Mat 267 Engineering Calculus III Updated on 04/30/ x 4y 4z 8x 16y / 4 0. x y z x y. 4x 4y 4z 24x 16y 8z.

Size: px
Start display at page:

Download "Mat 267 Engineering Calculus III Updated on 04/30/ x 4y 4z 8x 16y / 4 0. x y z x y. 4x 4y 4z 24x 16y 8z."

Transcription

1 Ma 67 Engineering Calcls III Updaed on 04/0/0 r. Firoz Tes solion:. a) Find he cener and radis of he sphere 4 4 4z z ( ) ( ) z / 4 The cener is a (, -, 0), and radis b) Find he cener and radis of he sphere 4 4 4z / z 4 6 8z z 4 6 8z 44 0 z z The cener is a (, -, ), and radis ( ) ( ) ( z ) 5. a) Given a vecor r 4,4, he given vecor.. Find a vecor of magnide 0 in he direcion of 0 4 4,4, b) Find and componens of a vecor of magnide 8 and an angle of wih he posiive direcion. 8cos 4, 8sin 4 4. a) Tes if he following vecors are coplanar: a,4, 7, b,, 4 and c 0, 9,8. Use he concep of scalar riple prodc. 4 7 a ( b c ) 4 0, es coplanar b) Tes if he following vecors are coplanar: i 4 j 7 k, v i j 4k and w 9 j 8k. Use he concep of scalar riple prodc.

2 Ma 67 Engineering Calcls III Updaed on 04/0/0 r. Firoz 4 7 ( v w) 4 0, es coplanar Find orhogonal projecion of P 5, 6, 6 ono Q, 4,8 ha he orhogonal projecion of a vecor b ono a vecor a is defined and denoed b orhab b projab. Remember P Q 9 Proj P Q, 4, 8 Q Q 8 Orh P P Proj P 76 / 8, 60 / 8, 54 / 8 Q Q 5. a) Find he area of he parallelogram wih verices P(0, 0, 0), Q(-5,, ), R(-5, 0, ) and S(-0,, 4). PQ 5,,, PR 5, 0, PQ PR i j k 5 i 0 j 5k 5 0 Area= PQ PR = 6 sq. ni b) Find he area of he riangle wih verices P(5, 4, -5), Q(,, -6), and R(,, -8). PQ,,, PR,, PQ PR i j k 7i j-5k Area= PQ PR = 8 / sq. ni 6. For wha vales of are he vecors a 5,, and b 5,, orhogonal? For orhogonali a b = has no real solion. Therefore is no sch vale we have.

3 Ma 67 Engineering Calcls III Updaed on 04/0/0 r. Firoz 7. a) Find he disance of he poin P ( 5,,) from he line which passes hrogh he wo given poins Q (0,,) and R (,0, ). i j k PQ QR 5 0 i+0j+k PQ QR isance d= = 7/7 ni QR b) A man sared walking from a poin (-, ) and reached a he poin (-, 5). The man sared walking in he direcion of he vecor 5, a and changes his direcion onl once, when he rns a a righ angle. Wha are he coordinaes of he poin where he makes he rn? Rond or answer o wo decimal places. r( ) 5, and he disance d is given as d ( 5 ) (4 ) has minimm a (check i) The reqired poin where he rns a righ angle is ( -0.76,.90) 8. A horizonal clohesline is ied beween poles, 8 meers apar. When a mass of kilograms is ied o he middle of he clohesline, i sags a disance of meers. Wha is he magnide of he ension on he ends of he clohesline? Solion: T T cos i T sin j = T ( 9 / 85i+/ 85j) W= 9.8=T T T T 9. Find he parameric eqaions of he line hrogh he poin (0,,) ha is perpendiclar o he line,, z and parallel o he plane z 0.,,,,,, The eqaion of he line is L 0,,,,,, z kg

4 Ma 67 Engineering Calcls III Updaed on 04/0/0 r. Firoz 0. Consider he pah r( ) (8, 9, 9ln ), 0. Find he lengh of he crve beween he poins P (7,44,9ln 4) and Q (8,9,0) Solion: Tes solion r ( ) 8,8,9 /, r ( ) 9( / ) 4 L 9( / ) d 9(5 ln 4) A) Le f (, ) e. a) Find f (,) and b) f(,) in he direcion of v i j, where f (, ) e ( ), e, f (,) e, e, /, / f e / e v v B) Le f (, ) e. a) Find f (,) and b) f(,) in he direcion of v i j, where v v Answer: a) f (,) e, e b) f (,) e ( / ). A) Find he eqaion of he angen plane o z f (, ) e a he poin (,,). And approimae he vale of f (., 0.98) sing linear approimaion. f (, ), f (., 0.98) (.) ( 0.987).4 B) Find he eqaion of he angen plane o z f (, ) e a he poin (,,). And approimae he vale of f (0.97,.) sing linear approimaion. f e f (, ) f e f (, ) z f ( ) ( ) f (0.97,.) (0.97) (.) 0.54

