The Probability Distribution of the MVDR Beamformer Outputs under Diagonal Loading. N. Raj Rao (Dept. of Electrical Engineering and Computer Science)

Size: px
Start display at page:

Download "The Probability Distribution of the MVDR Beamformer Outputs under Diagonal Loading. N. Raj Rao (Dept. of Electrical Engineering and Computer Science)"

Transcription

1 The Probability Distribution of the MVDR Beamformer Outputs under Diagonal Loading N. Raj Rao (Dept. of Electrical Engineering and Computer Science) & Alan Edelman (Dept. of Mathematics) Work supported by NSF Grant DMS

2 Detection Estimation Classification Main Message Capon-MVDR Beamformer Diagonal Loading used for Robust Adaptive Beamforming since 1960 s Open Problem: For over 40 years no analytical results on Diagonal Loading Distribution Bias Variance Solved! Initial results: Single Source and Source + Interferer in White Noise Technique: Infinite Random Matrix Theory 2

3 Outline Capon-MVDR Beamformer Why is Diagonal Loading used? Related work Capon-Goodman result New results Infinite Random Matrix Theory Simulations Snapshot Deficient case Future work Rank detection algorithm 3

4 Capon-MVDR Beamformer X = [x(1)... x(l)] is an N L data matrix N = Number of sensors, L = Number of snapshots x(l) for l = 1, 2,..., L has covariance R = E[x(l)x(l) H ] Capon s Power Spectral Estimator: ˆP Capon (θ) = 1 v H (θ)ˆr 1 v(θ) where ˆR = 1 L XXH is the Sample Covariance Matrix Also known as Minimum Variance Distortionless Response (MVDR) Beamformer Minimum variance since weight vector w(θ) chosen to minimize w H Rw Distortionless since w H v(θ) = 1 4

5 Diagonally Loaded Capon-MVDR Beamformer ˆR δ = 1 L XXH + δ I N ˆP Capon (θ, δ) = 1 v H (θ)ˆr 1 δ v(θ) 30 N = 18, L = 36 : δ = 0 30 N = 18, L = 36 : δ = Eigenvalues (db) Eigenvalues (db) Index Index 5

6 Diagonally Loaded Capon-MVDR Beamformer ˆR δ = 1 L XXH + δ I N ˆP Capon (θ, δ) = 1 v H (θ)ˆr 1 δ v(θ) 30 N = 18, L = 4 : δ = 0 30 N = 18, L = 4 : δ = Eigenvalues (db) Eigenvalues (db) Index Index 6

7 Diagonally Loaded Capon-MVDR Beamformer ˆR δ = 1 L XXH + δ I N Type I Estimator: ˆP I Capon (θ, δ) = 1 v H (θ)ˆr 1 δ v(θ) Type II Estimator: Capon (θ, δ) = vh (θ)ˆr 1 δ ˆRˆR 1 δ v(θ) (v H (θ)ˆr 1 δ v(θ))2 ˆP II Results focus on Type I Estimator; can be extended for Type II as well. 7

8 Outline Capon-MVDR Beamformer Why is Diagonal Loading used? Related work Capon-Goodman result New results Infinite Random Matrix Theory Simulations Snapshot Deficient case Future work Rank detection algorithm 8

9 Related work (partial list) Carlson Cox, Zeskind and Owen Baggeroer and Cox Van Trees Stoica and Li Hawkes and Nehorai Owsley Simulations Fertig Evans and Tse Tse and Zeitouni Mestre and Lagunas Special Cases 9

10 Capon-Goodman Result ˆR δ = 1 L XXH + δ I N ˆP Capon (θ, δ) = 1 v H (θ)ˆr 1 δ v(θ) Statistic/Scenario δ = 0, L N δ 0, L N, L < N Distribution Bias Variance complex chi-squared L N + 1 P Capon (θ) L L N + 1 L 2 P Capon (θ) 2??? Capon-Goodman 1970 Open Problem 10

