Unit-II ENGINEERING MECHANICS

Size: px
Start display at page:

Download "Unit-II ENGINEERING MECHANICS"

Transcription

1 ECHNICS in motion. Unit-II ENGINEERING ECHNICS By Prof. V. adhava Rao, SJCE, ysore It s a branch of science, which deals with the action of forces on bodies at rest or ENGINEERING ECHNICS engineering. It deals with the principles of mechanics as applied to the problems in BSIC CONCEPTS 1. atter: nything which has mass and requires space to occupy is called matter. 2. ass: It is a measure of quality of matter contained by the body. SI unit: Kg. 3. Volume: It is a measure of space occupied by the body. Unit: m 3 Note: Liter Unit of volume 1000 liters = 1 m 3 TS Thousand million cubic feet ft ft x ft x 1000 ft 4. State of rest and motion: State of rest and state of motion are relative and depend on the frame of reference. body is said to be in a state of rest w.r.t. a frame of reference if the position of the body w.r.t. that frame of reference is not changing with time. body is laid to be in a state of motion w.r.t. a frame of reference if the position of the body w.r.t. that frame of reference is changing with time. 5. Scalar and Vector Quantities: Quantities which require only magnitude to represent them are called scalar quantities. Eg: ass, Time interval. Quantitites which require both magnitude and direction to represent them are called vector quantities. Eg: orce, Velocity, etc.

2 6. Displacement and distance travelled: The total linear movement made by a body to change its position from one point to another is called distance travelled by the body. It is a scalar quantity. Unit: eter (m) mm illimeter 10-3 m km Kilo eter 10 3 m The total linear movement made by a body to change its position from one B Displacement point to another moving along a particular Distance direction is called displacement. Displacement is a vector quantity. Unit: eter (m). 7. Speed and Velocity: The distance travelled in a unit time is speed. Unit: m/s ms -1 The displacement in unit time is called velocity. Unit: m/s ms Uniform motion and non-uniform motion: If the velocity of the moving body remains constant then the motion is said to be uniform. If the velocity is changing with time, the motion is laid to be non-uniform. 9. cceleration and retardation: The time rate of change of velocity is called acceleration. If the velocity is increasing with time then acceleration is positive. If the velocity is decreasing with time then acceleration is negative. Negative acceleration is called retardation or deceleration. Unit: m/s 2 ms omentum: It is the capacity of a moving body to impart motion to other bodies. omentum of a moving body is given by the product of mass and velocity of the moving body. omentum = ass Velocity Unit: kg m/s or kg ms Newton s I Law of otion: Everybody continues to be in its state of rest or uniform motion unless compelled by an external agency.

3 12. Inertia: It is the inherent property of a body by virtue of which it can retain its state of rest or uniform motion unless compelled by an external agency. 13. orce: It is an external agency, which overcomes or tends to overcome the inertia of a body. It is a vector quantity. 14. Elements of a force: There are four elements: a. agnitude b. Direction c. Line of action d. Point of action or application 15. Newton s II Law of motion: The rate of change of moment of a body is directly proportional to the magnitude of the force applied and takes place in the direction of the force applied. Explanation: Initial momentum = mu inal momentum = mv Change in momentum over a time interval t = mv mu Rate of change of momentum = ccording to Newton s II law, mv mu t mv mu α t v u α m t m u Time interval = t m V α ma = K ma In SI, unit force is defined as that force which acts on a body of unit mass producing unit acceleration. i.e., = 1 when m = 1 and a = 1 then 1 = k k = 1 = ma Unit of force: newton (N) is the unit of force. One newton is that force which acts on a body of mass 1 kg producing an acceleration of 1 m/s 2.

4 kn Kilo newton 10 3 N N ega newton 10 6 N GN Giga newton 10 9 N 16. Newton s III law of motion: or every action there is equal and opposite reaction. 17. Branches of echanics: echanics Solid ech. luid ech. Rigid Body ech. ech. of Deformable Bodies luid Statics luid Kinematics luid Dynamics Statics Dynamics Kinematics Kinetics Statics: Statics deals with the action of forces on bodies at rest or in equilibrium. Dynamics: Dynamics deals with the action of forces on bodies in motion. Kinematics: It deals with the study of geometry of motion without considering the cause of motion. Kinetics: Kinetics deals with a study of motion considering the course of motion. 18. Rigid body: The concept of rigid body is purely theoretical or imaginary. rigid body is said to undergo, no deformation under the action of any external agency such as force and moments. In other words relative positions of the modules of a rigid body are fixed in space. 19. Particle: Concept of particle is purely theoretical or imaginary. particle is said to have mass but requires no space to occupy. In other words, a particle is a point mass.

