KYLE T. SPIKES Research Group

Size: px
Start display at page:

Download "KYLE T. SPIKES Research Group"

Transcription

1 KYLE T. SPIKES Research Group 1

2 WELCOME TO THE MEETING Welcome everyone! Currently we have 8 PhD and 3 MS students in total Presentations today cover a variety of topics in various stages of development Collaborator, Nicola Tisato, is currently building his laboratory, to be and running sometime this year Integrating his work with EDGER work is in the plans 2

3 Group Members Kyle T. Spikes, Associate Professor Dr. Kelvin Amalokwu, Post-Doctoral Fellow Mr. Tom Hess, Research Engineering Scientist Associate 3

4 Student Members 1. Elliot Dahl, PhD Student (EDGER) 2. David Tang, PhD Student (EDGER) 3. Wei Xi, PhD Student (EDGER) 4. Michael McCann, MS Student (EDGER) 4

5 Funding Effective medium model of shale properties: BP (PI: Spikes) Big data challenges subsurface fracture characterization: NSF (Wheeler and Sen) EDGER 5

6 CURRENT WORK ELLIOT DAHL P-wave velocity a) ε = 0.04 Velocity [m/s] ε = 0.02 ε = Frequency [khz] 6

7 CURRENT WORK ELLIOT DAHL P-wave dispersion ε= 0 ε= 0.02 ε=

8 CURRENT WORK DAVID TANG Energy Dispersive X-ray Spectroscopy (EDS) 8

9 CURRENT WORK DAVID TANG Segmentation Results NN Output 100 Clay/Pore TOC Quartz 600 Feldspar Calcite

10 CURRENT AND ONGOING WORK Unconventionals Segmentation-less digital rock physics Probabilistic rock physics templates 10

11 UNCONVENTIONALS Well B4 Well B4 (Xline) Lower EF (TWT) Large Contrast P-Impedance S-Impedance 11

12 UNCONVENTIONALS Top of Eagle Ford Xline 2012 Eagle Ford Well B7 Porosity plus kerogen Porosity plus kerogen 12

13 SEGMENTATION-LESS DRP 13

14 SEGMENTATION-LESS DRP Typically, segmentation-based DRP overestimates velocities. Sell et al., 2016, Solid Earth 14

15 SEGMENTATION-LESS DRP Can we eliminate segmentation? (At least for ~mono-mineralic rocks) The premise: 1) Using ghosts or targets with known densities, we can calibrate our CT imagery to obtain a density model; 2) For mono-mineralic rocks, density can be easily translated to porosity; 3) Total density and porosity should match density and porosity from laboratory measurements. The concept: 1) Each voxel can be considered as an elementary volume whose effective elastic properties can be described by effective medium theory, e.g. Hashin-Shtrikman; 2) Thus the model does not depend upon the geometry of pores and grains but rather upon the distribution of porosity. 15

16 Gray Level to Density argets: Air AISI304 Al alloy SEGMENTATION-LESS DRP Log In addition, the rock is a target as we know its average density: Sample Applied the calibration formula to a sub-sample ~22x12 mm Calculated density: 2038 kg/m 3 (-1.1% measured, ~error) 16

17 SEGMENTATION-LESS DRP Segme ρ qtz = 2650 kg/m 3 ρ L = voxel density Φ L =0 for ρ L ρ qtz Φ L =1 for and ρ L =ρ air 1 Calculated total porosity 0.23 (~ +8%) 17

18 SEGMENTATION-LESS DRP Modified upper Hashin-Strikman bound (Nur et al., 1991,1995) with critical porosity Φ C =0.38 V p Segme Quartz density (ρ qtz ) 2650 kg/m 3 Quartz Bulk modulus (K qtz ) 36 GPa Quartz Shear modulus (G qtz ) 44 GPa Critical porosity (Φ c ) 0.38 V s V p V s (km/s) (km/s) Note: ~3% of the voxels had Φ L >Φ C. Φ L forced to be = Φ C

19 Segme SEGMENTATION-LESS DRP Sofi3D to propagate elastic waves (Bohlen, 2002, Computers and Geosciences); Compressive wave generated at Z=0 mm (f=1mhz, sin 3 ); Measured the arrival time. Average of the displacement at Z=19.96 mm. V p =2875 m/s (~ +17% vs +74% of segm.) Note: The modified upper Hashin-Shtrikman bound calculated on the entire sample (i.e,. only considering Φ and not Φ L ) provided a P-wave velocity of 3680 m/s. 19

20 CONVENTIONAL ROCK PHYSICS TEMPLATE *Gas sands *Brine sands? = 40% S W = 1.0 S W = 1 Establish a range of models that qualitatively explains the elastic properties as a function of the rock properties. V P /V S 2.2? = 24% In this case, lithology, porosity and saturation are the most dominant rock properties S W = 0.2 We then argue that the model does a decent job of explaining the data.? = 40%? = 24% S W = I P km/s x g/cm 3 What about the uncertainty or error in the model?

21 PROBABILISTIC ROCK PHYSICS TEMPLATE P(φ,Sw Ip,./ )~P(φ,Sw) P(Ip,./ φ, Sw).0.0 Color = Relative Probability

22 PROBABILISTIC ROCK PHYSICS TEMPLATE How do you fill the model space? P(φ,Sw Ip,./.0 )~P(φ,Sw) P(Ip,./ φ, Sw) How do you determine how many distributions to have?.0 How much overlap or lack thereof should occur from one distribution to the next?