11 Perspectives on Diagonal Loading Detection Estimation Classification Capon-MVDR Beamformer Diagonal Loading used for Robust Adaptive Beamforming since 1960 s Known to robustify beamforming to steering vector errors and finite sample effects Canonical cases: Single Source and Source plus Interferer in white noise not understood analytically No analytical results Finite Sample Effects not fully understood Inadequacy of existing Large Array feasibility studies 11

12 Outline Capon-MVDR Beamformer Why is Diagonal Loading used? Related work Capon-Goodman result New results Infinite Random Matrix Theory Simulations Snapshot Deficient case Future work Rank detection algorithm 12

13 New Results for Canonical Cases ˆR δ = 1 L XXH + δ I N ˆP Capon (θ, δ) = 1 v H (θ)ˆr 1 δ v(θ) Statistic/Scenario δ = 0, L N δ 0, L N, L < N Distribution Bias Variance complex chi-squared L N + 1 P Capon (θ) L L N + 1 L 2 P Capon (θ) 2 Capon-Goodman 1970 Solved! 13

14 Probability Distribution (No Signal in White Noise) 1 ˆP Capon (θ, δ) = vh (θ)ˆr 1 δ v(θ) d = G 1 as N, L with N/L c > 0 G 1 = Gaussian Mean of Gaussian depends on N/L and δ Variance of Gaussian depends on N/L, N and δ Variance 0 as N, L with N/L c > 0 c > 1: Snapshot Deficient Scenario c << 1: Snapshot Abundant Scenario 14

15 Probability Distribution (Single θ S in White Noise) 1 ˆP Capon (θ, δ) = vh (θ)ˆr 1 δ v(θ) d = as N, L with N/L c > 0 G 1, G 2, and G 3 are independent Gaussians G 1 const. + G 1 + Variance of Gaussians 0 as N, L with N/L c > 0 c > 1: Snapshot Deficient Scenario c << 1: Snapshot Abundant Scenario G 2 const. + G 1 + G 3 Unifies analysis for Snapshot Deficient and Snapshot Abundant scenarios 15

16 Techniques used ˆR δ = 1 L XXH + δ I N ˆP Capon (θ, δ) = 1 v H (θ)ˆr 1 δ v(θ) Capon-Goodman Result (δ = 0): Key property: Invariance allows decoupling of deterministic functional from random matrix based functional v H (θ)ˆr 1 0 v(θ) = vh (θ)r 1 v(θ) v H (θ)w 1 v(θ) W is complex null Wishart! 16

17 New Results (δ 0): Techniques used ˆR δ = 1 L XXH + δ I N ˆP Capon (θ, δ) = 1 v H (θ)ˆr 1 δ v(θ) Observation: No decoupling of deterministic functional from random matrix based functional v H (θ)ˆr 1 δ v(θ) vh (θ)r 1 v(θ) v H (θ)g(w)v(θ)v(θ) g(x) = 1/(δ + x) is a matrix valued function, W is a complex null Wishart Key property: Distribution of v H (θ)g(w)v(θ) known as N, L Known + New results from infinite random matrix theory Matrix Inversion Lemma + Key Property Desired Result Rigorous for N, L with N/L c > 0 In practice N = 8 is good enough 17

18 Outline Capon-MVDR Beamformer Why is Diagonal Loading used? Related work Capon-Goodman result New results Infinite Random Matrix Theory Simulations Snapshot Deficient case Future work Rank detection algorithm 18

19 Single Source in White Noise (Probability Distribution) Probability x N = 100, L = 250, σ 2 S = 10, θ S = 90, δ =

20 Single Source in White Noise (Probability Distribution) Probability x N = 10, L = 50, σ 2 S = 10, θ S = 90, δ =

21 Single Source in White Noise (Probability Distribution) Probability x N = 4, L = 5, σ 2 S = 10, θ S = 90, δ =

22 Source + Interferer in White Noise (N = 18, L = 4,σ 2 S = σ2 I = 100, θ S = 90, θ I = 70,BW = 7.2) Monte Carlo DL Capon MVDR (δ = 10 db) Capon MVDR (Reference) E[1/P Capon (θ)] (db) f Am θ (Degrees) (a) δ = 10 db 30 Monte Carlo DL Capon MVDR (δ = 10 db) 40 Capon MVDR (Reference) θ (Degrees) (b) δ = 10 db 22