5 The concept of particle cannot be used if the shape and size of the body is influencing the motion. Eg: i) otion of a swimmer. ii) otion of a body along a curved path. 20. Continuum: The concept of continuum is purely theoretical or imaginary. Continuum is said to be made up of infinite number of molecules packed in such a way that, there is no gap between the molecules so that property functions remain same at all the points. 21. Point force: The concept of point force in purely theoretical or imaginary, here the force is assumed to be acting at a point or over infinity small area. 22. Principle physical independence of forces: 1 a 1 1 a a 1, a a 1, a 2 ction of forces on bodies are independent, in other words the action of forces on a body is not influenced by the action of any other force on the body. 23. Principle of superposition of forces:

6 1 a 1 1 a (a 1 +a 2 ) 1 2 (a 2 +a 1 ) Net effect of forces applied in any sequence on a body is given by the algebraic sum of effect of individual forces on the body. 24. Principle of transmissibility of forces: a = Line of action Rigid body a = Rigid body B Line of action The point of application of a force on a rigid body can be changed along the same line of action maintaining the same magnitude and direction without affecting the effect of the force on the body. Limitation of principle of transmissibility: Principle of transmissibility can be used only for rigid bodies and cannot be used for deformable bodies. 25. ssumptions made in Engineering echanics i) ll bodies are rigid. ii) Particle concept can be used wherever applicable. iii) Principle of physical independence of forces is valid. iv) Principle of superposition of forces is valid. v) Principle of transmissibility of forces is valid.

7 SYSTE O ORCES group or set of forces is called system of forces. Types: 1. Coplanar force system: If the lines of action of forces forming the system lie in the same plane, then the system is said to be coplanar. 2. Non-coplanar forces: If the lines of action of forces forming the system do not lie in the same plane then the system is said to be non-coplanar. Note: Our study is restricted to coplanar forces. 3. Collinear force system: 1 B 2 3 C If the forces forming the system have common line of action then the system is said to be collinear.

8 4. Concurrent force system: x D 4 1 x 0 C 2 B O If the line of action of forces forming the system pass through a common point (point of concurrence) then the system is said to be concurrent. 5. Non-concurrent force system: 1 O If the lines of action of forces forming the system do not pass through a common point, then the system is said to be non-concurrent. 6. Parallel force system: Like Unlike It is a particular case of non-concurrent force system in which the line of action of forces forming the system are parallel. RESOLUTION O ORCE Y

9 Y Displacement Displacement The force is producing, simultaneous x displacement and y-displacement. The part of the force which is producing x displacement is called x component or horizontal component of the force (x). The part of the force which produces y displacement is called y component of the force or vertical component of force (y). The technique of finding a component of a force along any direction is called resolution of force. The component of a force along any direction is called the resolved component. The components of a force determined along two mutually perpendicular direction are called rectangular components. To resolve a force along any direction Y 2 y θ 1 O represents the force both in magnitude and direction θ is the acute angle mode by the force w.r.t. x direction. We have, O Cos θ = O x Cos θ = 1 x = Cos θ ( ) Sin θ = O 1 2 Sin θ = O

10 y Sin θ = y = Sin θ ( ) component of a force is given by the product of magnitude of the force and cosine of acute angle made by the force w.r.t. x-direction. Y component of a force is given by the product of magnitude of the force and sine of acute angle made by the force w.r.t. x-direction. Note: 1. Sign convention for the direction of components θ = 0 x = Cos O = y = Sin O = O The horizontal component or component of a force acting along x direction is the force itself. Whereas, its vertical component or y-component is zero. 3. x = Cos 90 = O y = Sin 90 = x component of a force acting along Y direction is zero. Whereas, its y component is equal to itself.

11 4. If a force is inclined at 45 o w.r.t. x axis or y axis then its x component will be equal to y component ( x = y ). Problems 1. ind and Y components of forces in the following cases. a) 100 kn x = Cos o = kn = kn ( ) y = Sin 30 = kn = kn ( ) b) x = + 20 Cos 70 = kn = kn ( ) 30 o 20 kn y = + 20 Sin 70 = kn = kn ( ) c) ethod-i 3 tan θ = o θ = N x = Cos o = 160 N = 160 N ( )

12 y = Cos o = 120 N = 120 N ( ) ethod-ii 4 Cos θ = = Sin θ = = x = Cos θ = 200 x 0.8 = 160 N = 160 N ( ) y = 200 Sin θ = 200 x 0.6 = 120 N = 120 N ( )

13 RESULTNT ORCE O SYSTE O ORCES 1 α α R The resultant of a system of forces is a single calculated force which is capable of producing the same effect as that of system of forces on the body. It is the vector sum of forces of the system. COPOSITION O ORCES The technique of finding the resultant of forces is called composition of forces. OENT O ORCE It is the capacity of a force to produce rotator motion. In other words moment of a force is its rotating capacity. into oment of about in clockwise Based on the direction of rotation produced moment of a force can be classified a) Clockwise moment oment of about in anticlockwise b) nticlockwise moment / counter clockwise moment.