23 CLASSIFICATION OF LOG DATA 17 = Shale 9-16 = Sand, oil to brine 1-8 = Sand, gas to brine P(m) = P φ, Sw Ip,./.0 L d m = exp 1 2 x μ B Σ DE x μ 2πΣ P(m d) ~L(d m)p(m)

24 IMPLICATIONS Integrate inverted seismic data with rock physics models for quantitative seismic interpretation. Combine rock physics information with seismic information through Bayesian classification techniques. Account for non-unique relationships between rock and elastic properties. Shale Brine sand Brine sand Oil sand Gas sand

25 SIMULATION OF THE 5 FACIES

26 INVERTED SECTIONS P-impedance Vp/Vs [ ] km/s x g/cm 3

27 BAYESIAN CLASSIFICATION FOR MOST LIKELY FACIES Shale Brine sand Brine sand Oil sand Gas sand P(m d) = P(m)P(d m) P(d) P(m d) P(m)P(d m) P(c j d) = P(c j )P(d c j ) P(c j d) > P(c u d) for all j u. Shale Brine sand Brine sand Oil sand Gas sand

28 BAYESIAN CLASSIFICATION AND PROBABILISTIC MODELS 17 = Shale 17 = Shale 9-16 = Sand, 9-16 oil to = brine Sand, oil brine Probability 1-8 Sand, gas 1-8 = Sand, brine gas to brine 17 = Shale 17 = Shale 9-16 = Sand, o brine 9-16 = Sand, 1-8 oil to = brine Sand, ga brine 1-8 = Sand, gas to brine

29 BAYESIAN CLASSIFICATION AND PROBABILISTIC MODELS Shale 17 = Shale Brine sand Brine sand 9-16 = Sand, oil to brine Oil sand Gas sand 1-8 = Sand, gas to brine

30 BAYESIAN CLASSIFICATION AND PROBABILISTIC MODELS log(probability) log(probability) log(probability)

31 SUMMARY Current research activities in Reservoir characterization Digital rock physics Dispersion and attenuation modeling Probabilistic RPTs Incoming students will take part in these continuing and in new areas Collaborator, Nicola Tisato, is currently building his laboratory, to be and running sometime this year Integrating his work with EDGER work is in the plans 31

Integrating rock physics modeling, prestack inversion and Bayesian classification. Brian Russell

Integrating rock physics modeling, prestack inversion and Bayesian classification. Brian Russell Integrating rock physics modeling, prestack inversion and Bayesian classification Brian Russell Introduction Today, most geoscientists have an array of tools available to perform seismic reservoir characterization.

More information

Geophysical and geomechanical rock property templates for source rocks Malleswar Yenugu, Ikon Science Americas, USA

Geophysical and geomechanical rock property templates for source rocks Malleswar Yenugu, Ikon Science Americas, USA Malleswar Yenugu, Ikon Science Americas, USA Summary Sweet spot identification for source rocks involve detection of organic rich, high porous facies combined with brittleness, which is prone for hydraulic

More information

Integration of Rock Physics Models in a Geostatistical Seismic Inversion for Reservoir Rock Properties

Integration of Rock Physics Models in a Geostatistical Seismic Inversion for Reservoir Rock Properties Integration of Rock Physics Models in a Geostatistical Seismic Inversion for Reservoir Rock Properties Amaro C. 1 Abstract: The main goal of reservoir modeling and characterization is the inference of

More information

CHARACTERIZING RESERVOIR PROPERTIES OF THE HAYNESVILLE SHALE USING THE SELF-CONSISTENT MODEL AND A GRID SEARCH METHOD.

CHARACTERIZING RESERVOIR PROPERTIES OF THE HAYNESVILLE SHALE USING THE SELF-CONSISTENT MODEL AND A GRID SEARCH METHOD. CHARACTERIZING RESERVOIR PROPERTIES OF THE HAYNESVILLE SHALE USING THE SELF-CONSISTENT MODEL AND A GRID SEARCH METHOD Meijuan Jiang Department of Geological Sciences The University of Texas at Austin ABSTRACT

More information

Geophysical and geomechanical rock property templates for source rocks Malleswar Yenugu, Ikon Science Americas, USA

Geophysical and geomechanical rock property templates for source rocks Malleswar Yenugu, Ikon Science Americas, USA Geophysical and geomechanical rock property templates for source rocks Malleswar Yenugu, Ikon Science Americas, USA Summary Sweet spot identification for source rocks involve detection of organic rich,

More information

Pressure and Compaction in the Rock Physics Space. Jack Dvorkin

Pressure and Compaction in the Rock Physics Space. Jack Dvorkin Pressure and Compaction in the Rock Physics Space Jack Dvorkin June 2002 0 200 Compaction of Shales Freshly deposited shales and clays may have enormous porosity of ~ 80%. The speed of sound is close to

More information

Reservoir properties inversion from AVO attributes

Reservoir properties inversion from AVO attributes Reservoir properties inversion from AVO attributes Xin-gang Chi* and De-hua Han, University of Houston Summary A new rock physics model based inversion method is put forward where the shaly-sand mixture

More information

Downloaded 11/02/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Summary.

Downloaded 11/02/16 to Redistribution subject to SEG license or copyright; see Terms of Use at   Summary. in thin sand reservoirs William Marin* and Paola Vera de Newton, Rock Solid Images, and Mario Di Luca, Pacific Exploración y Producción. Summary Rock Physics Templates (RPTs) are useful tools for well

More information

Rock Physics Modeling in Montney Tight Gas Play

Rock Physics Modeling in Montney Tight Gas Play Rock Physics Modeling in Montney Tight Gas Play Ayato Kato 1, Kunio Akihisa 1, Carl Wang 2 and Reona Masui 3 1 JOGMEC-TRC, Chiba, Japan, kato-ayato@jogmec.go.jp 2 Encana, Calgary, Alberta 3 Mitsubishi

More information

A look into Gassmann s Equation

A look into Gassmann s Equation A look into Gassmann s Equation Nawras Al-Khateb, CHORUS Heavy Oil Consortium, Department of Geoscience, University of Calgary nawras.alkhateb@ucalgary.ca Summary By describing the influence of the pore

More information

P314 Anisotropic Elastic Modelling for Organic Shales

P314 Anisotropic Elastic Modelling for Organic Shales P314 Anisotropic Elastic Modelling for Organic Shales X. Wu* (British Geological Survey), M. Chapman (British Geological Survey), X.Y. Li (British Geological Survey) & H. Dai (British Geological Survey)