23 Source + Interferer in White Noise (N = 18, L = 4,σ 2 S = σ2 I = 100, θ S = 90, θ I = 70,BW = 7.2) Monte Carlo DL Capon MVDR (δ = 10 db) 40 Capon MVDR (Reference) θ (Degrees)

24 Source + Interferer in White Noise (N = 18, L = 4,σS 2 = σ2 I = 100, θ S = 90, θ I = 95,BW = 7.2) E[1/P Capon (θ)] (db) Monte Carlo 40 DL Capon MVDR (δ = 10 db) Capon MVDR (Reference) θ (Degrees) 24

25 Source + Interferer in White Noise (N = 18, L = 4, σ 2 S = σ2 I = 1,θ S = 90,θ I = 95,BW = 7.2) 14 E[1/P Capon (θ)] (db) Monte Carlo DL Capon MVDR (δ = 10 db) Capon MVDR (Reference) θ (Degrees) 25

26 Outline Capon-MVDR Beamformer Why is Diagonal Loading used? Related work Capon-Goodman result New results Infinite Random Matrix Theory Simulations Snapshot Deficient case Future work Rank detection algorithm 26

27 Work in progress Multiple plane wave signals Arbitrary number of Sources + Interferers non-gaussian noise models Capon-MVDR Type II estimator Characterization of the estimation/detection/classification performance of DL Capon- MVDR Rank detection algorithm Dramatically outperforms MDL/AIC in high sensor/low sample support regime 27

28 Rank Detection Algorithm (N = 200) 5 True Rank = 120 Eigenvalues (Magnitude) Index 28

29 Rank Detection Algorithm (N = 200, L = 250) Magnitude (db) True rank = 120, Estimate = , MDL/AIC Estimate = index Red is Actual Rank, Black is New Algorithm, Green is MDL/AIC index Magnitude 29

30 Conclusions The distribution of Capon-MVDR successfully characterized under Diagonal Loading Single Source and Source + Interferer Case in White Noise Infinite random matrix theory facilitates required computation Applies for Snapshot Deficient and Snapshot Abundant cases Results encompass array response mismatch scenario 30

31 Detection Estimation Classification Main Message Capon-MVDR Beamformer Diagonal Loading used for Robust Adaptive Beamforming since 1960 s Open///////////// Problem: For over 40 years no analytical results on Diagonal Loading Distribution Bias Variance Solved! Initial results: Single Source and Source + Interferer in White Noise Technique: Infinite Random Matrix Theory 31

Analysis of Optimal Diagonal Loading for MPDR-based Spatial Power Estimators in the Snapshot Deficient Regime

Analysis of Optimal Diagonal Loading for MPDR-based Spatial Power Estimators in the Snapshot Deficient Regime MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Analysis of Optimal Diagonal Loading for MPDR-based Spatial Power Estimators in the Snapshot Deficient Regime Pajovic, M.; Preisig, J.C.; Baggeroer,

More information

Free Probability, Sample Covariance Matrices and Stochastic Eigen-Inference

Free Probability, Sample Covariance Matrices and Stochastic Eigen-Inference Free Probability, Sample Covariance Matrices and Stochastic Eigen-Inference Alan Edelman Department of Mathematics, Computer Science and AI Laboratories. E-mail: edelman@math.mit.edu N. Raj Rao Deparment

More information

Competitive Mean-Squared Error Beamforming

Competitive Mean-Squared Error Beamforming Competitive Mean-Squared Error Beamforming Yonina C. Eldar Department of Electrical Engineering Technion, Israel Institute of Technology email: yonina@ee.technion.ac.il Arye Nehorai Department of Electrical

More information

Adaptive Array Detection, Estimation and Beamforming

Adaptive Array Detection, Estimation and Beamforming Adaptive Array Detection, Estimation and Beamforming Christ D. Richmond Workshop on Stochastic Eigen-Analysis and its Applications 3:30pm, Monday, July 10th 2006 C. D. Richmond-1 *This work was sponsored