14 Calculation of oment of a orce about a Point oment of a force about any point is given by the product of magnitude of force and perpendicular distance between the line of action of a force and the point about which moment is considered. = L Unit: Nm Sign Convention for oment of a orce Clockwise moment positive and anticlockwise moment negative. 1) ind moment of force about in the following cases. a) = 10 kn 2 m b) = 10 kn 2 m c) 3 m = 20 kn

15 d) 2 m 50 kn 2) ind moment of the force about and B in the following a) 2 m = 10 kn 4 m B b) B = 20 kn 3 m 4 m

K.GNANASEKARAN. M.E.,M.B.A.,(Ph.D)

K.GNANASEKARAN. M.E.,M.B.A.,(Ph.D) DEPARTMENT OF MECHANICAL ENGG. Engineering Mechanics I YEAR 2th SEMESTER) Two Marks Question Bank UNIT-I Basics and statics of particles 1. Define Engineering Mechanics Engineering Mechanics is defined

More information

MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I

MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I Engineering Mechanics Branch of science which deals with the behavior of a body with the state of rest or motion, subjected to the action of forces.

More information

LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC Concurrent forces are those forces whose lines of action

LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC Concurrent forces are those forces whose lines of action LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC 107 1. Concurrent forces are those forces whose lines of action 1. Meet on the same plane 2. Meet at one point 3. Lie

More information

TEST-1 MEACHNICAL (MEACHNICS)

TEST-1 MEACHNICAL (MEACHNICS) 1 TEST-1 MEACHNICAL (MEACHNICS) Objective Type Questions:- Q.1 The term force may be defined as an agent t which produces or tends to produce, destroys or tends to destroy motion. a) Agree b) disagree

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Module No. - 01 Basics of Statics Lecture No. - 01 Fundamental of Engineering Mechanics

More information

Dr. ANIL PATIL Associate Professor M.E.D., D.I.T., Dehradun

Dr. ANIL PATIL Associate Professor M.E.D., D.I.T., Dehradun by Dr. ANIL PATIL Associate Professor M.E.D., D.I.T., Dehradun 1 2 Mechanics The study of forces and their effect upon body under consideration Statics Deals with the forces which are acting on a body

More information

LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC Concurrent forces are those forces whose lines of action

LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC Concurrent forces are those forces whose lines of action LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC 107 1. Concurrent forces are those forces whose lines of action 1. Meet on the same plane 2. Meet at one point 3. Lie

More information

INTRODUCTION TO ENGINEERING MECHANICS

INTRODUCTION TO ENGINEERING MECHANICS Chapter-1 INTRODUCTION TO ENGINEERING MECHNICS The state of rest and state of motion of the bodies under the action of different forces has engaged the attention of philosophers, mathematicians and scientists

More information

ISBN :

ISBN : ISBN : 978-81-909042-4-7 - www.airwalkpublications.com ANNA UNIVERSITY - R2013 GE6253 ENGINEERING MECHANICS UNIT I: BASICS AND STATICS OF PARTICLES 12 Introduction Units and Dimensions Laws of Mechanics

More information

2-9. The plate is subjected to the forces acting on members A and B as shown. If θ = 60 o, determine the magnitude of the resultant of these forces

2-9. The plate is subjected to the forces acting on members A and B as shown. If θ = 60 o, determine the magnitude of the resultant of these forces 2-9. The plate is subjected to the forces acting on members A and B as shown. If θ 60 o, determine the magnitude of the resultant of these forces and its direction measured clockwise from the positie x

More information

two forces and moments Structural Math Physics for Structures Structural Math

two forces and moments Structural Math Physics for Structures Structural Math RHITETURL STRUTURES: ORM, EHVIOR, ND DESIGN DR. NNE NIHOLS SUMMER 05 lecture two forces and moments orces & Moments rchitectural Structures 009abn Structural Math quantify environmental loads how big is

More information

where G is called the universal gravitational constant.

where G is called the universal gravitational constant. UNIT-I BASICS & STATICS OF PARTICLES 1. What are the different laws of mechanics? First law: A body does not change its state of motion unless acted upon by a force or Every object in a state of uniform

More information

Unit 1. (a) tan α = (b) tan α = (c) tan α = (d) tan α =

Unit 1. (a) tan α = (b) tan α = (c) tan α = (d) tan α = Unit 1 1. The subjects Engineering Mechanics deals with (a) Static (b) kinematics (c) Kinetics (d) All of the above 2. If the resultant of two forces P and Q is acting at an angle α with P, then (a) tan

More information

Engineering Mechanics

Engineering Mechanics 1 Introduction to Engineering Mechanics The state of rest and state of motion of the bodies under the action of different forces has engaged the attention of philosophers, mathematicians and scientists

More information

Introduction to Engineering Mechanics

Introduction to Engineering Mechanics Introduction to Engineering Mechanics Statics October 2009 () Introduction 10/09 1 / 19 Engineering mechanics Engineering mechanics is the physical science that deals with the behavior of bodies under

More information

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion Rectilinear Motion No. kill Done 1 Know that rectilinear motion means motion in 1D (i.e. along a straight line) Know that a body is a physical object 3 Know that a particle is an idealised body that has