More information

ROCK PHYSICS MODELING FOR LITHOLOGY PREDICTION USING HERTZ- MINDLIN THEORY

ROCK PHYSICS MODELING FOR LITHOLOGY PREDICTION USING HERTZ- MINDLIN THEORY ROCK PHYSICS MODELING FOR LITHOLOGY PREDICTION USING HERTZ- MINDLIN THEORY Ida Ayu PURNAMASARI*, Hilfan KHAIRY, Abdelazis Lotfy ABDELDAYEM Geoscience and Petroleum Engineering Department Universiti Teknologi

More information

Exploration / Appraisal of Shales. Petrophysics Technical Manager Unconventional Resources

Exploration / Appraisal of Shales. Petrophysics Technical Manager Unconventional Resources Exploration / Appraisal of Shales Rick Lewis Petrophysics Technical Manager Unconventional Resources Organic Shale Factors Controlling Gas Reservoir Quality Conventional sandstone Mineral framework Gas

More information

Rock Physics of Organic Shale and Its Implication

Rock Physics of Organic Shale and Its Implication Rock Physics of Organic Shale and Its Implication Lev Vernik, Marathon Oil Corporation, Houston, USA lvernik@marathonoil.com Yulia Khadeeva, Marathon Oil Corporation, Houston, USA Cris Tuttle, Marathon

More information

QUANTITATIVE ANALYSIS OF SEISMIC RESPONSE TO TOTAL-ORGANIC-CONTENT AND THERMAL MATURITY IN SHALE GAS PLAYS

QUANTITATIVE ANALYSIS OF SEISMIC RESPONSE TO TOTAL-ORGANIC-CONTENT AND THERMAL MATURITY IN SHALE GAS PLAYS E: infoikonscience.com W: www.ikonscience.com QUANTITATIVE ANALYSIS OF SEISMIC RESPONSE TO TOTAL-ORGANIC-CONTENT AND THERMAL MATURITY IN SHALE GAS PLAYS Ebrahim Zadeh 12, Reza Rezaee 1, Michel Kemper 2

More information

Uncertainties in rock pore compressibility and effects on time lapse seismic modeling An application to Norne field

Uncertainties in rock pore compressibility and effects on time lapse seismic modeling An application to Norne field Uncertainties in rock pore compressibility and effects on time lapse seismic modeling An application to Norne field Amit Suman and Tapan Mukerji Department of Energy Resources Engineering Stanford University

More information

Seismic reservoir and source-rock analysis using inverse rock-physics modeling: A Norwegian Sea demonstration

Seismic reservoir and source-rock analysis using inverse rock-physics modeling: A Norwegian Sea demonstration 66 Seismic reservoir and source-rock analysis using inverse rock-physics modeling: A Norwegian Sea demonstration Kenneth Bredesen 1, Erling Hugo Jensen 1, 2, Tor Arne Johansen 1, 2, and Per Avseth 3, 4

More information

Sections Rock Physics Seminar Alejandra Rojas

Sections Rock Physics Seminar Alejandra Rojas Sections 1.1 1.3 Rock Physics Seminar Alejandra Rojas February 6 th, 2009 Outline Introduction Velocity Porosity relations for mapping porosity and facies Fluid substitution analysis 1.1 Introduction Discovering

More information

The elastic properties such as velocity, density, impedance,

The elastic properties such as velocity, density, impedance, SPECIAL SECTION: Rr ock Physics physics Lithology and fluid differentiation using rock physics template XIN-GANG CHI AND DE-HUA HAN, University of Houston The elastic properties such as velocity, density,

More information

Competing Effect of Pore Fluid and Texture -- Case Study

Competing Effect of Pore Fluid and Texture -- Case Study Competing Effect of Pore Fluid and Texture -- Case Study Depth (m) Sw Sxo. m Poisson's Ratio.. GOC.1 5 7 8 9 P-Impedance OWC 15 GR.. RHOB.5 1 Saturation...5. 1. 1.5 Vs (km/s).. Poisson's Ratio 5 7 P-Impedance

More information

Some consideration about fluid substitution without shear wave velocity Fuyong Yan*, De-Hua Han, Rock Physics Lab, University of Houston

Some consideration about fluid substitution without shear wave velocity Fuyong Yan*, De-Hua Han, Rock Physics Lab, University of Houston ain enu Some consideration about fluid substitution without shear wave velocity Fuyong Yan*, De-Hua Han, Rock Physics Lab, University of Houston Summary When S-wave velocity is absent, approximate Gassmann

More information

V Sw =1 * V (1-S w ) 2* (V Sw =1 -V (1-Sw )) * (TWT 99 -TWT 94 ) under reservoir conditions (Rm 3 ) V Sw =1

V Sw =1 * V (1-S w ) 2* (V Sw =1 -V (1-Sw )) * (TWT 99 -TWT 94 ) under reservoir conditions (Rm 3 ) V Sw =1 Simplified CO 2 volume calculation from time-lag Vol CO 2 = Φ * dx * dy * (1-S w ) * V Sw =1 * V (1-S w ) 2* (V Sw =1 -V (1-Sw )) * (TWT 99 -TWT 94 ) With: Gassman factor Vol CO2 is the volume of CO 2

More information

Summary. Simple model for kerogen maturity (Carcione, 2000)

Summary. Simple model for kerogen maturity (Carcione, 2000) Malleswar Yenugu* and De-hua Han, University of Houston, USA Summary The conversion of kerogen to oil/gas will build up overpressure. Overpressure is caused by conversion of solid kerogen to fluid hydrocarbons

More information

AFI (AVO Fluid Inversion)

AFI (AVO Fluid Inversion) AFI (AVO Fluid Inversion) Uncertainty in AVO: How can we measure it? Dan Hampson, Brian Russell Hampson-Russell Software, Calgary Last Updated: April 2005 Authors: Dan Hampson, Brian Russell 1 Overview

More information

Rock Physics of Shales and Source Rocks. Gary Mavko Professor of Geophysics Director, Stanford Rock Physics Project

Rock Physics of Shales and Source Rocks. Gary Mavko Professor of Geophysics Director, Stanford Rock Physics Project Rock Physics of Shales and Source Rocks Gary Mavko Professor of Geophysics Director, Stanford Rock Physics Project 1 First Question: What is Shale? Shale -- a rock composed of mud-sized particles, such

More information

Comparative Study of AVO attributes for Reservoir Facies Discrimination and Porosity Prediction

Comparative Study of AVO attributes for Reservoir Facies Discrimination and Porosity Prediction 5th Conference & Exposition on Petroleum Geophysics, Hyderabad-004, India PP 498-50 Comparative Study of AVO attributes for Reservoir Facies Discrimination and Porosity Prediction Y. Hanumantha Rao & A.K.