More information

Robust Capon Beamforming

Robust Capon Beamforming Robust Capon Beamforming Yi Jiang Petre Stoica Zhisong Wang Jian Li University of Florida Uppsala University University of Florida University of Florida March 11, 2003 ASAP Workshop 2003 1 Outline Standard

More information

arxiv: v1 [cs.it] 6 Nov 2016

arxiv: v1 [cs.it] 6 Nov 2016 UNIT CIRCLE MVDR BEAMFORMER Saurav R. Tuladhar, John R. Buck University of Massachusetts Dartmouth Electrical and Computer Engineering Department North Dartmouth, Massachusetts, USA arxiv:6.272v [cs.it]

More information

Robust Adaptive Beamforming via Estimating Steering Vector Based on Semidefinite Relaxation

Robust Adaptive Beamforming via Estimating Steering Vector Based on Semidefinite Relaxation Robust Adaptive Beamforg via Estimating Steering Vector Based on Semidefinite Relaxation Arash Khabbazibasmenj, Sergiy A. Vorobyov, and Aboulnasr Hassanien Dept. of Electrical and Computer Engineering

More information

ROBUST ADAPTIVE BEAMFORMING BASED ON CO- VARIANCE MATRIX RECONSTRUCTION FOR LOOK DIRECTION MISMATCH

ROBUST ADAPTIVE BEAMFORMING BASED ON CO- VARIANCE MATRIX RECONSTRUCTION FOR LOOK DIRECTION MISMATCH Progress In Electromagnetics Research Letters, Vol. 25, 37 46, 2011 ROBUST ADAPTIVE BEAMFORMING BASED ON CO- VARIANCE MATRIX RECONSTRUCTION FOR LOOK DIRECTION MISMATCH R. Mallipeddi 1, J. P. Lie 2, S.

More information

Adaptive beamforming for uniform linear arrays with unknown mutual coupling. IEEE Antennas and Wireless Propagation Letters.

Adaptive beamforming for uniform linear arrays with unknown mutual coupling. IEEE Antennas and Wireless Propagation Letters. Title Adaptive beamforming for uniform linear arrays with unknown mutual coupling Author(s) Liao, B; Chan, SC Citation IEEE Antennas And Wireless Propagation Letters, 2012, v. 11, p. 464-467 Issued Date

More information

J. Liang School of Automation & Information Engineering Xi an University of Technology, China

J. Liang School of Automation & Information Engineering Xi an University of Technology, China Progress In Electromagnetics Research C, Vol. 18, 245 255, 211 A NOVEL DIAGONAL LOADING METHOD FOR ROBUST ADAPTIVE BEAMFORMING W. Wang and R. Wu Tianjin Key Lab for Advanced Signal Processing Civil Aviation

More information

ASYMPTOTIC MEAN SQUARED ERROR PERFORMANCE OF DIAGONALLY LOADED CAPON-MVDR PROCESSOR

ASYMPTOTIC MEAN SQUARED ERROR PERFORMANCE OF DIAGONALLY LOADED CAPON-MVDR PROCESSOR ASYMPTOTIC MEAN SQUARED ERROR PERFORMANCE OF DIAGONALLY LOADED CAPON-MVDR PROCESSOR Crist D. Ricmond Lincoln Laboratory Massacusetts Institute of Tecnology Lexington, MA 02420 email: crist@ll.mit.edu Raj

More information

A ROBUST BEAMFORMER BASED ON WEIGHTED SPARSE CONSTRAINT

A ROBUST BEAMFORMER BASED ON WEIGHTED SPARSE CONSTRAINT Progress In Electromagnetics Research Letters, Vol. 16, 53 60, 2010 A ROBUST BEAMFORMER BASED ON WEIGHTED SPARSE CONSTRAINT Y. P. Liu and Q. Wan School of Electronic Engineering University of Electronic

More information

CHAPTER 3 ROBUST ADAPTIVE BEAMFORMING

CHAPTER 3 ROBUST ADAPTIVE BEAMFORMING 50 CHAPTER 3 ROBUST ADAPTIVE BEAMFORMING 3.1 INTRODUCTION Adaptive beamforming is used for enhancing a desired signal while suppressing noise and interference at the output of an array of sensors. It is