More information

PHYS-2010: General Physics I Course Lecture Notes Section V

PHYS-2010: General Physics I Course Lecture Notes Section V PHYS-2010: General Physics I Course Lecture Notes Section V Dr. Donald G. Luttermoser East Tennessee State University Edition 2.5 Abstract These class notes are designed for use of the instructor and students

More information

hwhat is mechanics? hscalars and vectors hforces are vectors htransmissibility of forces hresolution of colinear forces hmoments and couples

hwhat is mechanics? hscalars and vectors hforces are vectors htransmissibility of forces hresolution of colinear forces hmoments and couples orces and Moments CIEG-125 Introduction to Civil Engineering all 2005 Lecture 3 Outline hwhat is mechanics? hscalars and vectors horces are vectors htransmissibilit of forces hresolution of colinear forces

More information

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Dynamics. Dynamics of mechanical particle and particle systems (many body systems) Dynamics Dynamics of mechanical particle and particle systems (many body systems) Newton`s first law: If no net force acts on a body, it will move on a straight line at constant velocity or will stay at

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 21 The oment- Distribution ethod: rames with Sidesway Instructional Objectives After reading this chapter the student

More information

Introduction to Engineering Mechanics

Introduction to Engineering Mechanics CHPTER 1 Introduction to Engineering Mechanics The state of rest and state of motion of the bodies under the action of different forces has engaged the attention of philosophers, mathematicians and scientists

More information

Introduction to Engineering Mechanics

Introduction to Engineering Mechanics CHPTER 1 Introduction to Engineering Mechanics The state of rest and state of motion of the bodies under the action of different forces has engaged the attention of philosophers, mathematicians and scientists

More information

Advanced Higher Mathematics of Mechanics

Advanced Higher Mathematics of Mechanics Advanced Higher Mathematics of Mechanics Course Outline (2016-2017) Block 1: Change of timetable to summer holiday Assessment Standard Assessment 1 Applying skills to motion in a straight line (Linear

More information

COURSE CODE: GEE 212 COURSE TITLE: ENGINEERING MECHANICS NUMBER OF UNITS: 3 Units COURSE DURATION: Three hours per week

COURSE CODE: GEE 212 COURSE TITLE: ENGINEERING MECHANICS NUMBER OF UNITS: 3 Units COURSE DURATION: Three hours per week COURSE CODE: GEE 212 COURSE TITLE: ENGINEERING MECHANICS NUMBER OF UNITS: 3 Units COURSE DURATION: Three hours per week COURSE LECTURER: DR. BALOGUNAIZEBEOJE INCENT INTENDED LEARNING OUTCOMES At the completion

More information

APPLIED MECHANICS I Resultant of Concurrent Forces Consider a body acted upon by co-planar forces as shown in Fig 1.1(a).

APPLIED MECHANICS I Resultant of Concurrent Forces Consider a body acted upon by co-planar forces as shown in Fig 1.1(a). PPLIED MECHNICS I 1. Introduction to Mechanics Mechanics is a science that describes and predicts the conditions of rest or motion of bodies under the action of forces. It is divided into three parts 1.

More information

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents 9/3/2015.

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents 9/3/2015. 3 Rigid CHPTER VECTR ECHNICS R ENGINEERS: STTICS erdinand P. eer E. Russell Johnston, Jr. Lecture Notes: J. Walt ler Teas Tech Universit odies: Equivalent Sstems of orces Contents Introduction Eternal

More information

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents & Objectives.

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents & Objectives. 3 Rigid CHATER VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Teas Tech Universit Bodies: Equivalent Sstems of Forces Contents & Objectives

More information

Vidyalanakar F.Y. Diploma : Sem. II [AE/CE/CH/CR/CS/CV/EE/EP/FE/ME/MH/MI/PG/PT/PS] Engineering Mechanics

Vidyalanakar F.Y. Diploma : Sem. II [AE/CE/CH/CR/CS/CV/EE/EP/FE/ME/MH/MI/PG/PT/PS] Engineering Mechanics Vidyalanakar F.Y. Diploma : Sem. II [AE/CE/CH/CR/CS/CV/EE/EP/FE/ME/MH/MI/PG/PT/PS] Engineering Mechanics Time : 3 Hrs.] Prelim Question Paper Solution [Marks : 100 Q.1 Attempt any TEN of the following

More information

Created by T. Madas VECTOR MOMENTS. Created by T. Madas

Created by T. Madas VECTOR MOMENTS. Created by T. Madas VECTOR MOMENTS Question 1 (**) The vectors i, j and k are unit vectors mutually perpendicular to one another. Relative to a fixed origin O, a light rigid rod has its ends located at the points 0, 7,4 B

More information

ARC241 Structural Analysis I Lecture 1, Sections ST1.1 ST2.4

ARC241 Structural Analysis I Lecture 1, Sections ST1.1 ST2.4 Lecture 1, Sections ST1.1 ST2.4 ST1.1-ST1.2) Introduction ST1.3) Units of Measurements ST1.4) The International System (SI) of Units ST1.5) Numerical Calculations ST1.6) General Procedure of Analysis ST2.1)