5 Ma 67 Engineering Calcls III Updaed on 04/0/0 r. Firoz. a) Sppose ha r z e cos, r s, s. Find (,) or answer o wo decimal places. z z, (,) rond s Solion: z r r ( s, ) se cos e ( sin ) s z (,).47 z r r s (,) e cos e ( sin ).47 s s b) Le W( s, ) F( ( s, ), v( s, )), where W, and v are differeniable, (, 0), s (, 0), (, 0) 6, v(, 0), vs (, 0) 5, v (, 0) 4. Frher given ha F (,), F (,) 0. Find W (,0), W (,0). v s Solion: 4. A) Given W W W v (,0) ( ) 0(5) 5 s s v s W W (, 0) (6) 0(4) 4 f (, ). Find he differenial dz in erms of and. dz d d d d ( ) d ( ) d B) Given f (, ). Find he differenial dz in erms of and. dz d d d d ( ) d ( ) d 5. The dimensions of a closed recanglar bo are measred as 90 cm, 50 cm, and 60 cm respecivel wih he error in each measremen a mos 0. cm. Use differenial o esimae he maimm error in calclaing he srface area of he bo. o no forge he ni. Solion: S lw lh wh ds ldw wdl ldh hdl wdh hdw ( )0. 60 sq. cm

6 Ma 67 Engineering Calcls III Updaed on 04/0/0 r. Firoz 6. Verif if he fncion (, ) sin( a ) saisfies he wave eqaion a 0. a a a a cos( a), sin( a) a 0, es, verifies. cos( ), sin( ) 7. Find all he relaive maimm and minimm and saddle poins on he given 4 4 srface z f (, ) 4. o no forge o check he sign of he discriminan a each saionar poin. Wrie or answer in he bo below. Answer: f f 4 4 0, 4 4 0, f, f, f 4, f f [ f ] We have he solion (0, 0), (, ) and (-, -) as saionar poins Check ha saddle poin a (0, 0, ), min a (, ) and (-, -) and no ma. 8. Evalae he inegral ( ) da, where is he region bonded b he parabolas,. Yo ma rond or answer o wo decimal places. P or answer in he bo below Solion: ( ) da dd. 9. A) Evalae he inegral b reversing he order of he inegral Wrie or answer in he bo below. Solion: / e dd e dd e d e dd. 0

7 Ma 67 Engineering Calcls III Updaed on 04/0/0 r. Firoz B) e dd e dd e d A) Find 0 in he bo below. Solion: B) dd / 4cos Tes solion: dd sing polar coordinaes. Wrie answer dd rdrd r r drd. 8/ 9 4. ( ) 4 Wrie down he doble inegral and also riple inegral o find he volme of he erahedron bonded b he coordinae planes and he plane z 4 4. Evalae boh he inegrals. E Complee he limi: zda zdd (4 4 ) dd 4 /. Complee he limi: E 4 4 dv dzdd dzdd E 0 4/.. Find he volme of he solid ha lies wihin he sphere he -plane, and below he cone z z 4, above

8 Ma 67 Engineering Calcls III Updaed on 04/0/0 r. Firoz Solion: raw he picre and idenif he region. / V dv d d d E / 4 8 sin.85. A sphere has cener a (0, 0, 0) and radis eqal o m. Use spherical coordinae o evalae he volme of he sphere Solion: he sphere has he eqaion z m m 4 m V sin d d d 4.9m 0 4. Evalae he line inegral sin d cos d, where C is he arc consising of he C op half of he circle from (, 0) o (-, 0) and he line segmen from (-, 0) o (-, ). Wrie eac answer, no decimals. Solion: Check ha on C crve: cos, sin, 0 and C C on C crve:,, 0 sin d cos d sin d cos d sin d cos d C C C sin(cos )( sin ) d cos(sin )(cos ) d sin( )( d) cos( )d cos cos sin 5. a) Show ha he line inegral ( e ) d e d is independen of pah, where C C is an pah from (0, ) o (, ). b) Use line inegral wih parameric represenaion for C o evalae inegral. Q P Solion: P e, Q e e C 0, he pah C is independen. ( e ) d e d ( ( ) e e ) d / e Where C has he parameric represenaion: r( ) 0, (,),

9 Ma 67 Engineering Calcls III Updaed on 04/0/0 r. Firoz 6. Use Greens heorem o evalae he line inegral C 4 d d, where C is he rianglar pah consising of he line segmens from (0, 0) o (, 0), from (, 0) o (0, ), and from (0, ) o (0, 0). (0, ) 4 Q P Solion: d d da dd / 6 Where C Q P 4, Q P (0,0) (,0) 7. Show ha he vecor field (,, ) i ( z z F z e )j e k is conservaive. Also find he scalar fncion f (,, z ) sch ha grad f F. Solion: i j k Crl F F o z e e For scalar fncion we se he following resls; z z f f e, f e z z z he field is conservaive f h(, z) f h (, z) e, h(, z) e g( z ) Now z z f e g( z) f e g ( z) g( z) k z z z f (,, z) z e C Ths he scalar fncion is 8. Find he fl of he vecor field F(,, z) zi j k across he ni sphere cener a he origin. Solion: Use sin cos, sin sin, z cos,0,0 and r(, ) i j zk isin cos jsin sin k cos, r r isin cos j sin sin k sin cos F( r(, ) icos jsin sin k sin cos Now Check he inegral. S F(,, z) ds F n ds ( ) (sin cos cos sin sin ) F r r da d d 4 / 4.9