More information

We Density/Porosity Versus Velocity of Overconsolidated Sands Derived from Experimental Compaction SUMMARY

We Density/Porosity Versus Velocity of Overconsolidated Sands Derived from Experimental Compaction SUMMARY We 6 Density/Porosity Versus Velocity of Overconsolidated Sands Derived from Experimental Compaction S. Narongsirikul* (University of Oslo), N.H. Mondol (University of Oslo and Norwegian Geotechnical Inst)

More information

Measurement of elastic properties of kerogen Fuyong Yan, De-hua Han*, Rock Physics Lab, University of Houston

Measurement of elastic properties of kerogen Fuyong Yan, De-hua Han*, Rock Physics Lab, University of Houston Measurement of elastic properties of kerogen Fuyong Yan, De-hua Han*, Rock Physics Lab, University of Houston Summary To have good understanding of elastic properties of organic shale, it is fundamental

More information

Crosswell tomography imaging of the permeability structure within a sandstone oil field.

Crosswell tomography imaging of the permeability structure within a sandstone oil field. Crosswell tomography imaging of the permeability structure within a sandstone oil field. Tokuo Yamamoto (1), and Junichi Sakakibara (2) (1) University of Miami and Yamamoto Engineering Corporation, (2)

More information

A shale rock physics model for analysis of brittleness index, mineralogy, and porosity in the Barnett Shale

A shale rock physics model for analysis of brittleness index, mineralogy, and porosity in the Barnett Shale 1 2 A shale rock physics model for analysis of brittleness index, mineralogy, and porosity in the Barnett Shale 3 4 5 6 7 8 9 Zhiqi Guo 1, Xiang-Yang Li 2,3, Cai Liu 1, Xuan Feng 1, and Ye Shen 4 1 Jilin

More information

An Integrated Petrophysical Approach for Shale Gas Reservoirs

An Integrated Petrophysical Approach for Shale Gas Reservoirs An Integrated Petrophysical Approach for Shale Gas Reservoirs Richard Arnold & Matt Bratovich Baker Hughes Reservoir Development Services 1 2014 B A K E R H U G H E S I N C O R P O R A TED. A LL R I G

More information

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell Stochastic vs Deterministic Pre-stack Inversion Methods Brian Russell Introduction Seismic reservoir analysis techniques utilize the fact that seismic amplitudes contain information about the geological

More information

RP04 Improved Seismic Inversion and Facies Using Regional Rock Physics Trends: Case Study from Central North Sea

RP04 Improved Seismic Inversion and Facies Using Regional Rock Physics Trends: Case Study from Central North Sea RP04 Improved Seismic Inversion and Facies Using Regional Rock Physics Trends: Case Study from Central North Sea A.V. Somoza* (Ikon Science Ltd), K. Waters (Ikon Science Ltd) & M. Kemper (Ikon Science

More information

Ingrain has digital rock physics labs in Houston and Abu Dhabi

Ingrain has digital rock physics labs in Houston and Abu Dhabi SCAL in Shale Ingrain has digital rock physics labs in Houston and Abu Dhabi Ingrain Labs Ingrain Sales Offices Over 4000 rock samples processed and 125 commercial jobs have been completed in the past

More information

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico Rock Physics for Fluid and Porosity Mapping in NE GoM JACK DVORKIN, Stanford University and Rock Solid Images TIM FASNACHT, Anadarko Petroleum Corporation RICHARD UDEN, MAGGIE SMITH, NAUM DERZHI, AND JOEL

More information

Rock Physics & Formation Evaluation. Special Topic

Rock Physics & Formation Evaluation. Special Topic Volume 30 Issue 5 May 2012 Special Topic Technical Articles Dual representation of multiscale fracture network modelling for UAE carbonate field AVO and spectral decomposition for derisking Palaeogene

More information

An empirical method for estimation of anisotropic parameters in clastic rocks

An empirical method for estimation of anisotropic parameters in clastic rocks An empirical method for estimation of anisotropic parameters in clastic rocks YONGYI LI, Paradigm Geophysical, Calgary, Alberta, Canada Clastic sediments, particularly shale, exhibit transverse isotropic

More information

Towards Interactive QI Workflows Laurie Weston Bellman*

Towards Interactive QI Workflows Laurie Weston Bellman* Laurie Weston Bellman* Summary Quantitative interpretation (QI) is an analysis approach that is widely applied (Aki and Richards, 1980, Verm and Hilterman, 1995, Avseth et al., 2005, Weston Bellman and

More information

Lithology prediction and fluid discrimination in Block A6 offshore Myanmar

Lithology prediction and fluid discrimination in Block A6 offshore Myanmar 10 th Biennial International Conference & Exposition P 141 Lithology prediction and fluid discrimination in Block A6 offshore Myanmar Hanumantha Rao. Y *, Loic Michel, Hampson-Russell, Kyaw Myint, Ko Ko,

More information

URTeC: Summary

URTeC: Summary URTeC: 2665754 Using Seismic Inversion to Predict Geomechanical Well Behavior: a Case Study From the Permian Basin Simon S. Payne*, Ikon Science; Jeremy Meyer*, Ikon Science Copyright 2017, Unconventional