More information

Course Overview. Statics (Freshman Fall) Dynamics: x(t)= f(f(t)) displacement as a function of time and applied force

Course Overview. Statics (Freshman Fall) Dynamics: x(t)= f(f(t)) displacement as a function of time and applied force Course Overview Statics (Freshman Fall) Engineering Mechanics Dynamics (Freshman Spring) Strength of Materials (Sophomore Fall) Mechanism Kinematics and Dynamics (Sophomore Spring ) Aircraft structures

More information

E 490 FE Exam Prep. Engineering Mechanics

E 490 FE Exam Prep. Engineering Mechanics E 490 FE Exam Prep Engineering Mechanics 2008 E 490 Course Topics Statics Newton s Laws of Motion Resultant Force Systems Moment of Forces and Couples Equilibrium Pulley Systems Trusses Centroid of an

More information

21.4 Electric Field and Electric Forces

21.4 Electric Field and Electric Forces 21.4 Electric Field and Electric Forces How do charged particles interact in empty space? How do they know the presence of each other? What goes on in the space between them? Body A produces an electric

More information

Introduction. 1.1 Introduction. 1.2 Trigonometrical definitions

Introduction. 1.1 Introduction. 1.2 Trigonometrical definitions Introduction 1.1 Introduction Stress analysis is an important part of engineering science, as failure of most engineering components is usually due to stress. The component under a stress investigation

More information

Engineering Mechanics

Engineering Mechanics F.Y. Diploma : Sem. II [AE/CE/CH/CR/CS/CV/EE/EP/FE/ME/MH/MI/PG/PT/PS] Engineering Mechanics Time : 3 Hrs.] Prelim Question Paper Solution [Marks : 00 Q. Attempt any TEN of the following : [20] Q.(a) Difference

More information

Engineering Mechanics. Electrical Engineering. First stage

Engineering Mechanics. Electrical Engineering. First stage Assist AliA. A Engineering Mechanics Electrical Engineering First stage Syllabus Static 1- General Princples 2- System of Forces 3- Composition and Resolution of Foreces Moments 5- Equilibrium 6- Trusses

More information

Engineering Mechanics I Year B.Tech

Engineering Mechanics I Year B.Tech Engineering Mechanics I Year B.Tech By N.SRINIVASA REDDY., M.Tech. Sr. Assistant Professor Department of Mechanical Engineering Vardhaman College of Engineering Basic concepts of Mathematics & Physics

More information

Ishik University / Sulaimani Civil Engineering Department. Chapter -2-

Ishik University / Sulaimani Civil Engineering Department. Chapter -2- Ishik University / Sulaimani Civil Engineering Department Chapter -- 1 orce Vectors Contents : 1. Scalars and Vectors. Vector Operations 3. Vector Addition of orces 4. Addition of a System of Coplanar

More information

Axis Balanced Forces Centripetal force. Change in velocity Circular Motion Circular orbit Collision. Conservation of Energy

Axis Balanced Forces Centripetal force. Change in velocity Circular Motion Circular orbit Collision. Conservation of Energy When something changes its velocity The rate of change of velocity of a moving object. Can result from a change in speed and/or a change in direction On surface of earth, value is 9.8 ms-²; increases nearer

More information

Engineering Mechanics: Statics in SI Units, 12e Force Vectors

Engineering Mechanics: Statics in SI Units, 12e Force Vectors Engineering Mechanics: Statics in SI Units, 1e orce Vectors 1 Chapter Objectives Parallelogram Law Cartesian vector form Dot product and angle between vectors Chapter Outline 1. Scalars and Vectors. Vector

More information

Mathematics. Statistics

Mathematics. Statistics Mathematics Statistics Table of Content. Introduction.. arallelogram law of forces. 3. Triangle law of forces. 4. olygon law of forces. 5. Lami's theorem. 6. arallel forces. 7. Moment. 8. Couples. 9. Triangle

More information

Physics for Scientists and Engineers 4th Edition, 2017

Physics for Scientists and Engineers 4th Edition, 2017 A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not

More information

Newton's second law of motion

Newton's second law of motion OpenStax-CNX module: m14042 1 Newton's second law of motion Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 Abstract Second law of

More information

Forces and Newton s Laws Notes

Forces and Newton s Laws Notes Forces and Newton s Laws Notes Force An action exerted on an object which can change the motion of the object. The SI unit for force is the Newton (N) o N = (kg m)/s 2 o Pound is also a measure of force

More information

PHYS 1114, Lecture 33, April 10 Contents:

PHYS 1114, Lecture 33, April 10 Contents: PHYS 1114, Lecture 33, April 10 Contents: 1 This class is o cially cancelled, and has been replaced by the common exam Tuesday, April 11, 5:30 PM. A review and Q&A session is scheduled instead during class