10 Ma 67 Engineering Calcls III Updaed on 04/0/0 r. Firoz Qiz : Febrar, 0. Name. Find he eqaion of he larges sphere cener a (, 4, 6) conained in he firs ocan. Solion: The sphere conained in he firs ocan ms have radis nis. The eqaion of he sphere is ( ) ( 4) ( z 6) 4. A man walks de eas on a deck of a ship a 5 miles per hor. The ship is moving norh a a speed of miles per hor. Find he speed and direcion (in radians) of he man relaive o he srface of he waer. Solion: 5,0, v 0, The reslan veloci is w v 5,, 5, The speed w 5 46 (0,) The direcion wih norh: Qiz : March 5, 0 cos (5,0) Se A. Evalae dd d d 0 0 9ln 5. Evalae da, where {(, ) 0,,, z 0} da ( ) dd 5/ 6 =. Evalae e dd b changing he order of inegraion. e dd e dd e 4. Evalae b sing polar coordinae: problem nmber 0(B) in es. dd 6, compare wih

11 Ma 67 Engineering Calcls III Updaed on 04/0/0 r. Firoz Se B. Evalae 0 0 dd d d 9ln 5. Evalae 0 0 e dd b changing he order of inegraion. e e dd compare wih se A.. Evalae da, where {(, ) 0,,, z 0} da ( ) dd 5/ Evalae b sing polar coordinae: Qiz : April, 0 / cos dd r drd dd 6 / 9. Given ha r (,, z) i j z k, se spherical coordinae for a ni sphere cener a origin o find he normal vecor r r. Solion: r (,, z) i j zk r (, ) isin cos j sin sin k cos r (, ) i cos cos j cos sin k sin r (, ) i sin sin j sin cos r r i j k sin cos sin sin sin cos ( / / ), 0, 0. Evalae ds, where S is he srface z. S Rond or answer correc o hree decimal places. Solion: ds da dd 0.7 S

12 Ma 67 Engineering Calcls III Updaed on 04/0/0 r. Firoz. Find he fl of he vecor field F(,, z) zi j k across he ni sphere cener a he origin. Use sin cos, sin sin, z cos,0,0 and r(, ) i j zk isin cos jsin sin k cos, r r isin cos j sin sin k sin cos F( r(, ) icos jsin sin k sin cos Now Check he inegral. Pop Qiz S F(,, z) ds F n ds 4 / ( ) (sin cos cos sin sin ) F r r da d d Answers o seleced homework problems: Secion: Look a he domains: z z z z From diagram A: omain is plane A B C [ f (,, z) dz] dd [ f (,, z) dz] dd From diagram B: omain is z plane z [ f (,, z) d] dzd [ f (,, z) d] ddz From diagram C: I has wo separae regions for domain

13 Ma 67 Engineering Calcls III Updaed on 04/0/0 r. Firoz Secion:.6 z z [ f (,, z) d] ddz [ f (,, z) d] ddz z 0 z [ f (,, z) d] dzd [ f (,, z) d] dzd 0 8. A hperboloid of one shee wih ais he z ais.. A cone opening pward in he firs ocan (8 / ) Secion:.7 8. he srface of a sphere of radis cener a (0, 0, ) 0. a) b) sec co csc (5e ) Chaper Secion:. 4. Choose differen and vales and he lengh of he vecor, hen plo hem (look a eample in or e book) 4. cos sin sin 6. f ( ) ( ), plo orself z z z z Secion:. 6. cos cos cos 0. (4 / ) / 6. On C negaive, on C posiive (5 cos cos 4) Secion: f (, ) ln K z 6. a) f (,, z) e ze b) e 8. /e

14 Ma 67 Engineering Calcls III Updaed on 04/0/0 r. Firoz Secion: Secion:.5 4. a) (sin z cos ) cos z sin z b) 0 8. a) greaer han zero b) is zero 0. Tr orself 6. f (,, z) sin cos z K Secion:.6.Porion of ellipic clinder,0 z 6.,, z scos, ssin, z scos, 0 s ; 0 / / 0. z 0 8. (6 0 ) 4 Secion: (8 ) Concep:. Evalaion of doble inegrals and riple inegrals. Clindrical and spherical coordinaes. Vecor fields, scalar fncions, line inegral and fndamenal heorem of line inegral, conservaive vecor field, 4. Greens heorem 5. Crl and divergence 6. Parameric srfaces and srface inegrals

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines.

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines. Mah A Final Eam Problems for onsideraion. Show all work for credi. Be sure o show wha you know. Given poins A(,,, B(,,, (,, 4 and (,,, find he volume of he parallelepiped wih adjacen edges AB, A, and A.

More information

Vector Calculus. Chapter 2

Vector Calculus. Chapter 2 Chaper Vecor Calculus. Elemenar. Vecor Produc. Differeniaion of Vecors 4. Inegraion of Vecors 5. Del Operaor or Nabla (Smbol 6. Polar Coordinaes Chaper Coninued 7. Line Inegral 8. Volume Inegral 9. Surface

More information

10.1 EXERCISES. y 2 t 2. y 1 t y t 3. y e

10.1 EXERCISES. y 2 t 2. y 1 t y t 3. y e 66 CHAPTER PARAMETRIC EQUATINS AND PLAR CRDINATES SLUTIN We use a graphing device o produce he graphs for he cases a,,.5,.,,.5,, and shown in Figure 7. Noice ha all of hese curves (ecep he case a ) have

More information

3, so θ = arccos

3, so θ = arccos Mahemaics 210 Professor Alan H Sein Monday, Ocober 1, 2007 SOLUTIONS This problem se is worh 50 poins 1 Find he angle beween he vecors (2, 7, 3) and (5, 2, 4) Soluion: Le θ be he angle (2, 7, 3) (5, 2,