More information

VELOCITY MODELING TO DETERMINE PORE ASPECT RATIOS OF THE HAYNESVILLE SHALE. Kwon Taek Oh

VELOCITY MODELING TO DETERMINE PORE ASPECT RATIOS OF THE HAYNESVILLE SHALE. Kwon Taek Oh VELOCITY MODELING TO DETERMINE PORE ASPECT RATIOS OF THE HAYNESVILLE SHALE. Kwon Taek Oh Department of Geological Sciences The University of Texas at Austin ABSTRACT This work estimates pore shapes from

More information

BPM37 Linking Basin Modeling with Seismic Attributes through Rock Physics

BPM37 Linking Basin Modeling with Seismic Attributes through Rock Physics BPM37 Linking Basin Modeling with Seismic Attributes through Rock Physics W. AlKawai* (Stanford University), T. Mukerji (Stanford University) & S. Graham (Stanford University) SUMMARY In this study, we

More information

Elements of 3D Seismology Second Edition

Elements of 3D Seismology Second Edition Elements of 3D Seismology Second Edition Copyright c 1993-2003 All rights reserved Christopher L. Liner Department of Geosciences University of Tulsa August 14, 2003 For David and Samantha And to the memory

More information

Constraining seismic rock-property logs in organic shale reservoirs

Constraining seismic rock-property logs in organic shale reservoirs Constraining seismic rock-property logs in organic shale reservoirs Malleswar Yenugu 1 and Lev Vernik 2 Abstract One of the major challenges of unconventional shale reservoirs is to understand the effects

More information

Rock Physics Perturbational Modeling: Carbonate case study, an intracratonic basin Northwest/Saharan Africa

Rock Physics Perturbational Modeling: Carbonate case study, an intracratonic basin Northwest/Saharan Africa Rock Physics Perturbational Modeling: Carbonate case study, an intracratonic basin Northwest/Saharan Africa Franklin Ruiz, Carlos Cobos, Marcelo Benabentos, Beatriz Chacon, and Roberto Varade, Luis Gairifo,

More information

Geological Classification of Seismic-Inversion Data in the Doba Basin of Chad*

Geological Classification of Seismic-Inversion Data in the Doba Basin of Chad* Geological Classification of Seismic-Inversion Data in the Doba Basin of Chad* Carl Reine 1, Chris Szelewski 2, and Chaminda Sandanayake 3 Search and Discovery Article #41899 (2016)** Posted September

More information

Comparison of Reservoir Quality from La Luna, Gacheta and US Shale Formations*

Comparison of Reservoir Quality from La Luna, Gacheta and US Shale Formations* Comparison of Reservoir Quality from La Luna, Gacheta and US Shale Formations* Joel Walls 1 and Elizabeth Diaz 2 Search and Discovery Article #41396 (2014) Posted July 24, 2014 *Adapted from oral presentation

More information

Probabilistic Inversion Technique for Seismic Data

Probabilistic Inversion Technique for Seismic Data Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Probabilistic Inversion Technique for Seismic Data A thesis submitted

More information

SRC software. Rock physics modelling tools for analyzing and predicting geophysical reservoir properties

SRC software. Rock physics modelling tools for analyzing and predicting geophysical reservoir properties SRC software Rock physics modelling tools for analyzing and predicting geophysical reservoir properties Outline About SRC software. Introduction to rock modelling. Rock modelling program structure. Examples

More information

Mechanical Properties Log Processing and Calibration. R.D. Barree

Mechanical Properties Log Processing and Calibration. R.D. Barree Mechanical Properties Log Processing and Calibration R.D. Barree Logging for Mechanical Properties Acoustic logs Measure compressional and shear velocity or slowness (1/v) Can be affected by fractures,

More information

3-4 year research program funded by GeoScience BC, Industry Collaborators NSERC Collaborative Research Development. E. Munson - R.

3-4 year research program funded by GeoScience BC, Industry Collaborators NSERC Collaborative Research Development. E. Munson - R. Petrophysics and hydrocarbon generation, retention and production from ultra-low permeability rocks: HC liquid potential from Western Canadian Shales- a study in progress 3-4 year research program funded

More information

Correlation of brittleness index with fractures and microstructure in the Barnett Shale

Correlation of brittleness index with fractures and microstructure in the Barnett Shale Correlation of brittleness index with fractures and microstructure in the Barnett Shale Z. Guo (British Geological Survey), M. Chapman (University of Edinburgh), X.Y. Li (British Geological Survey) SUMMARY

More information

Seismic characterization of Montney shale formation using Passey s approach

Seismic characterization of Montney shale formation using Passey s approach Seismic characterization of Montney shale formation using Passey s approach Ritesh Kumar Sharma*, Satinder Chopra and Amit Kumar Ray Arcis Seismic Solutions, Calgary Summary Seismic characterization of

More information

Ingrain Laboratories INTEGRATED ROCK ANALYSIS FOR THE OIL AND GAS INDUSTRY

Ingrain Laboratories INTEGRATED ROCK ANALYSIS FOR THE OIL AND GAS INDUSTRY Ingrain Laboratories INTEGRATED ROCK ANALYSIS FOR THE OIL AND GAS INDUSTRY 3 INGRAIN We Help Identify and Develop the Most Productive Reservoir by Characterizing Rocks at Pore Level and Upscaling to the

More information

SEG/New Orleans 2006 Annual Meeting

SEG/New Orleans 2006 Annual Meeting On the applicability of Gassmann model in carbonates Ravi Sharma*, Manika Prasad and Ganpat Surve (Indian Institute of Technology, Bombay), G C Katiyar (Third Eye Centre, Oil and Natural Gas Corporation

More information

Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc.

Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc. Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc. Summary Rock physics establishes the link between reservoir properties,

More information

Estimation of shale reservoir properties based on anisotropic rock physics modelling

Estimation of shale reservoir properties based on anisotropic rock physics modelling Estimation of shale reservoir properties based on anisotropic rock physics modelling K. Qian* (China University of Petroleum,Beijing), F. Zhang (China University of Petroleum,Beijing), X.Y. Li (British

More information

Dynamic GeoScience Martyn Millwood Hargrave Chief Executive OPTIMISE SUCCESS THROUGH SCIENCE

Dynamic GeoScience Martyn Millwood Hargrave Chief Executive OPTIMISE SUCCESS THROUGH SCIENCE Dynamic GeoScience Martyn Millwood Hargrave Chief Executive OPTIMISE SUCCESS THROUGH SCIENCE Agenda 1. Ikon Science Where we are now 2. Geoscience 2012 A motion picture 3. Rock physics, AVO and Inversion

More information

Eagle Ford Shale Reservoir Properties from Digital Rock Physics

Eagle Ford Shale Reservoir Properties from Digital Rock Physics Eagle Ford Shale Reservoir Properties from Digital Rock Physics Joel D. Walls, Elizabeth Diaz, Naum Derzhi, Avrami Grader, Jack Dvorkin, Sarah Arredondo, Gustavo Carpio Ingrain Inc., Houston, TX info@ingrainrocks.com

More information

Results and Methodology from ANH (Colombia) Unconventional Resources Core Project

Results and Methodology from ANH (Colombia) Unconventional Resources Core Project Results and Methodology from ANH (Colombia) Unconventional Resources Core Project Joel D. Walls 1, Juliana Anderson 1, Elizabeth Diaz 1, and Maria Rosa Ceron 2 Search and Discovery Article #80346 (2013)**

More information

Quantitative Interpretation

Quantitative Interpretation Quantitative Interpretation The aim of quantitative interpretation (QI) is, through the use of amplitude analysis, to predict lithology and fluid content away from the well bore. This process should make

More information

ROCK PHYSICS DIAGNOSTICS OF NORTH SEA SANDS: LINK BETWEEN MICROSTRUCTURE AND SEISMIC PROPERTIES ABSTRACT

ROCK PHYSICS DIAGNOSTICS OF NORTH SEA SANDS: LINK BETWEEN MICROSTRUCTURE AND SEISMIC PROPERTIES ABSTRACT ROCK PHYSICS DIAGNOSTICS OF NORTH SEA SANDS: LINK BETWEEN MICROSTRUCTURE AND SEISMIC PROPERTIES PER AVSETH, JACK DVORKIN, AND GARY MAVKO Department of Geophysics, Stanford University, CA 94305-2215, USA

More information

Downloaded 10/02/18 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/02/18 to Redistribution subject to SEG license or copyright; see Terms of Use at Multi-scenario, multi-realization seismic inversion for probabilistic seismic reservoir characterization Kester Waters* and Michael Kemper, Ikon Science Ltd. Summary We propose a two tiered inversion strategy

More information

Rock physics of a gas hydrate reservoir. Gas hydrates are solids composed of a hydrogen-bonded ROUND TABLE

Rock physics of a gas hydrate reservoir. Gas hydrates are solids composed of a hydrogen-bonded ROUND TABLE ROUND TABLE Rock physics of a gas hydrate reservoir JACK DVORKIN and AMOS NUR, Stanford University, California, U.S. RICHARD UDEN and TURHAN TANER, Rock Solid Images, Houston, Texas, U.S. Gas hydrates

More information

Quantitative interpretation using inverse rock-physics modeling on AVO data

Quantitative interpretation using inverse rock-physics modeling on AVO data Quantitative interpretation using inverse rock-physics modeling on AVO data Erling Hugo Jensen 1, Tor Arne Johansen 2, 3, 4, Per Avseth 5, 6, and Kenneth Bredesen 2, 7 Downloaded 08/16/16 to 129.177.32.62.

More information

QUANTITATIVE INTERPRETATION

QUANTITATIVE INTERPRETATION QUANTITATIVE INTERPRETATION THE AIM OF QUANTITATIVE INTERPRETATION (QI) IS, THROUGH THE USE OF AMPLITUDE ANALYSIS, TO PREDICT LITHOLOGY AND FLUID CONTENT AWAY FROM THE WELL BORE This process should make

More information

Seismic reservoir characterisation

Seismic reservoir characterisation Seismic reservoir characterisation Unconventional reservoir (shale gas) Robert Porjesz 1 2014 B A K E R H U G H E S I N C O R P O R A TED. A LL R I G H TS R E S E R V E D. TERMS A N D C O N D I TI O N

More information

GNGTS 2015 Sessione 3.1

GNGTS 2015 Sessione 3.1 seismic reservoir characterization In offshore nile delta. Part I: comparing different methods to derive a reliable rock-physics model M. Aleardi 1, F. Ciabarri 2, F. Peruzzo 2, A. Mazzotti 1 1 Earth Sciences

More information

Shaly Sand Rock Physics Analysis and Seismic Inversion Implication

Shaly Sand Rock Physics Analysis and Seismic Inversion Implication Shaly Sand Rock Physics Analysis and Seismic Inversion Implication Adi Widyantoro (IkonScience), Matthew Saul (IkonScience/UWA) Rock physics analysis of reservoir elastic properties often assumes homogeneity

More information

Th LHR2 08 Towards an Effective Petroelastic Model for Simulator to Seismic Studies

Th LHR2 08 Towards an Effective Petroelastic Model for Simulator to Seismic Studies Th LHR2 08 Towards an Effective Petroelastic Model for Simulator to Seismic Studies A. Briceno* (Heriot-Watt University), C. MacBeth (Heriot-Watt University) & M.D. Mangriotis (Heriot-Watt University)

More information

SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION

SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION The Society gratefully acknowledges those companies that support the program by allowing their professionals

More information

Full-Azimuth 3-D Characterizes Shales

Full-Azimuth 3-D Characterizes Shales JULY 2013 The Better Business Publication Serving the Exploration / Drilling / Production Industry Full-Azimuth 3-D Characterizes Shales By Duane Dopkin, Joanne Wang and Shiv Pujan Singh HOUSTON Shale

More information

Recent advances in application of AVO to carbonate reservoirs: case histories

Recent advances in application of AVO to carbonate reservoirs: case histories Recent advances in application of AVO to reservoirs: case histories Yongyi Li, Bill Goodway*, and Jonathan Downton Core Lab Reservoir Technologies Division *EnCana Corporation Summary The application of

More information

Geophysical model response in a shale gas

Geophysical model response in a shale gas Geophysical model response in a shale gas Dhananjay Kumar and G. Michael Hoversten Chevron USA Inc. Abstract Shale gas is an important asset now. The production from unconventional reservoir like shale

More information

Seismic reservoir characterization in offshore Nile Delta.