More information

CH. I ME2560 STATICS General Principles GENERAL PRINCIPLES. Rigid body mechanics. Fluid mechanics

CH. I ME2560 STATICS General Principles GENERAL PRINCIPLES. Rigid body mechanics. Fluid mechanics 1. MECHANICS GENERAL PRINCIPLES Mechanics is the branch of physics (classic) that studies the state of rest or motion of bodies subjected to the action of forces. Rigid body mechanics Mechanics Deformable

More information

Please Visit us at:

Please Visit us at: IMPORTANT QUESTIONS WITH ANSWERS Q # 1. Differentiate among scalars and vectors. Scalars Vectors (i) The physical quantities that are completely (i) The physical quantities that are completely described

More information

Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and

Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related Torque The door is free to rotate about

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 AERONAUTICAL ENGINEERING DEFINITIONS AND TERMINOLOGY Course Name : ENGINEERING MECHANICS Course Code : AAEB01 Program :

More information

UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1

UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1 UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1 UNIT V: Multi-Dimensional Kinematics and Dynamics As we have already discussed, the study of the rules of nature (a.k.a. Physics) involves both

More information

1 LS 1: THE STUDENT WILL UTILIZE SKILLS OF OBSERVATION, DATA COLLECTION, AND DATA ANALYSIS TO SOLVE PROBLEMS

1 LS 1: THE STUDENT WILL UTILIZE SKILLS OF OBSERVATION, DATA COLLECTION, AND DATA ANALYSIS TO SOLVE PROBLEMS PHYSICS-Semester 1 LS 1: THE STUDENT WILL UTILIZE SKILLS OF OBSERVATION, DATA COLLECTION, AND DATA ANALYSIS TO SOLVE PROBLEMS. 1.1 The student will pass a lab safety test following district guidelines.

More information

EQUATIONS OF MOTION: RECTANGULAR COORDINATES

EQUATIONS OF MOTION: RECTANGULAR COORDINATES EQUATIONS OF MOTION: RECTANGULAR COORDINATES Today s Objectives: Students will be able to: 1. Apply Newton s second law to determine forces and accelerations for particles in rectilinear motion. In-Class

More information

ENGINEERING MECHANICS

ENGINEERING MECHANICS ENGINEERING MECHNICS (For.E /.Tech Engineering Students) s Per Kerala Technological University New Syllabus Dr. S.Ramachandran, M.E., Ph.D., Professor and Research Head Dr.. nderson, M.E., Ph.D., Faculty

More information

141EE0402-Engineering Mechanics. UNIT- I : Basics and Statics of Particles

141EE0402-Engineering Mechanics. UNIT- I : Basics and Statics of Particles 141EE0402-Engineering Mechanics UNIT- I : Basics and Statics of Particles Force Force is an agent which produces or tends to produce, destroys or tends to destroy the motion of body or particles. Vector

More information

= v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F

= v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F Multiple choice Problem 1 A 5.-N bos sliding on a rough horizontal floor, and the only horizontal force acting on it is friction. You observe that at one instant the bos sliding to the right at 1.75 m/s

More information

Chapter 8. Centripetal Force and The Law of Gravity

Chapter 8. Centripetal Force and The Law of Gravity Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration

More information

Physics 12 Unit 2: Vector Dynamics

Physics 12 Unit 2: Vector Dynamics 1 Physics 12 Unit 2: Vector Dynamics In this unit you will extend your study of forces. In particular, we will examine force as a vector quantity; this will involve solving problems where forces must be

More information

2.1 Scalars and Vectors

2.1 Scalars and Vectors 2.1 Scalars and Vectors Scalar A quantity characterized by a positive or negative number Indicated by letters in italic such as A e.g. Mass, volume and length 2.1 Scalars and Vectors Vector A quantity

More information

Section 1 Changes in Motion. Chapter 4. Preview. Objectives Force Force Diagrams

Section 1 Changes in Motion. Chapter 4. Preview. Objectives Force Force Diagrams Section 1 Changes in Motion Preview Objectives Force Force Diagrams Section 1 Changes in Motion Objectives Describe how force affects the motion of an object. Interpret and construct free body diagrams.

More information

UNIT-IV SLOPE DEFLECTION METHOD

UNIT-IV SLOPE DEFLECTION METHOD UNITIV SOPE EETION ETHO ontinuous beams and rigid frames (with and without sway) Symmetry and antisymmetry Simplification for hinged end Support displacements Introduction: This method was first proposed

More information

ENGINEERING MECHANICS - Question Bank

ENGINEERING MECHANICS - Question Bank E Semester-_IST YEAR (CIVIL, MECH, AUTO, CHEM, RUER, PLASTIC, ENV,TT,AERO) ENGINEERING MECHANICS - Question ank All questions carry equal marks(10 marks) Q.1 Define space,time matter and force, scalar

More information

Introduction Aim To introduce the basic concepts in mechanics, especially as they apply to civil engineering.