More information

Math 221: Mathematical Notation

Math 221: Mathematical Notation Mah 221: Mahemaical Noaion Purpose: One goal in any course is o properly use he language o ha subjec. These noaions summarize some o he major conceps and more diicul opics o he uni. Typing hem helps you

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

Parametrics and Vectors (BC Only)

Parametrics and Vectors (BC Only) Paramerics and Vecors (BC Only) The following relaionships should be learned and memorized. The paricle s posiion vecor is r() x(), y(). The velociy vecor is v(),. The speed is he magniude of he velociy

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Chapter 11. Parametric, Vector, and Polar Functions. aπ for any integer n. Section 11.1 Parametric Functions (pp ) cot

Chapter 11. Parametric, Vector, and Polar Functions. aπ for any integer n. Section 11.1 Parametric Functions (pp ) cot Secion. 6 Chaper Parameric, Vecor, an Polar Funcions. an sec sec + an + Secion. Parameric Funcions (pp. 9) Eploraion Invesigaing Cclois 6. csc + co co +. 7. cos cos cos [, ] b [, 8]. na for an ineger n..

More information

1 First Order Partial Differential Equations

1 First Order Partial Differential Equations Firs Order Parial Differenial Eqaions The profond sdy of nare is he mos ferile sorce of mahemaical discoveries. - Joseph Forier (768-830). Inrodcion We begin or sdy of parial differenial eqaions wih firs

More information

4.2 Continuous-Time Systems and Processes Problem Definition Let the state variable representation of a linear system be

4.2 Continuous-Time Systems and Processes Problem Definition Let the state variable representation of a linear system be 4 COVARIANCE ROAGAION 41 Inrodcion Now ha we have compleed or review of linear sysems and random processes, we wan o eamine he performance of linear sysems ecied by random processes he sandard approach

More information

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs. Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

More information

BEng (Hons) Telecommunications. Examinations for / Semester 2

BEng (Hons) Telecommunications. Examinations for / Semester 2 BEng (Hons) Telecommunicaions Cohor: BTEL/14/FT Examinaions for 2015-2016 / Semeser 2 MODULE: ELECTROMAGNETIC THEORY MODULE CODE: ASE2103 Duraion: 2 ½ Hours Insrucions o Candidaes: 1. Answer ALL 4 (FOUR)

More information

Be able to sketch a function defined parametrically. (by hand and by calculator)

Be able to sketch a function defined parametrically. (by hand and by calculator) Pre Calculus Uni : Parameric and Polar Equaions (7) Te References: Pre Calculus wih Limis; Larson, Hoseler, Edwards. B he end of he uni, ou should be able o complee he problems below. The eacher ma provide

More information

Scalar Conservation Laws

Scalar Conservation Laws MATH-459 Nmerical Mehods for Conservaion Laws by Prof. Jan S. Heshaven Solion se : Scalar Conservaion Laws Eercise. The inegral form of he scalar conservaion law + f ) = is given in Eq. below. ˆ 2, 2 )

More information

AP CALCULUS BC 2016 SCORING GUIDELINES

AP CALCULUS BC 2016 SCORING GUIDELINES 6 SCORING GUIDELINES Quesion A ime, he posiion of a paricle moving in he xy-plane is given by he parameric funcions ( x ( ), y ( )), where = + sin ( ). The graph of y, consising of hree line segmens, is

More information

and v y . The changes occur, respectively, because of the acceleration components a x and a y

and v y . The changes occur, respectively, because of the acceleration components a x and a y Week 3 Reciaion: Chaper3 : Problems: 1, 16, 9, 37, 41, 71. 1. A spacecraf is raveling wih a veloci of v0 = 5480 m/s along he + direcion. Two engines are urned on for a ime of 84 s. One engine gives he

More information

first-order circuit Complete response can be regarded as the superposition of zero-input response and zero-state response.

first-order circuit Complete response can be regarded as the superposition of zero-input response and zero-state response. Experimen 4:he Sdies of ransiional processes of 1. Prpose firs-order circi a) Use he oscilloscope o observe he ransiional processes of firs-order circi. b) Use he oscilloscope o measre he ime consan of

More information

CSE 5365 Computer Graphics. Take Home Test #1

CSE 5365 Computer Graphics. Take Home Test #1 CSE 5365 Comper Graphics Take Home Tes #1 Fall/1996 Tae-Hoon Kim roblem #1) A bi-cbic parameric srface is defined by Hermie geomery in he direcion of parameer. In he direcion, he geomery ecor is defined

More information

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2 Mah 6 Pracice for Exam Generaed Ocober 3, 7 Name: SOLUTIONS Insrucor: Secion Number:. This exam has 5 quesions. Noe ha he problems are no of equal difficuly, so you may wan o skip over and reurn o a problem

More information

MA6151 MATHEMATICS I PART B UNIVERSITY QUESTIONS. (iv) ( i = 1, 2, 3,., n) are the non zero eigen values of A, then prove that (1) k i.