Seismic reservoir characterization in offshore Nile Delta. Seismic reservoir characterization in offshore Nile Delta. Part II: Probabilistic petrophysical-seismic inversion M. Aleardi 1, F. Ciabarri 2, B. Garcea 2, A. Mazzotti 1 1 Earth Sciences Department, University

More information

BERG-HUGHES CENTER FOR PETROLEUM AND SEDIMENTARY SYSTEMS. Department of Geology and Geophysics College of Geosciences

BERG-HUGHES CENTER FOR PETROLEUM AND SEDIMENTARY SYSTEMS. Department of Geology and Geophysics College of Geosciences BERG-HUGHES CENTER FOR PETROLEUM AND SEDIMENTARY SYSTEMS Department of Geology and Geophysics College of Geosciences MISSION Integrate geoscience, engineering and other disciplines to collaborate with

More information

Seismic modelling of unconventional reservoirs

Seismic modelling of unconventional reservoirs FOCUS ARTICLE Coordinated by Satinder Chopra / Meghan Brown Seismic modelling of unconventional reservoirs Marco Perez Apache Canada Ltd., Calgary, Alberta, Canada Introduction Unconventional resource

More information

NORTH AMERICAN ANALOGUES AND STRATEGIES FOR SUCCESS IN DEVELOPING SHALE GAS PLAYS IN EUROPE Unconventional Gas Shale in Poland: A Look at the Science

NORTH AMERICAN ANALOGUES AND STRATEGIES FOR SUCCESS IN DEVELOPING SHALE GAS PLAYS IN EUROPE Unconventional Gas Shale in Poland: A Look at the Science NORTH AMERICAN ANALOGUES AND STRATEGIES FOR SUCCESS IN DEVELOPING SHALE GAS PLAYS IN EUROPE Unconventional Gas Shale in Poland: A Look at the Science Presented by Adam Collamore Co-authors: Martha Guidry,

More information

Net-to-gross from Seismic P and S Impedances: Estimation and Uncertainty Analysis using Bayesian Statistics

Net-to-gross from Seismic P and S Impedances: Estimation and Uncertainty Analysis using Bayesian Statistics Net-to-gross from Seismic P and S Impedances: Estimation and Uncertainty Analysis using Bayesian Statistics Summary Madhumita Sengupta*, Ran Bachrach, Niranjan Banik, esterngeco. Net-to-gross (N/G ) is

More information

23855 Rock Physics Constraints on Seismic Inversion

23855 Rock Physics Constraints on Seismic Inversion 23855 Rock Physics Constraints on Seismic Inversion M. Sams* (Ikon Science Ltd) & D. Saussus (Ikon Science) SUMMARY Seismic data are bandlimited, offset limited and noisy. Consequently interpretation of

More information

Exact elastic impedance in orthorhombic media

Exact elastic impedance in orthorhombic media Exact elastic impedance in orthorhombic media F. Zhang (hina University of Petroleum), X.Y. Li (hina University of Petroleum, British Geological Survey) SUMMARY onventional elastic/ray impedance approximations

More information

IDENTIFYING PATCHY SATURATION FROM WELL LOGS Short Note. / K s. + K f., G Dry. = G / ρ, (2)

IDENTIFYING PATCHY SATURATION FROM WELL LOGS Short Note. / K s. + K f., G Dry. = G / ρ, (2) IDENTIFYING PATCHY SATURATION FROM WELL LOGS Short Note JACK DVORKIN, DAN MOOS, JAMES PACKWOOD, AND AMOS NUR DEPARTMENT OF GEOPHYSICS, STANFORD UNIVERSITY January 5, 2001 INTRODUCTION Gassmann's (1951)

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Heriot-Watt University Research Gateway 4D seismic feasibility study for enhanced oil recovery (EOR) with CO2 injection in a mature North Sea field Amini, Hamed; Alvarez, Erick Raciel;

More information

P- and S-Wave Velocity Measurements and Pressure Sensitivity Analysis of AVA Response

P- and S-Wave Velocity Measurements and Pressure Sensitivity Analysis of AVA Response P- and S-Wave Velocity Measurements and Pressure Sensitivity Analysis of AVA Response Tiewei He* University of Alberta, Edmonton, Alberta, Canada tieweihe@phys.ualberta.ca and Douglas Schmitt University

More information

RESEARCH PROPOSAL. Effects of scales and extracting methods on quantifying quality factor Q. Yi Shen

RESEARCH PROPOSAL. Effects of scales and extracting methods on quantifying quality factor Q. Yi Shen RESEARCH PROPOSAL Effects of scales and extracting methods on quantifying quality factor Q Yi Shen 2:30 P.M., Wednesday, November 28th, 2012 Shen 2 Ph.D. Proposal ABSTRACT The attenuation values obtained

More information

Calibration of the petro-elastic model (PEM) for 4D seismic studies in multi-mineral rocks Amini, Hamed; Alvarez, Erick Raciel

Calibration of the petro-elastic model (PEM) for 4D seismic studies in multi-mineral rocks Amini, Hamed; Alvarez, Erick Raciel Heriot-Watt University Heriot-Watt University Research Gateway Calibration of the petro-elastic model (PEM) for 4D seismic studies in multi-mineral rocks Amini, Hamed; Alvarez, Erick Raciel DOI: 10.3997/2214-4609.20132136