Introduction Aim To introduce the basic concepts in mechanics, especially as they apply to civil engineering. Mechanics Introduction im To introduce the basic concepts in mechanics, especially as they apply to civil engineering. Mechanics Mathematical models describing the effects of forces and motion on objects

More information

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move Chapter 4 Dynamics: Newton s Laws of Motion That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal orce, Tension, riction ree-body

More information

MECHANICS. Prepared by Engr. John Paul Timola

MECHANICS. Prepared by Engr. John Paul Timola MECHANICS Prepared by Engr. John Paul Timola MECHANICS a branch of the physical sciences that is concerned with the state of rest or motion of bodies that are subjected to the action of forces. subdivided

More information

Physics 111 Lecture 4 Newton`s Laws

Physics 111 Lecture 4 Newton`s Laws Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac

More information

YEAR 13 - Mathematics Pure (C3) Term 1 plan

YEAR 13 - Mathematics Pure (C3) Term 1 plan Week Topic YEAR 13 - Mathematics Pure (C3) Term 1 plan 2016-2017 1-2 Algebra and functions Simplification of rational expressions including factorising and cancelling. Definition of a function. Domain

More information

Unit 1: Mechanical Equilibrium

Unit 1: Mechanical Equilibrium Unit 1: Mechanical Equilibrium Chapter: Two Mechanical Equilibrium Big Idea / Key Concepts Student Outcomes 2.1: Force 2.2: Mechanical Equilibrium 2.3: Support Force 2.4: Equilibrium for Moving Objects

More information

ISSUED BY K V - DOWNLOADED FROM KINEMATICS

ISSUED BY K V - DOWNLOADED FROM   KINEMATICS KINEMATICS *rest and Motion are relative terms, nobody can exist in a state of absolute rest or of absolute motion. *One dimensional motion:- The motion of an object is said to be one dimensional motion

More information

Moment of a force (scalar, vector ) Cross product Principle of Moments Couples Force and Couple Systems Simple Distributed Loading

Moment of a force (scalar, vector ) Cross product Principle of Moments Couples Force and Couple Systems Simple Distributed Loading Chapter 4 Moment of a force (scalar, vector ) Cross product Principle of Moments Couples Force and Couple Systems Simple Distributed Loading The moment of a force about a point provides a measure of the

More information

Physics 2514 Lecture 13

Physics 2514 Lecture 13 Physics 2514 Lecture 13 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/18 Goals We will discuss some examples that involve equilibrium. We then move on to a discussion

More information

Statics deal with the condition of equilibrium of bodies acted upon by forces.

Statics deal with the condition of equilibrium of bodies acted upon by forces. Mechanics It is defined as that branch of science, which describes and predicts the conditions of rest or motion of bodies under the action of forces. Engineering mechanics applies the principle of mechanics

More information

1). To introduce and define the subject of mechanics. 2). To introduce Newton's Laws, and to understand the significance of these laws.

1). To introduce and define the subject of mechanics. 2). To introduce Newton's Laws, and to understand the significance of these laws. 2 INTRODUCTION Learning Objectives 1). To introduce and define the subject of mechanics. 2). To introduce Newton's Laws, and to understand the significance of these laws. 3). The review modeling, dimensional

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

PHY 101. Work and Kinetic Energy 7.1 Work Done by a Constant Force

PHY 101. Work and Kinetic Energy 7.1 Work Done by a Constant Force PHY 101 DR M. A. ELERUJA KINETIC ENERGY AND WORK POTENTIAL ENERGY AND CONSERVATION OF ENERGY CENTRE OF MASS AND LINEAR MOMENTUM Work is done by a force acting on an object when the point of application

More information

Engineering Mechanics Objective module 1 with solutions: A K GAIKAR

Engineering Mechanics Objective module 1 with solutions: A K GAIKAR Engineering Mechanics Objective module 1 with solutions: A K GAIKAR 1. What is the branch of engineering mechanics which refers to the study of stationary rigid body? A. Statics B. Kinetics C. Kinematics

More information

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014 1 Rotational Dynamics Why do objects spin? Objects can travel in different ways: Translation all points on the body travel in parallel paths Rotation all points on the body move around a fixed point An

More information

An Overview of Mechanics

An Overview of Mechanics An Overview of Mechanics Mechanics: The study of how bodies react to forces acting on them. Statics: The study of bodies in equilibrium. Dynamics: 1. Kinematics concerned with the geometric aspects of

More information

2. a) Explain the equilibrium of i) Concurrent force system, and ii) General force system.