MA6151 MATHEMATICS I PART B UNIVERSITY QUESTIONS. (iv) ( i = 1, 2, 3,., n) are the non zero eigen values of A, then prove that (1) k i. UNIT MATRICES METHOD EIGEN VALUES AND EIGEN VECTORS Find he Eigen values and he Eigenvecors of he following marices (i) ** 3 6 3 (ii) 6 (iii) 3 (iv) 0 3 Prove ha he Eigen values of a real smmeric mari

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Quesion A blood vessel is 6 millimeers (mm) long Disance wih circular cross secions of varying diameer. x (mm) 6 8 4 6 Diameer The able above gives he measuremens of he B(x)

More information

Derivatives of Inverse Trig Functions

Derivatives of Inverse Trig Functions Derivaives of Inverse Trig Fncions Ne we will look a he erivaives of he inverse rig fncions. The formlas may look complicae, b I hink yo will fin ha hey are no oo har o se. Yo will js have o be carefl

More information

Check in: 1 If m = 2(x + 1) and n = find y when. b y = 2m n 2

Check in: 1 If m = 2(x + 1) and n = find y when. b y = 2m n 2 7 Parameric equaions This chaer will show ou how o skech curves using heir arameric equaions conver arameric equaions o Caresian equaions find oins of inersecion of curves and lines using arameric equaions

More information

CSE-4303/CSE-5365 Computer Graphics Fall 1996 Take home Test

CSE-4303/CSE-5365 Computer Graphics Fall 1996 Take home Test Comper Graphics roblem #1) A bi-cbic parameric srface is defined by Hermie geomery in he direcion of parameer. In he direcion, he geomery ecor is defined by a poin @0, a poin @0.5, a angen ecor @1 and

More information

PH2130 Mathematical Methods Lab 3. z x

PH2130 Mathematical Methods Lab 3. z x PH130 Mahemaical Mehods Lab 3 This scrip shold keep yo bsy for he ne wo weeks. Yo shold aim o creae a idy and well-srcred Mahemaica Noebook. Do inclde plenifl annoaions o show ha yo know wha yo are doing,

More information

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180 Algebra Chapers & : Trigonomeric Funcions of Angles and Real Numbers Chapers & : Trigonomeric Funcions of Angles and Real Numbers - Angle Measures Radians: - a uni (rad o measure he size of an angle. rad

More information

4 3 a b (C) (a 2b) (D) (2a 3b)

4 3 a b (C) (a 2b) (D) (2a 3b) * A balloon is moving verically pwards wih a velociy of 9 m/s. A sone is dropped from i and i reaches he grond in 10 sec. The heigh of he balloon when he sone was dropped is (ake g = 9.8 ms - ) (a) 100

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version):

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS 6 cos Secon Funamenal Theorem of Calculus: f a 4 a f 6 cos Secon Funamenal Theorem of Calculus (Chain Rule Version): g f a E. Use he Secon

More information

Key Chemistry 102 Discussion #4, Chapter 11 and 12 Student name TA name Section. ; u= M. and T(red)=2*T(yellow) ; t(yellow)=4*t(red) or

Key Chemistry 102 Discussion #4, Chapter 11 and 12 Student name TA name Section. ; u= M. and T(red)=2*T(yellow) ; t(yellow)=4*t(red) or Key Chemisry 0 Discssion #4, Chaper and Sden name TA name Secion. Two idenical conainers, one red and one yellow, are inflaed wih differen gases a he same volme and pressre. Boh conainers have an idenically

More information

THE ESSENTIALS OF CALCULUS ANSWERS TO SELECTED EXERCISES

THE ESSENTIALS OF CALCULUS ANSWERS TO SELECTED EXERCISES Assignmen - page. m.. f 7 7.. 7..8 7..77 7. 87. THE ESSENTIALS OF CALCULUS ANSWERS TO SELECTED EXERCISES m.... no collinear 8...,,.,.8 or.,..78,.7 or.7,.8., 8.87 or., 8.88.,,, 7..7 Assignmen - page 7.

More information

Chapter 2 Trigonometric Functions

Chapter 2 Trigonometric Functions Chaper Trigonomeric Funcions Secion.. 90 7 80 6. 90 70 89 60 70 9 80 79 60 70 70 09. 90 6 89 9 60 6 6 80 6 79 9 60 6 6 7. 9.. 0. 60 0 + 60 α is a quadran III angle coerminal wih an angle of measure 0..

More information

Applications of the Basic Equations Chapter 3. Paul A. Ullrich

Applications of the Basic Equations Chapter 3. Paul A. Ullrich Applicaions of he Basic Equaions Chaper 3 Paul A. Ullrich paullrich@ucdavis.edu Par 1: Naural Coordinaes Naural Coordinaes Quesion: Why do we need anoher coordinae sysem? Our goal is o simplify he equaions

More information

AP Calculus BC - Parametric equations and vectors Chapter 9- AP Exam Problems solutions

AP Calculus BC - Parametric equations and vectors Chapter 9- AP Exam Problems solutions AP Calculus BC - Parameric equaions and vecors Chaper 9- AP Exam Problems soluions. A 5 and 5. B A, 4 + 8. C A, 4 + 4 8 ; he poin a is (,). y + ( x ) x + 4 4. e + e D A, slope.5 6 e e e 5. A d hus d d

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

Review Exercises for Chapter 3

Review Exercises for Chapter 3 60_00R.qd //0 :9 M age CHATER Applicaions of Differeniaion Review Eercises for Chaper. Give he definiion of a criical number, and graph a funcion f showing he differen pes of criical numbers.. Consider

More information

AP CALCULUS AB/CALCULUS BC 2016 SCORING GUIDELINES. Question 1. 1 : estimate = = 120 liters/hr

AP CALCULUS AB/CALCULUS BC 2016 SCORING GUIDELINES. Question 1. 1 : estimate = = 120 liters/hr AP CALCULUS AB/CALCULUS BC 16 SCORING GUIDELINES Quesion 1 (hours) R ( ) (liers / hour) 1 3 6 8 134 119 95 74 7 Waer is pumped ino a ank a a rae modeled by W( ) = e liers per hour for 8, where is measured

More information

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx. . Use Simpson s rule wih n 4 o esimae an () +. Soluion: Since we are using 4 seps, 4 Thus we have [ ( ) f() + 4f + f() + 4f 3 [ + 4 4 6 5 + + 4 4 3 + ] 5 [ + 6 6 5 + + 6 3 + ]. 5. Our funcion is f() +.