More information

ADAPTIVE ANTENNAS. SPATIAL BF

ADAPTIVE ANTENNAS. SPATIAL BF ADAPTIVE ANTENNAS SPATIAL BF 1 1-Spatial reference BF -Spatial reference beamforming may not use of embedded training sequences. Instead, the directions of arrival (DoA) of the impinging waves are used

More information

Applications of Robust Optimization in Signal Processing: Beamforming and Power Control Fall 2012

Applications of Robust Optimization in Signal Processing: Beamforming and Power Control Fall 2012 Applications of Robust Optimization in Signal Processing: Beamforg and Power Control Fall 2012 Instructor: Farid Alizadeh Scribe: Shunqiao Sun 12/09/2012 1 Overview In this presentation, we study the applications

More information

Robust Adaptive Beamforming Based on Interference Covariance Matrix Reconstruction and Steering Vector Estimation

Robust Adaptive Beamforming Based on Interference Covariance Matrix Reconstruction and Steering Vector Estimation IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 7, JULY 0 388 Robust Adaptive Beamforming Based on Interference Covariance Matrix Reconstruction and Steering Vector Estimation Yujie Gu and Amir Leshem

More information

Optimum Passive Beamforming in Relation to Active-Passive Data Fusion

Optimum Passive Beamforming in Relation to Active-Passive Data Fusion Optimum Passive Beamforming in Relation to Active-Passive Data Fusion Bryan A. Yocom Applied Research Laboratories The University of Texas at Austin Final Project EE381K-14 Multidimensional Digital Signal

More information

Overview of Beamforming

Overview of Beamforming Overview of Beamforming Arye Nehorai Preston M. Green Department of Electrical and Systems Engineering Washington University in St. Louis March 14, 2012 CSSIP Lab 1 Outline Introduction Spatial and temporal

More information

Near Optimal Adaptive Robust Beamforming

Near Optimal Adaptive Robust Beamforming Near Optimal Adaptive Robust Beamforming The performance degradation in traditional adaptive beamformers can be attributed to the imprecise knowledge of the array steering vector and inaccurate estimation

More information

An Adaptive Beamformer Based on Adaptive Covariance Estimator

An Adaptive Beamformer Based on Adaptive Covariance Estimator Progress In Electromagnetics Research M, Vol. 36, 149 160, 2014 An Adaptive Beamformer Based on Adaptive Covariance Estimator Lay Teen Ong * Abstract Based on the Minimum Variance Distortionless Response-Sample

More information

A HIGH RESOLUTION DOA ESTIMATING METHOD WITHOUT ESTIMATING THE NUMBER OF SOURCES

A HIGH RESOLUTION DOA ESTIMATING METHOD WITHOUT ESTIMATING THE NUMBER OF SOURCES Progress In Electromagnetics Research C, Vol. 25, 233 247, 212 A HIGH RESOLUTION DOA ESTIMATING METHOD WITHOUT ESTIMATING THE NUMBER OF SOURCES Q. C. Zhou, H. T. Gao *, and F. Wang Radio Propagation Lab.,

More information

Adaptive beamforming. Slide 2: Chapter 7: Adaptive array processing. Slide 3: Delay-and-sum. Slide 4: Delay-and-sum, continued

Adaptive beamforming. Slide 2: Chapter 7: Adaptive array processing. Slide 3: Delay-and-sum. Slide 4: Delay-and-sum, continued INF540 202 Adaptive beamforming p Adaptive beamforming Sven Peter Näsholm Department of Informatics, University of Oslo Spring semester 202 svenpn@ifiuiono Office phone number: +47 22840068 Slide 2: Chapter

More information

Virtual Array Processing for Active Radar and Sonar Sensing

Virtual Array Processing for Active Radar and Sonar Sensing SCHARF AND PEZESHKI: VIRTUAL ARRAY PROCESSING FOR ACTIVE SENSING Virtual Array Processing for Active Radar and Sonar Sensing Louis L. Scharf and Ali Pezeshki Abstract In this paper, we describe how an

