) s= 2 T ( z ) (+z ) Properties of Bilinear z-mapping: Recall: s = 2 T (z ) 2/T +s or z = z+) 2/T s Also z = re jω, and s = σ + jω which gives

15 Bilinear z-mapping-properties re jω = (2/T +σ)+jω (2/T σ) jω Then equations for r and Ω become, [ ] r = (2/T +σ) 2 +ω 2 /2 (2/T σ) 2 +ω 2 Ω = tan ω 2 T +σ + tan ω 2 T σ Right half of s-plane: σ > 0 = r > : outside unit circle On jω axis: σ = 0 = r = : on unit circle Left half of s-plane: σ < 0 = r < : inside the unit circle = Stable H A (s) is mapped to stable H D (z). Additionally, it is obvious that H D (z) will have real coefficients. However, there is an issue with this mapping called warping.

16 Bilinear z-mapping-warping Effects For simplicity, let σ = 0 in equation of Ω, Ω = 2 tan ω 2/T = 2 tan ωt 2 or ω = 2 T tan Ω 2 : Nonlinear relation between Ω, ω Let Ω = Ω T (Normalized Ω) ω = 2 T When ΩT 2 tan ΩT 2 < 0.5, tan ΩT 2 ΩT 2 = ω Ω i.e. approximately linear portion of tangent curve. Thus, If all essential frequencies (ω c, ω r ) are below Ω = 0.3 T, no prewarping is needed since minimal warping effects and ω Ω. If not, prewarp the analog filter before bilinear z-mapping.

17 Bilinear z-mapping-warping Effects Note: Warping affects both magnitude and phase responses. Although, the amplitude distortion caused by warping can be remedied by prewarping, little can be done to linearize the phase except maybe using equalization methods.

18 Bilinear z-mapping-prewarping Procedure: If all essential frequencies are above Ω = 0.3 T, then Map all essential digital frequencies Ω i to corresponding analog frequencies using ω i = 2 T tan Ω i T 2 2 Design H A(s) using these analog frequencies ω i s. 3 Map H A(s) to H D(z) using Bilinear z-mapping. Example: Design a digital Butterworth filter that meets: T = 50 µ sec. 2 fc = 4 khz or Ω c = Rad/sec 3 At 2 Ω c attenuation is 5dB Since Ω c 0.3 T 6000 = Prewaring is needed We prewarp both Ω c and 2 Ω c, using

19 Bilinear z-mapping-cont. ω c = 2 T tan Ω ct Rad/sec ω 5dB = 2 T tan 2 Ω ct 2 = Rad/sec We now use these frequencies to design H A(s) H A(jω) 2 = ( ) + ωωc 2n 0 log 0 +( 23. From Table.2: H N (s) = 29. ) 2n s s+ Denormalize s s/ω c 5dB = n.2 = n = 2 H A(s) = ( ) 2 s s+( ) 2 H D(z) = H A(s) s= 2 T z = z +2.7z 2 +z z z 2

Design of IIR filters

Design of IIR filters Design of IIR filters Standard methods of design of digital infinite impulse response (IIR) filters usually consist of three steps, namely: 1 design of a continuous-time (CT) prototype low-pass filter;

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #24 Tuesday, November 4, 2003 6.8 IIR Filter Design Properties of IIR Filters: IIR filters may be unstable Causal IIR filters with rational system

More information

Digital Signal Processing Lecture 8 - Filter Design - IIR

Digital Signal Processing Lecture 8 - Filter Design - IIR Digital Signal Processing - Filter Design - IIR Electrical Engineering and Computer Science University of Tennessee, Knoxville October 20, 2015 Overview 1 2 3 4 5 6 Roadmap Discrete-time signals and systems

More information

DIGITAL SIGNAL PROCESSING. Chapter 6 IIR Filter Design

DIGITAL SIGNAL PROCESSING. Chapter 6 IIR Filter Design DIGITAL SIGNAL PROCESSING Chapter 6 IIR Filter Design OER Digital Signal Processing by Dr. Norizam Sulaiman work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

More information

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter 12

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter 12 . ECE 40 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter IIR Filter Design ) Based on Analog Prototype a) Impulse invariant design b) Bilinear transformation ( ) ~ widely used ) Computer-Aided

More information

Digital Signal Processing IIR Filter Design via Bilinear Transform

Digital Signal Processing IIR Filter Design via Bilinear Transform Digital Signal Processing IIR Filter Design via Bilinear Transform D. Richard Brown III D. Richard Brown III 1 / 12 Basic Procedure We assume here that we ve already decided to use an IIR filter. The basic

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 05 IIR Design 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform.

Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform. Inversion of the z-transform Focus on rational z-transform of z 1. Apply partial fraction expansion. Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform. Let X(z)

More information

UNIT - III PART A. 2. Mention any two techniques for digitizing the transfer function of an analog filter?

UNIT - III PART A. 2. Mention any two techniques for digitizing the transfer function of an analog filter? UNIT - III PART A. Mention the important features of the IIR filters? i) The physically realizable IIR filters does not have linear phase. ii) The IIR filter specification includes the desired characteristics

More information

The Approximation Problem

The Approximation Problem EE 508 Lecture 3 The Approximation Problem Classical Approximating Functions - Thompson and Bessel Approximations Review from Last Time Elliptic Filters Can be thought of as an extension of the CC approach

More information

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS Contents: 3.1 Introduction IIR Filters 3.2 Transformation Function Derivation 3.3 Review of Analog IIR Filters 3.3.1 Butterworth

More information

Filters and Tuned Amplifiers

Filters and Tuned Amplifiers Filters and Tuned Amplifiers Essential building block in many systems, particularly in communication and instrumentation systems Typically implemented in one of three technologies: passive LC filters,

More information

Filter Analysis and Design

Filter Analysis and Design Filter Analysis and Design Butterworth Filters Butterworth filters have a transfer function whose squared magnitude has the form H a ( jω ) 2 = 1 ( ) 2n. 1+ ω / ω c * M. J. Roberts - All Rights Reserved

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B26 bmcnair@stevens.edu 21-216-5549 Lecture 22 569 Second order section Ts () = s as + as+ a 2 2 1 ω + s+ ω Q 2 2 ω 1 p, p = ± 1 Q 4 Q 1 2 2 57 Second order section

More information

The Approximation Problem

The Approximation Problem EE 508 Lecture The Approximation Problem Classical Approximating Functions - Elliptic Approximations - Thompson and Bessel Approximations Review from Last Time Chebyshev Approximations T Type II Chebyshev

More information

The Approximation Problem

The Approximation Problem EE 508 Lecture The Approximation Problem Classical Approximating Functions - Elliptic Approximations - Thompson and Bessel Approximations Review from Last Time Chebyshev Approximations T Type II Chebyshev

More information

INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters 4. THE BUTTERWORTH ANALOG FILTER

INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters 4. THE BUTTERWORTH ANALOG FILTER INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters. INTRODUCTION 2. IIR FILTER DESIGN 3. ANALOG FILTERS 4. THE BUTTERWORTH ANALOG FILTER 5. THE CHEBYSHEV-I

More information

Lecture 7 Discrete Systems

Lecture 7 Discrete Systems Lecture 7 Discrete Systems EE 52: Instrumentation and Measurements Lecture Notes Update on November, 29 Aly El-Osery, Electrical Engineering Dept., New Mexico Tech 7. Contents The z-transform 2 Linear

More information

EE 521: Instrumentation and Measurements

EE 521: Instrumentation and Measurements Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA November 1, 2009 1 / 27 1 The z-transform 2 Linear Time-Invariant System 3 Filter Design IIR Filters FIR Filters

More information

Lecture 3 - Design of Digital Filters

Lecture 3 - Design of Digital Filters Lecture 3 - Design of Digital Filters 3.1 Simple filters In the previous lecture we considered the polynomial fit as a case example of designing a smoothing filter. The approximation to an ideal LPF can

More information

Chapter 7: Filter Design 7.1 Practical Filter Terminology

Chapter 7: Filter Design 7.1 Practical Filter Terminology hapter 7: Filter Design 7. Practical Filter Terminology Analog and digital filters and their designs constitute one of the major emphasis areas in signal processing and communication systems. This is due

More information

V. IIR Digital Filters

V. IIR Digital Filters Digital Signal Processing 5 March 5, V. IIR Digital Filters (Deleted in 7 Syllabus). (dded in 7 Syllabus). 7 Syllabus: nalog filter approximations Butterworth and Chebyshev, Design of IIR digital filters