More information

DIFFERENTIAL GEOMETRY HW 5

DIFFERENTIAL GEOMETRY HW 5 DIFFERENTIAL GEOMETRY HW 5 CLAY SHONKWILER 3. Le M be a complee Riemannian manifold wih non-posiive secional curvaure. Prove ha d exp p v w w, for all p M, all v T p M and all w T v T p M. Proof. Le γ

More information

ADDITIONAL MATHEMATICS PAPER 1

ADDITIONAL MATHEMATICS PAPER 1 000-CE A MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 000 ADDITIONAL MATHEMATICS PAPER 8.0 am 0.0 am ( hours This paper mus be answered in English. Answer

More information

; row vectors: 1 3 4, 1 2 5, 2 6 7

; row vectors: 1 3 4, 1 2 5, 2 6 7 .. 4 4. column vecors: 5 6 7 4 0 5 6 7. one eample: 8 9 0 4. one eample: 0 0 6.. 6. = = OR = = 6 8. 6 ; row vecors: 4 5 6 7.. Plug he poin ino all hree equaions. Resul: rue saemens.. Plug he poin ino all

More information

Atmospheric Dynamics 11:670:324. Class Time: Tuesdays and Fridays 9:15-10:35

Atmospheric Dynamics 11:670:324. Class Time: Tuesdays and Fridays 9:15-10:35 Amospheric Dnamics 11:67:324 Class ime: esdas and Fridas 9:15-1:35 Insrcors: Dr. Anhon J. Broccoli (ENR 229 broccoli@ensci.rgers.ed 848-932-5749 Dr. Benjamin Linner (ENR 25 linner@ensci.rgers.ed 848-932-5731

More information

Answers to 1 Homework

Answers to 1 Homework Answers o Homework. x + and y x 5 y To eliminae he parameer, solve for x. Subsiue ino y s equaion o ge y x.. x and y, x y x To eliminae he parameer, solve for. Subsiue ino y s equaion o ge x y, x. (Noe:

More information

t A. 3. Which vector has the largest component in the y-direction, as defined by the axes to the right?

t A. 3. Which vector has the largest component in the y-direction, as defined by the axes to the right? Ke Name Insrucor Phsics 1210 Exam 1 Sepember 26, 2013 Please wrie direcl on he exam and aach oher shees of work if necessar. Calculaors are allowed. No noes or books ma be used. Muliple-choice problems

More information

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time +v Today: Graphing v (miles per hour ) 9 8 7 6 5 4 - - Time Noe: I hope his joke will be funnier (or a leas make you roll your eyes and say ugh ) afer class. Do yourself a favor! Prof Sarah s fail-safe

More information

Kinematics in two dimensions

Kinematics in two dimensions Lecure 5 Phsics I 9.18.13 Kinemaics in wo dimensions Course websie: hp://facul.uml.edu/andri_danlo/teaching/phsicsi Lecure Capure: hp://echo36.uml.edu/danlo13/phsics1fall.hml 95.141, Fall 13, Lecure 5

More information

MEI STRUCTURED MATHEMATICS 4758

MEI STRUCTURED MATHEMATICS 4758 OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary General Cerificae of Educaion Advanced General Cerificae of Educaion MEI STRUCTURED MATHEMATICS 4758 Differenial Equaions Thursday 5 JUNE 006 Afernoon

More information

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11.

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11. 1 Mah 334 Tes 1 KEY Spring 21 Secion: 1 Insrucor: Sco Glasgow Daes: Ma 1 and 11. Do NOT wrie on his problem saemen bookle, excep for our indicaion of following he honor code jus below. No credi will be

More information

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

Additional Exercises for Chapter What is the slope-intercept form of the equation of the line given by 3x + 5y + 2 = 0?

Additional Exercises for Chapter What is the slope-intercept form of the equation of the line given by 3x + 5y + 2 = 0? ddiional Eercises for Caper 5 bou Lines, Slopes, and Tangen Lines 39. Find an equaion for e line roug e wo poins (, 7) and (5, ). 4. Wa is e slope-inercep form of e equaion of e line given by 3 + 5y +

More information

Chapter 3 Kinematics in Two Dimensions

Chapter 3 Kinematics in Two Dimensions Chaper 3 KINEMATICS IN TWO DIMENSIONS PREVIEW Two-dimensional moion includes objecs which are moing in wo direcions a he same ime, such as a projecile, which has boh horizonal and erical moion. These wo

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

10.6 Parametric Equations

10.6 Parametric Equations 0_006.qd /8/05 9:05 AM Page 77 Secion 0.6 77 Parameric Equaions 0.6 Parameric Equaions Wha ou should learn Evaluae ses of parameric equaions for given values of he parameer. Skech curves ha are represened

More information

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES PROBLEMS FOR MATH 6 If a problem is sarred, all subproblems are due. If onl subproblems are sarred, onl hose are due. 00. Shor answer quesions. SLOPES OF TANGENT LINES (a) A ball is hrown ino he air. Is