2. a) Explain the equilibrium of i) Concurrent force system, and ii) General force system. Code No: R21031 R10 SET - 1 II B. Tech I Semester Supplementary Examinations Dec 2013 ENGINEERING MECHANICS (Com to ME, AE, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions

More information

Quantitative Skills in AP Physics 1

Quantitative Skills in AP Physics 1 This chapter focuses on some of the quantitative skills that are important in your AP Physics 1 course. These are not all of the skills that you will learn, practice, and apply during the year, but these

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

*Definition of Mechanics *Basic Concepts *Newton s Laws *Units

*Definition of Mechanics *Basic Concepts *Newton s Laws *Units INTRODUCTION *Definition of Mechanics *Basic Concepts *Newton s Laws *Units Mechanics may be defined as the physical science which describes and predicts the conditions of rest or motion of bodies under

More information

Chapter 4: Newton's Laws of Motion

Chapter 4: Newton's Laws of Motion Chapter 4 Lecture Chapter 4: Newton's Laws of Motion Goals for Chapter 4 To understand force either directly or as the net force of multiple components. To study and apply Newton's first law. To study

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY ENERGY Energy present in a variety of forms Mechanical energy Chemical energy Nuclear energy Electromagnetic energy Energy can be transformed form one form to another Energy is conserved (isolated system)

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life. Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

More information

3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM

3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM 3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM Consider rigid body fixed in the x, y and z reference and is either at rest or moves with reference at constant velocity Two types of forces that act on it, the

More information

Chapter 2 - Vector Algebra

Chapter 2 - Vector Algebra A spatial vector, or simply vector, is a concept characterized by a magnitude and a direction, and which sums with other vectors according to the Parallelogram Law. A vector can be thought of as an arrow

More information

Vector Mechanics: Statics

Vector Mechanics: Statics PDHOnline Course G492 (4 PDH) Vector Mechanics: Statics Mark A. Strain, P.E. 2014 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org www.pdhcenter.com

More information

NYS STANDARD/KEY IDEA/PERFORMANCE INDICATOR 5.1 a-e. 5.1a Measured quantities can be classified as either vector or scalar.

NYS STANDARD/KEY IDEA/PERFORMANCE INDICATOR 5.1 a-e. 5.1a Measured quantities can be classified as either vector or scalar. INDICATOR 5.1 a-e September Unit 1 Units and Scientific Notation SI System of Units Unit Conversion Scientific Notation Significant Figures Graphical Analysis Unit Kinematics Scalar vs. vector Displacement/dis

More information

ME 201 Engineering Mechanics: Statics. Final Exam Review

ME 201 Engineering Mechanics: Statics. Final Exam Review ME 201 Engineering Mechanics: Statics inal Exam Review inal Exam Testing Center (Proctored, 1 attempt) Opens: Monday, April 9 th Closes : riday, April 13 th Test ormat 15 Problems 10 Multiple Choice (75%)

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion Sir Isaac Newton 1642 1727 Formulated basic laws of mechanics Discovered Law of Universal Gravitation Invented form of calculus Many observations dealing with light and optics

More information

Equilibrium of Rigid Bodies

Equilibrium of Rigid Bodies Equilibrium of Rigid Bodies 1 2 Contents Introduction Free-Bod Diagram Reactions at Supports and Connections for a wo-dimensional Structure Equilibrium of a Rigid Bod in wo Dimensions Staticall Indeterminate

More information

l1, l2, l3, ln l1 + l2 + l3 + ln

l1, l2, l3, ln l1 + l2 + l3 + ln Work done by a constant force: Consider an object undergoes a displacement S along a straight line while acted on a force F that makes an angle θ with S as shown The work done W by the agent is the product

More information

Units are important anyway

Units are important anyway Ch. 1 Units -- SI System (length m, Mass Kg and Time s). Dimensions -- First check of Mathematical relation. Trigonometry -- Cosine, Sine and Tangent functions. -- Pythagorean Theorem Scalar and Vector

More information

Levers of the Musculoskeletal System

Levers of the Musculoskeletal System Levers of the Musculoskeletal System Lever system consists of: lever fulcrum load force Three classes of levers 1. first class (a) - pry bars, crowbars 2. second class (b) - wheelbarrow 3. third class

More information

GLOSSARY OF PHYSICS TERMS. v-u t. a =

GLOSSARY OF PHYSICS TERMS. v-u t. a = GLOSSARY OF PHYSICS TERMS Scalar: A quantity that has magnitude only. Vector: A quantity that has magnitude and direction. Speed is the distance travelled per unit time. OR the rate of change of distance.

More information

ENGINEERING MECHANICS STATIC. Mechanic s is the oldest of the physical sciences which deals with the effects of forces on objects.

ENGINEERING MECHANICS STATIC. Mechanic s is the oldest of the physical sciences which deals with the effects of forces on objects. INTRODUCTION TO STATICS: 1-1 Mechanics: Mechanic s is the oldest of the physical sciences which deals with the effects of forces on objects. The subject of mechanics is logically divided into two parts

More information

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B-1A: ROTATIONAL DYNAMICS Essential Idea: The basic laws of mechanics have an extension when equivalent principles are applied to rotation. Actual

More information

2015 ENGINEERING MECHANICS

2015 ENGINEERING MECHANICS Set No - 1 I B.Tech I Semester Regular/Supple. Examinations Nov./Dec. 2015 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem. E, Aero E, AME, Min E, PE, Metal E, Textile Engg.) Time: 3 hours

More information