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B26 bmcnair@stevens.edu 21-216-5549 Lecture 22 578 Second order LCR resonator-poles V o I 1 1 = = Y 1 1 + sc + sl R s = C 2 s 1 s + + CR LC s = C 2 sω 2 s + + ω

More information

Chapter 7: IIR Filter Design Techniques

Chapter 7: IIR Filter Design Techniques IUST-EE Chapter 7: IIR Filter Design Techniques Contents Performance Specifications Pole-Zero Placement Method Impulse Invariant Method Bilinear Transformation Classical Analog Filters DSP-Shokouhi Advantages

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

INF3440/INF4440. Design of digital filters

INF3440/INF4440. Design of digital filters Last week lecture Today s lecture: Chapter 8.1-8.3, 8.4.2, 8.5.3 INF3440/INF4440. Design of digital filters October 2004 Last week lecture Today s lecture: Chapter 8.1-8.3, 8.4.2, 8.5.3 Last lectures:

More information

Lecture 9 Infinite Impulse Response Filters

Lecture 9 Infinite Impulse Response Filters Lecture 9 Infinite Impulse Response Filters Outline 9 Infinite Impulse Response Filters 9 First-Order Low-Pass Filter 93 IIR Filter Design 5 93 CT Butterworth filter design 5 93 Bilinear transform 7 9

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. I Reading:

More information

All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials

All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials RADIOENGINEERING, VOL. 3, NO. 3, SEPTEMBER 4 949 All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials Nikola STOJANOVIĆ, Negovan STAMENKOVIĆ, Vidosav STOJANOVIĆ University of Niš,

More information

Multirate signal processing

Multirate signal processing Multirate signal processing Discrete-time systems with different sampling rates at various parts of the system are called multirate systems. The need for such systems arises in many applications, including

More information

MITOCW watch?v=jtj3v Rx7E

MITOCW watch?v=jtj3v Rx7E MITOCW watch?v=jtj3v Rx7E The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A Classification of systems : Continuous and Discrete

More information

There are two main classes of digital lter FIR (Finite impulse response) and IIR (innite impulse reponse).

There are two main classes of digital lter FIR (Finite impulse response) and IIR (innite impulse reponse). FIR Filters I There are two main classes of digital lter FIR (Finite impulse response) and IIR (innite impulse reponse). FIR Digital Filters These are described by dierence equations of the type: y[n]

More information

IIR digital filter design for low pass filter based on impulse invariance and bilinear transformation methods using butterworth analog filter

IIR digital filter design for low pass filter based on impulse invariance and bilinear transformation methods using butterworth analog filter IIR digital filter design for low pass filter based on impulse invariance and bilinear transformation methods using butterworth analog filter Nasser M. Abbasi May 5, 0 compiled on hursday January, 07 at

More information

24 Butterworth Filters

24 Butterworth Filters 24 Butterworth Filters Recommended Problems P24.1 Do the following for a fifth-order Butterworth filter with cutoff frequency of 1 khz and transfer function B(s). (a) Write the expression for the magnitude

More information

Analog and Digital Filter Design

Analog and Digital Filter Design Analog and Digital Filter Design by Jens Hee http://jenshee.dk October 208 Change log 28. september 208. Document started.. october 208. Figures added. 6. october 208. Bilinear transform chapter extended.

More information

Digital Signal Processing Lecture 9 - Design of Digital Filters - FIR

Digital Signal Processing Lecture 9 - Design of Digital Filters - FIR Digital Signal Processing - Design of Digital Filters - FIR Electrical Engineering and Computer Science University of Tennessee, Knoxville November 3, 2015 Overview 1 2 3 4 Roadmap Introduction Discrete-time

More information

(Refer Slide Time: 02:11 to 04:19)

(Refer Slide Time: 02:11 to 04:19) Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 24 Analog Chebyshev LPF Design This is the 24 th lecture on DSP and

More information

EE 225D LECTURE ON DIGITAL FILTERS. University of California Berkeley

EE 225D LECTURE ON DIGITAL FILTERS. University of California Berkeley University of California Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences Professors : N.Morgan / B.Gold EE225D Digital Filters Spring,1999 Lecture 7 N.MORGAN

More information

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Multimedia Signals and Systems - Audio and Video Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Kunio Takaya Electrical and Computer Engineering University of Saskatchewan December