More information

Homework sheet Exercises done during the lecture of March 12, 2014

Homework sheet Exercises done during the lecture of March 12, 2014 EXERCISE SESSION 2A FOR THE COURSE GÉOMÉTRIE EUCLIDIENNE, NON EUCLIDIENNE ET PROJECTIVE MATTEO TOMMASINI Homework shee 3-4 - Exercises done during he lecure of March 2, 204 Exercise 2 Is i rue ha he parameerized

More information

Math Wednesday March 3, , 4.3: First order systems of Differential Equations Why you should expect existence and uniqueness for the IVP

Math Wednesday March 3, , 4.3: First order systems of Differential Equations Why you should expect existence and uniqueness for the IVP Mah 2280 Wednesda March 3, 200 4., 4.3: Firs order ssems of Differenial Equaions Wh ou should epec eisence and uniqueness for he IVP Eample: Consider he iniial value problem relaed o page 4 of his eserda

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Physics for Scieniss and Engineers I PHY 48, Secion 4 Dr. Beariz Roldán Cuenya Universiy of Cenral Florida, Physics Deparmen, Orlando, FL Chaper - Inroducion I. General II. Inernaional Sysem of Unis III.

More information

1998 Calculus AB Scoring Guidelines

1998 Calculus AB Scoring Guidelines AB{ / BC{ 1999. The rae a which waer ows ou of a pipe, in gallons per hour, is given by a diereniable funcion R of ime. The able above shows he rae as measured every hours for a {hour period. (a) Use a

More information

Differential Geometry: Revisiting Curvatures

Differential Geometry: Revisiting Curvatures Differenial Geomery: Reisiing Curaures Curaure and Graphs Recall: hus, up o a roaion in he x-y plane, we hae: f 1 ( x, y) x y he alues 1 and are he principal curaures a p and he corresponding direcions

More information

Chapter 5 Kinematics

Chapter 5 Kinematics Chaper 5 Kinemaics In he firs place, wha do we mean b ime and space? I urns ou ha hese deep philosophical quesions have o be analzed ver carefull in phsics, and his is no eas o do. The heor of relaivi

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

Giambattista, Ch 3 Problems: 9, 15, 21, 27, 35, 37, 42, 43, 47, 55, 63, 76

Giambattista, Ch 3 Problems: 9, 15, 21, 27, 35, 37, 42, 43, 47, 55, 63, 76 Giambaisa, Ch 3 Problems: 9, 15, 21, 27, 35, 37, 42, 43, 47, 55, 63, 76 9. Sraeg Le be direced along he +x-axis and le be 60.0 CCW from Find he magniude of 6.0 B 60.0 4.0 A x 15. (a) Sraeg Since he angle

More information

Introduction to Bayesian Estimation. McGill COMP 765 Sept 12 th, 2017

Introduction to Bayesian Estimation. McGill COMP 765 Sept 12 th, 2017 Inrodcion o Baesian Esimaion McGill COM 765 Sep 2 h 207 Where am I? or firs core problem Las class: We can model a robo s moions and he world as spaial qaniies These are no perfec and herefore i is p o

More information

PHYSICS 149: Lecture 9

PHYSICS 149: Lecture 9 PHYSICS 149: Lecure 9 Chaper 3 3.2 Velociy and Acceleraion 3.3 Newon s Second Law of Moion 3.4 Applying Newon s Second Law 3.5 Relaive Velociy Lecure 9 Purdue Universiy, Physics 149 1 Velociy (m/s) The

More information

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #2. Ph 231 Inroducory Physics, Sp-03 Page 1 of 4 2-1A. A person walks 2 miles Eas (E) in 40 minues and hen back 1 mile Wes (W) in 20 minues. Wha are her average speed and average velociy (in ha

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS PAGE # An equaion conaining independen variable, dependen variable & differenial coeffeciens of dependen variables wr independen variable is called differenial equaion If all he

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

Math 2214 Solution Test 1A Spring 2016

Math 2214 Solution Test 1A Spring 2016 Mah 14 Soluion Tes 1A Spring 016 sec Problem 1: Wha is he larges -inerval for which ( 4) = has a guaraneed + unique soluion for iniial value (-1) = 3 according o he Exisence Uniqueness Theorem? Soluion

More information

Name: Total Points: Multiple choice questions [120 points]

Name: Total Points: Multiple choice questions [120 points] Name: Toal Poins: (Las) (Firs) Muliple choice quesions [1 poins] Answer all of he following quesions. Read each quesion carefully. Fill he correc bubble on your scanron shee. Each correc answer is worh

More information

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+ Review Eercise sin 5 cos sin an cos 5 5 an 5 9 co 0 a sinθ 6 + 4 6 + sin θ 4 6+ + 6 + 4 cos θ sin θ + 4 4 sin θ + an θ cos θ ( ) + + + + Since π π, < θ < anθ should be negaive. anθ ( + ) Pearson Educaion

More information

Applicable Mathematics 2A

Applicable Mathematics 2A Applicable Mahemaics A Lecure Noes Revised: Augus 00 Please noe ha hese are my lecure noes: hey are no course noes. So I will be following hese noes very closely, supplemened by he homework eamples ec