More information

Effects of VTI Anisotropy in Shale-Gas Reservoir Characterization

Effects of VTI Anisotropy in Shale-Gas Reservoir Characterization P-014 Summary Effects of VTI Anisotropy in Shale-Gas Reservoir Characterization Niranjan Banik* and Mark Egan, WesternGeco Shale reservoirs are one of the hottest plays in the oil industry today. Our understanding

More information

Reservoir Characteristics of a Quaternary Channel: Incorporating Rock Physics in Seismic and DC Resistivity Surveys

Reservoir Characteristics of a Quaternary Channel: Incorporating Rock Physics in Seismic and DC Resistivity Surveys Reservoir Characteristics of a Quaternary Channel: Incorporating Rock Physics in Seismic and DC Resistivity Surveys Jawwad Ahmad* University of Alberta, Edmonton, Alberta, Canada jahmad@phys.ualberta.ca

More information

Integrating Geomechanics and Reservoir Characterization Examples from Canadian Shale Plays

Integrating Geomechanics and Reservoir Characterization Examples from Canadian Shale Plays Integrating Geomechanics and Reservoir Characterization Examples from Canadian Shale Plays AAPG Geosciences Technology Workshops Geomechanics and Reservoir Characterization of Shale and Carbonates July

More information

LINK BETWEEN ATTENUATION AND VELOCITY DISPERSION

LINK BETWEEN ATTENUATION AND VELOCITY DISPERSION LINK BETWEEN ATTENUATION AND VELOCITY DISPERSION Jack Dvorkin Stanford University and Rock Solid Images April 25, 2005 SUMMARY In a viscoelastic sample, the causality principle links the attenuation of

More information

Linearized AVO and Poroelasticity for HRS9. Brian Russell, Dan Hampson and David Gray 2011

Linearized AVO and Poroelasticity for HRS9. Brian Russell, Dan Hampson and David Gray 2011 Linearized AO and oroelasticity for HR9 Brian Russell, Dan Hampson and David Gray 0 Introduction In this talk, we combine the linearized Amplitude ariations with Offset (AO) technique with the Biot-Gassmann

More information

The role of seismic modeling in Reservoir characterization: A case study from Crestal part of South Mumbai High field

The role of seismic modeling in Reservoir characterization: A case study from Crestal part of South Mumbai High field P-305 The role of seismic modeling in Reservoir characterization: A case study from Crestal part of South Mumbai High field Summary V B Singh*, Mahendra Pratap, ONGC The objective of the modeling was to

More information

Inversion of seismic AVA data for porosity and saturation

Inversion of seismic AVA data for porosity and saturation Inversion of seismic AVA data for porosity and saturation Brikt Apeland Thesis for the degree Master of Science Department of Earth Science University of Bergen 27th June 213 2 Abstract Rock physics serves

More information

Temperature Dependence of Acoustic Velocities in Gas-Saturated Sandstones

Temperature Dependence of Acoustic Velocities in Gas-Saturated Sandstones Temperature Dependence of Acoustic Velocities in Gas-Saturated Sandstones Andreas Bauer, Christian Lehr, Frans Korndorffer, Arjan van der Linden Shell Global Solutions International, Rijswijk. Netherlands

More information

The GIG consortium Geophysical Inversion to Geology Per Røe, Ragnar Hauge, Petter Abrahamsen FORCE, Stavanger

The GIG consortium Geophysical Inversion to Geology Per Røe, Ragnar Hauge, Petter Abrahamsen FORCE, Stavanger www.nr.no The GIG consortium Geophysical Inversion to Geology Per Røe, Ragnar Hauge, Petter Abrahamsen FORCE, Stavanger 17. November 2016 Consortium goals Better estimation of reservoir parameters from

More information

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Reservoir properties estimation from marine broadband seismic without a-priori well information: A powerful de-risking workflow Cyrille Reiser*, Matt Whaley and Tim Bird, PGS Reservoir Limited Summary

More information

Petrophysical Study of Shale Properties in Alaska North Slope

Petrophysical Study of Shale Properties in Alaska North Slope Petrophysical Study of Shale Properties in Alaska North Slope Minh Tran Tapan Mukerji Energy Resources Engineering Department Stanford University, CA, USA Region of Interest 1.5 miles 20 miles Stratigraphic

More information

Amplitude variation with offset AVO. and. Direct Hydrocarbon Indicators DHI. Reflection at vertical incidence. Reflection at oblique incidence

Amplitude variation with offset AVO. and. Direct Hydrocarbon Indicators DHI. Reflection at vertical incidence. Reflection at oblique incidence Amplitude variation with offset AVO and Direct Hydrocarbon Indicators DHI Reflection at vertical incidence Reflection coefficient R(p) c α 1 S wavespeed β 1 density ρ 1 α 2 S wavespeed β 2 density ρ 2

More information

GRAIN SORTING, POROSITY, AND ELASTICITY. Jack Dvorkin and Mario A. Gutierrez Geophysics Department, Stanford University ABSTRACT

GRAIN SORTING, POROSITY, AND ELASTICITY. Jack Dvorkin and Mario A. Gutierrez Geophysics Department, Stanford University ABSTRACT GRAIN SORTING, POROSITY, AND ELASTICITY Jack Dvorkin and Mario A. Gutierrez Geophysics Department, Stanford University July 24, 2001 ABSTRACT Grain size distribution (sorting) is determined by deposition.

More information

From loose grains to stiff rocks The rock-physics "life story" of a clastic sediment, and its significance in QI studies

From loose grains to stiff rocks The rock-physics life story of a clastic sediment, and its significance in QI studies From loose grains to stiff rocks The rock-physics "life story" of a clastic sediment, and its significance in QI studies Prof. Per Avseth, NTNU/G&G Resources Burial depth/temp. Elastic Modulus The rock

More information