More information

APPLIED SIGNAL PROCESSING

APPLIED SIGNAL PROCESSING APPLIED SIGNAL PROCESSING DIGITAL FILTERS Digital filters are discrete-time linear systems { x[n] } G { y[n] } Impulse response: y[n] = h[0]x[n] + h[1]x[n 1] + 2 DIGITAL FILTER TYPES FIR (Finite Impulse

More information

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra Time Series Analysis: 4. Digital Linear Filters P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Linear filters Filtering in Fourier domain is very easy: multiply the DFT of the input by a transfer

More information

Lecture 8 - IIR Filters (II)

Lecture 8 - IIR Filters (II) Lecture 8 - IIR Filters (II) James Barnes (James.Barnes@colostate.edu) Spring 2009 Colorado State University Dept of Electrical and Computer Engineering ECE423 1 / 27 Lecture 8 Outline Introduction Digital

More information

Time Series Analysis: 4. Linear filters. P. F. Góra

Time Series Analysis: 4. Linear filters. P. F. Góra Time Series Analysis: 4. Linear filters P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Linear filters in the Fourier domain Filtering: Multiplying the transform by a transfer function. g n DFT G

More information

PS403 - Digital Signal processing

PS403 - Digital Signal processing PS403 - Digital Signal processing 6. DSP - Recursive (IIR) Digital Filters Key Text: Digital Signal Processing with Computer Applications (2 nd Ed.) Paul A Lynn and Wolfgang Fuerst, (Publisher: John Wiley

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture : Design of Digital IIR Filters (Part I) Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 008 K. E. Barner (Univ.

More information

Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 INTRODUCTION TO ACTIVE AND PASSIVE ANALOG

Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 INTRODUCTION TO ACTIVE AND PASSIVE ANALOG INTRODUCTION TO ACTIVE AND PASSIVE ANALOG FILTER DESIGN INCLUDING SOME INTERESTING AND UNIQUE CONFIGURATIONS Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 TOPICS Introduction

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers

More information

Stability Condition in Terms of the Pole Locations

Stability Condition in Terms of the Pole Locations Stability Condition in Terms of the Pole Locations A causal LTI digital filter is BIBO stable if and only if its impulse response h[n] is absolutely summable, i.e., 1 = S h [ n] < n= We now develop a stability

More information

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF INFORMATION TECHNOLOGY. Academic Year

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF INFORMATION TECHNOLOGY. Academic Year VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur- 603 203 DEPARTMENT OF INFORMATION TECHNOLOGY Academic Year 2016-2017 QUESTION BANK-ODD SEMESTER NAME OF THE SUBJECT SUBJECT CODE SEMESTER YEAR

More information

Optimum Ordering and Pole-Zero Pairing of the Cascade Form IIR. Digital Filter

Optimum Ordering and Pole-Zero Pairing of the Cascade Form IIR. Digital Filter Optimum Ordering and Pole-Zero Pairing of the Cascade Form IIR Digital Filter There are many possible cascade realiations of a higher order IIR transfer function obtained by different pole-ero pairings

More information

Lectures: Lumped element filters (also applies to low frequency filters) Stub Filters Stepped Impedance Filters Coupled Line Filters

Lectures: Lumped element filters (also applies to low frequency filters) Stub Filters Stepped Impedance Filters Coupled Line Filters ECE 580/680 Microwave Filter Design Lectures: Lumped element filters (also applies to low frequency filters) Stub Filters Stepped Impedance Filters Coupled Line Filters Lumped Element Filters Text Section

More information

Lecture 16: Filter Design: Impulse Invariance and Bilinear Transform

Lecture 16: Filter Design: Impulse Invariance and Bilinear Transform EE58 Digital Signal Processing University of Washington Autumn 2 Dept. of Electrical Engineering Lecture 6: Filter Design: Impulse Invariance and Bilinear Transform Nov 26, 2 Prof: J. Bilmes

More information

1 1.27z z 2. 1 z H 2

1 1.27z z 2. 1 z H 2 E481 Digital Signal Processing Exam Date: Thursday -1-1 16:15 18:45 Final Exam - Solutions Dan Ellis 1. (a) In this direct-form II second-order-section filter, the first stage has

More information

EE 508 Lecture 15. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 15. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 15 Filter Transformations Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject Review from Last Time Thompson and Bessel pproximations Use of Bessel Filters: X I (s) X OUT (s)