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

x y θ = 31.8 = 48.0 N. a 3.00 m/s

x y θ = 31.8 = 48.0 N. a 3.00 m/s 4.5.IDENTIY: Vecor addiion. SET UP: Use a coordinae sse where he dog A. The forces are skeched in igure 4.5. EXECUTE: + -ais is in he direcion of, A he force applied b =+ 70 N, = 0 A B B A = cos60.0 =

More information

Srednicki Chapter 20

Srednicki Chapter 20 Srednicki Chaper QFT Problems & Solions. George Ocober 4, Srednicki.. Verify eqaion.7. Using eqaion.7,., and he fac ha m = in his limi, or ask is o evalae his inegral:! x x x dx dx dx x sx + x + x + x

More information

Numerical Dispersion

Numerical Dispersion eview of Linear Numerical Sabiliy Numerical Dispersion n he previous lecure, we considered he linear numerical sabiliy of boh advecion and diffusion erms when approimaed wih several spaial and emporal

More information

Midterm Exam Review Questions Free Response Non Calculator

Midterm Exam Review Questions Free Response Non Calculator Name: Dae: Block: Miderm Eam Review Quesions Free Response Non Calculaor Direcions: Solve each of he following problems. Choose he BEST answer choice from hose given. A calculaor may no be used. Do no

More information

Sequences Arising From Prudent Self-Avoiding Walks Shanzhen Gao, Heinrich Niederhausen Florida Atlantic University, Boca Raton, Florida 33431

Sequences Arising From Prudent Self-Avoiding Walks Shanzhen Gao, Heinrich Niederhausen Florida Atlantic University, Boca Raton, Florida 33431 Seqences Arising From Prden Self-Avoiding Walks Shanzhen Gao, Heinrich Niederhasen Florida Alanic Universiy, Boca Raon, Florida 33431 Absrac A self-avoiding walk (SAW) is a seqence of moves on a laice

More information

Physics 101 Fall 2006: Exam #1- PROBLEM #1

Physics 101 Fall 2006: Exam #1- PROBLEM #1 Physics 101 Fall 2006: Exam #1- PROBLEM #1 1. Problem 1. (+20 ps) (a) (+10 ps) i. +5 ps graph for x of he rain vs. ime. The graph needs o be parabolic and concave upward. ii. +3 ps graph for x of he person

More information

4.3 Trigonometry Extended: The Circular Functions

4.3 Trigonometry Extended: The Circular Functions 8 CHAPTER Trigonomeric Funcions. Trigonomer Eended: The Circular Funcions Wha ou ll learn abou Trigonomeric Funcions of An Angle Trigonomeric Funcions of Real Numbers Periodic Funcions The 6-Poin Uni Circle...

More information

Conceptual Physics Review (Chapters 2 & 3)

Conceptual Physics Review (Chapters 2 & 3) Concepual Physics Review (Chapers 2 & 3) Soluions Sample Calculaions 1. My friend and I decide o race down a sraigh srech of road. We boh ge in our cars and sar from res. I hold he seering wheel seady,

More information

AP Calculus BC 2004 Free-Response Questions Form B

AP Calculus BC 2004 Free-Response Questions Form B AP Calculus BC 200 Free-Response Quesions Form B The maerials included in hese files are inended for noncommercial use by AP eachers for course and exam preparaion; permission for any oher use mus be sough

More information

~v = x. ^x + ^y + ^x + ~a = vx. v = v 0 + at. ~v P=A = ~v P=B + ~v B=A. f k = k. W tot =KE. P av =W=t. W grav = mgy 1, mgy 2 = mgh =,U grav

~v = x. ^x + ^y + ^x + ~a = vx. v = v 0 + at. ~v P=A = ~v P=B + ~v B=A. f k = k. W tot =KE. P av =W=t. W grav = mgy 1, mgy 2 = mgh =,U grav PHYSICS 5A FALL 2001 FINAL EXAM v = x a = v x = 1 2 a2 + v 0 + x 0 v 2 = v 2 0 +2a(x, x 0) a = v2 r ~v = x ~a = vx v = v 0 + a y z ^x + ^y + ^z ^x + vy x, x 0 = 1 2 (v 0 + v) ~v P=A = ~v P=B + ~v B=A ^y

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Starting from a familiar curve

Starting from a familiar curve In[]:= NoebookDirecory Ou[]= C:\Dropbox\Work\myweb\Courses\Mah_pages\Mah_5\ You can evaluae he enire noebook by using he keyboard shorcu Al+v o, or he menu iem Evaluaion Evaluae Noebook. Saring from a

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

ACCUMULATION. Section 7.5 Calculus AP/Dual, Revised /26/2018 7:27 PM 7.5A: Accumulation 1

ACCUMULATION. Section 7.5 Calculus AP/Dual, Revised /26/2018 7:27 PM 7.5A: Accumulation 1 ACCUMULATION Secion 7.5 Calculus AP/Dual, Revised 2019 vie.dang@humbleisd.ne 12/26/2018 7:27 PM 7.5A: Accumulaion 1 APPLICATION PROBLEMS A. Undersand he quesion. I is ofen no necessary o as much compuaion

More information

Surfaces in the space E

Surfaces in the space E 3 Srfaces in he sace E Le ecor fncion in wo ariables be efine on region R = x y y whose scalar coorinae fncions x y y are a leas once iffereniable on region. Hoograh of ecor fncion is a iece-wise smooh

More information

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed?

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed? 1 1 The graph relaes o he moion of a falling body. y Which is a correc descripion of he graph? y is disance and air resisance is negligible y is disance and air resisance is no negligible y is speed and

More information