More information

SYNTHESIS OF BIRECIPROCAL WAVE DIGITAL FILTERS WITH EQUIRIPPLE AMPLITUDE AND PHASE

SYNTHESIS OF BIRECIPROCAL WAVE DIGITAL FILTERS WITH EQUIRIPPLE AMPLITUDE AND PHASE SYNTHESIS OF BIRECIPROCAL WAVE DIGITAL FILTERS WITH EQUIRIPPLE AMPLITUDE AND PHASE M. Yaseen Dept. of Electrical and Electronic Eng., University of Assiut Assiut, Egypt Tel: 088-336488 Fax: 088-33553 E-Mail

More information

SIGNAL PROCESSING. B14 Option 4 lectures. Stephen Roberts

SIGNAL PROCESSING. B14 Option 4 lectures. Stephen Roberts SIGNAL PROCESSING B14 Option 4 lectures Stephen Roberts Recommended texts Lynn. An introduction to the analysis and processing of signals. Macmillan. Oppenhein & Shafer. Digital signal processing. Prentice

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Proceing IIR Filter Deign Manar Mohaien Office: F8 Email: manar.ubhi@kut.ac.kr School of IT Engineering Review of the Precedent Lecture Propertie of FIR Filter Application of FIR Filter

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

-Digital Signal Processing- FIR Filter Design. Lecture May-16

-Digital Signal Processing- FIR Filter Design. Lecture May-16 -Digital Signal Processing- FIR Filter Design Lecture-17 24-May-16 FIR Filter Design! FIR filters can also be designed from a frequency response specification.! The equivalent sampled impulse response

More information

Op-Amp Circuits: Part 3

Op-Amp Circuits: Part 3 Op-Amp Circuits: Part 3 M. B. Patil mbpatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Department of Electrical Engineering Indian Institute of Technology Bombay Introduction to filters Consider v(t) = v

More information

Lecture 8 - IIR Filters (II)

Lecture 8 - IIR Filters (II) Lecture 8 - IIR Filters (II) James Barnes (James.Barnes@colostate.edu) Spring 24 Colorado State University Dept of Electrical and Computer Engineering ECE423 1 / 29 Lecture 8 Outline Introduction Digital

More information

IT DIGITAL SIGNAL PROCESSING (2013 regulation) UNIT-1 SIGNALS AND SYSTEMS PART-A

IT DIGITAL SIGNAL PROCESSING (2013 regulation) UNIT-1 SIGNALS AND SYSTEMS PART-A DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING IT6502 - DIGITAL SIGNAL PROCESSING (2013 regulation) UNIT-1 SIGNALS AND SYSTEMS PART-A 1. What is a continuous and discrete time signal? Continuous

More information

EE 508 Lecture 11. The Approximation Problem. Classical Approximations the Chebyschev and Elliptic Approximations

EE 508 Lecture 11. The Approximation Problem. Classical Approximations the Chebyschev and Elliptic Approximations EE 508 Lecture The Approximation Problem Classical Approximations the Chebyschev and Elliptic Approximations Review from Last Time Butterworth Approximations Analytical formulation: All pole approximation

More information

An Iir-Filter Example: A Butterworth Filter

An Iir-Filter Example: A Butterworth Filter An Iir-Filter Example: A Butterworth Filter Josef Goette Bern University of Applied Sciences, Biel Institute of Human Centered Engineering - microlab JosefGoette@bfhch February 7, 2017 Contents 1 Introduction

More information

DIGITAL FILTERS Analysis, Design, and Applications by A. Antoniou ERRATA. Page 10, Table 1.1: The upper limit of the summation should be K.

DIGITAL FILTERS Analysis, Design, and Applications by A. Antoniou ERRATA. Page 10, Table 1.1: The upper limit of the summation should be K. DIGITAL FILTERS Analysis, Design, and Applications by A. Antoniou ERRATA Printing #1 Page vii, line 4 : Replace Geophysicists by Geoscientists. Page 1, Table 1.1: The upper limit of the summation should

More information

Discrete-Time David Johns and Ken Martin University of Toronto

Discrete-Time David Johns and Ken Martin University of Toronto Discrete-Time David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 40 Overview of Some Signal Spectra x c () t st () x s () t xn

More information

Signal Conditioning Issues:

Signal Conditioning Issues: Michael David Bryant 1 11/1/07 Signal Conditioning Issues: Filtering Ideal frequency domain filter Ideal time domain filter Practical Filter Types Butterworth Bessel Chebyschev Cauer Elliptic Noise & Avoidance

More information

Quadrature-Mirror Filter Bank

Quadrature-Mirror Filter Bank Quadrature-Mirror Filter Bank In many applications, a discrete-time signal x[n] is split into a number of subband signals { v k [ n]} by means of an analysis filter bank The subband signals are then processed

More information

Filter Design Problem

Filter Design Problem Filter Design Problem Design of frequency-selective filters usually starts with a specification of their frequency response function. Practical filters have passband and stopband ripples, while exhibiting

More information

UNIVERSITY OF OSLO. Faculty of mathematics and natural sciences. Forslag til fasit, versjon-01: Problem 1 Signals and systems.

UNIVERSITY OF OSLO. Faculty of mathematics and natural sciences. Forslag til fasit, versjon-01: Problem 1 Signals and systems. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Examination in INF3470/4470 Digital signal processing Day of examination: December 1th, 016 Examination hours: 14:30 18.30 This problem set

More information

Digital Signal Processing

Digital Signal Processing Dec./Jan. Fifth Semester B.E. Degree Examination Updates Digital Signal Processing Time: hrs. Max. Mars: ote:. Answer any FIVE full questions, selecting at least two questions from each part. PART A. a.

More information

EE Experiment 11 The Laplace Transform and Control System Characteristics

EE Experiment 11 The Laplace Transform and Control System Characteristics EE216:11 1 EE 216 - Experiment 11 The Laplace Transform and Control System Characteristics Objectives: To illustrate computer usage in determining inverse Laplace transforms. Also to determine useful signal

More information

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 )

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 ) Exercise 7 Ex: 7. A 0 log T [db] T 0.99 0.9 0.8 0.7 0.5 0. 0 A 0 0. 3 6 0 Ex: 7. A max 0 log.05 0 log 0.95 0.9 db [ ] A min 0 log 40 db 0.0 Ex: 7.3 s + js j Ts k s + 3 + j s + 3 j s + 4 k s + s + 4 + 3

More information

Signals and Systems. Lecture 11 Wednesday 22 nd November 2017 DR TANIA STATHAKI

Signals and Systems. Lecture 11 Wednesday 22 nd November 2017 DR TANIA STATHAKI Signals and Systems Lecture 11 Wednesday 22 nd November 2017 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Effect on poles and zeros on frequency response

More information

Design IIR Filters Using Cascaded Biquads

Design IIR Filters Using Cascaded Biquads Design IIR Filters Using Cascaded Biquads This article shows how to implement a Butterworth IIR lowpass filter as a cascade of second-order IIR filters, or biquads. We ll derive how to calculate the coefficients

More information

Need for transformation?

Need for transformation? Z-TRANSFORM In today s class Z-transform Unilateral Z-transform Bilateral Z-transform Region of Convergence Inverse Z-transform Power Series method Partial Fraction method Solution of difference equations

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

UNIVERSITI SAINS MALAYSIA. EEE 512/4 Advanced Digital Signal and Image Processing

UNIVERSITI SAINS MALAYSIA. EEE 512/4 Advanced Digital Signal and Image Processing -1- [EEE 512/4] UNIVERSITI SAINS MALAYSIA First Semester Examination 2013/2014 Academic Session December 2013 / January 2014 EEE 512/4 Advanced Digital Signal and Image Processing Duration : 3 hours Please

More information

Vel Tech High Tech Dr.Ranagarajan Dr.Sakunthala Engineering College Department of ECE

Vel Tech High Tech Dr.Ranagarajan Dr.Sakunthala Engineering College Department of ECE Subject Code: EC6502 Course Code:C302 Course Name: PRINCIPLES OF DIGITAL SIGNAL PROCESSING L-3 : T-1 : P-0 : Credits 4 COURSE OBJECTIVES: 1. To learn discrete Fourier transform and its properties 2. To

More information

On the Frequency-Domain Properties of Savitzky-Golay Filters

On the Frequency-Domain Properties of Savitzky-Golay Filters On the Frequency-Domain Properties of Savitzky-Golay Filters Ronald W Schafer HP Laboratories HPL-2-9 Keyword(s): Savitzky-Golay filter, least-squares polynomial approximation, smoothing Abstract: This

More information

Basic Design Approaches

Basic Design Approaches (Classic) IIR filter design: Basic Design Approaches. Convert the digital filter specifications into an analog prototype lowpass filter specifications. Determine the analog lowpass filter transfer function

More information

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION FINAL EXAMINATION 9:00 am 12:00 pm, December 20, 2010 Duration: 180 minutes Examiner: Prof. M. Vu Assoc. Examiner: Prof. B. Champagne There are 6 questions for a total of 120 points. This is a closed book

More information

EE Homework 5 - Solutions

EE Homework 5 - Solutions EE054 - Homework 5 - Solutions 1. We know the general result that the -transform of α n 1 u[n] is with 1 α 1 ROC α < < and the -transform of α n 1 u[ n 1] is 1 α 1 with ROC 0 < α. Using this result, the

More information

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Homework 4 May 2017 1. An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Determine the impulse response of the system. Rewriting as y(t) = t e (t

More information

Design IIR Butterworth Filters Using 12 Lines of Code

Design IIR Butterworth Filters Using 12 Lines of Code db Design IIR Butterworth Filters Using 12 Lines of Code While there are plenty of canned functions to design Butterworth IIR filters [1], it s instructive and not that complicated to design them from

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuous-time active filters. (3 points) Continuous time filters use resistors

More information

Introduction to Digital Signal Processing

Introduction to Digital Signal Processing Introduction to Digital Signal Processing 1.1 What is DSP? DSP is a technique of performing the mathematical operations on the signals in digital domain. As real time signals are analog in nature we need

More information

Design of Narrow Stopband Recursive Digital Filter

Design of Narrow Stopband Recursive Digital Filter FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 24, no. 1, April 211, 119-13 Design of Narrow Stopband Recursive Digital Filter Goran Stančić and Saša Nikolić Abstract: The procedure for design of narrow

More information

Multirate Digital Signal Processing

Multirate Digital Signal Processing Multirate Digital Signal Processing Basic Sampling Rate Alteration Devices Up-sampler - Used to increase the sampling rate by an integer factor Down-sampler - Used to decrease the sampling rate by an integer

More information

ELEG 5173L Digital Signal Processing Ch. 5 Digital Filters

ELEG 5173L Digital Signal Processing Ch. 5 Digital Filters Department of Electrical Engineering University of Aransas ELEG 573L Digital Signal Processing Ch. 5 Digital Filters Dr. Jingxian Wu wuj@uar.edu OUTLINE 2 FIR and IIR Filters Filter Structures Analog Filters

More information

LAB 6: FIR Filter Design Summer 2011

LAB 6: FIR Filter Design Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 6: FIR Filter Design Summer 011

More information

The z-transform. The Nature of the z-domain. X(s) '

The z-transform. The Nature of the z-domain. X(s) ' CHAPTER 33 The z-transform Just as analog filters are designed using the Laplace transform, recursive digital filters are developed with a parallel technique called the z-transform. The overall strategy

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #20 Wednesday, October 22, 2003 6.4 The Phase Response and Distortionless Transmission In most filter applications, the magnitude response H(e

More information

Digital Signal Processing. Lecture Notes and Exam Questions DRAFT

Digital Signal Processing. Lecture Notes and Exam Questions DRAFT Digital Signal Processing Lecture Notes and Exam Questions Convolution Sum January 31, 2006 Convolution Sum of Two Finite Sequences Consider convolution of h(n) and g(n) (M>N); y(n) = h(n), n =0... M 1

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #21 Friday, October 24, 2003 Types of causal FIR (generalized) linear-phase filters: Type I: Symmetric impulse response: with order M an even

More information

Analysis of Finite Wordlength Effects

Analysis of Finite Wordlength Effects Analysis of Finite Wordlength Effects Ideally, the system parameters along with the signal variables have infinite precision taing any value between and In practice, they can tae only discrete values within

More information

Lecture 5 - Assembly Programming(II), Intro to Digital Filters

Lecture 5 - Assembly Programming(II), Intro to Digital Filters GoBack Lecture 5 - Assembly Programming(II), Intro to Digital Filters James Barnes (James.Barnes@colostate.edu) Spring 2009 Colorado State University Dept of Electrical and Computer Engineering ECE423

More information

Question Paper Code : AEC11T02

Question Paper Code : AEC11T02 Hall Ticket No Question Paper Code : AEC11T02 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B. Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information