More information

Robust Range-rate Estimation of Passive Narrowband Sources in Shallow Water

Robust Range-rate Estimation of Passive Narrowband Sources in Shallow Water Robust Range-rate Estimation of Passive Narrowband Sources in Shallow Water p. 1/23 Robust Range-rate Estimation of Passive Narrowband Sources in Shallow Water Hailiang Tao and Jeffrey Krolik Department

More information

ADAPTIVE FILTER THEORY

ADAPTIVE FILTER THEORY ADAPTIVE FILTER THEORY Fourth Edition Simon Haykin Communications Research Laboratory McMaster University Hamilton, Ontario, Canada Front ice Hall PRENTICE HALL Upper Saddle River, New Jersey 07458 Preface

More information

II. BACKGROUND. A. Notation

II. BACKGROUND. A. Notation Diagonal Unloading Beamforming for Source Localization Daniele Salvati, Carlo Drioli, and Gian Luca Foresti, arxiv:65.8v [cs.sd] 3 May 26 Abstract In sensor array beamforming methods, a class of algorithms

More information

THE estimation of covariance matrices is a crucial component

THE estimation of covariance matrices is a crucial component 1 A Subspace Method for Array Covariance Matrix Estimation Mostafa Rahmani and George K. Atia, Member, IEEE, arxiv:1411.0622v1 [cs.na] 20 Oct 2014 Abstract This paper introduces a subspace method for the

More information

DIRECTION-of-arrival (DOA) estimation and beamforming

DIRECTION-of-arrival (DOA) estimation and beamforming IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 3, MARCH 1999 601 Minimum-Noise-Variance Beamformer with an Electromagnetic Vector Sensor Arye Nehorai, Fellow, IEEE, Kwok-Chiang Ho, and B. T. G. Tan

More information

Null Broadening With Snapshot-Deficient Covariance Matrices in Passive Sonar

Null Broadening With Snapshot-Deficient Covariance Matrices in Passive Sonar 250 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 28, NO. 2, APRIL 2003 Null Broadening With Snapshot-Deficient Covariance Matrices in Passive Sonar H. Song, Member, IEEE, W. A. Kuperman, W. S. Hodgkiss, Member,

More information

Robust Adaptive Beamforming Based on Low-Complexity Shrinkage-Based Mismatch Estimation

Robust Adaptive Beamforming Based on Low-Complexity Shrinkage-Based Mismatch Estimation 1 Robust Adaptive Beamforming Based on Low-Complexity Shrinkage-Based Mismatch Estimation Hang Ruan and Rodrigo C. de Lamare arxiv:1311.2331v1 [cs.it] 11 Nov 213 Abstract In this work, we propose a low-complexity

More information

BEAMFORMING DETECTORS WITH SUBSPACE SIDE INFORMATION. Andrew Bolstad, Barry Van Veen, Rob Nowak

BEAMFORMING DETECTORS WITH SUBSPACE SIDE INFORMATION. Andrew Bolstad, Barry Van Veen, Rob Nowak BEAMFORMING DETECTORS WITH SUBSPACE SIDE INFORMATION Andrew Bolstad, Barry Van Veen, Rob Nowak University of Wisconsin - Madison 45 Engineering Drive Madison, WI 5376-69 akbolstad@wisc.edu, vanveen@engr.wisc.edu,

More information

LOW-COMPLEXITY ROBUST DOA ESTIMATION. P.O.Box 553, SF Tampere, Finland 313 Spl. Independenţei, Bucharest, Romania

LOW-COMPLEXITY ROBUST DOA ESTIMATION. P.O.Box 553, SF Tampere, Finland 313 Spl. Independenţei, Bucharest, Romania LOW-COMPLEXITY ROBUST ESTIMATION Bogdan Dumitrescu 1,2, Cristian Rusu 2, Ioan Tăbuş 1, Jaakko Astola 1 1 Dept. of Signal Processing 2 Dept. of Automatic Control and Computers Tampere University of Technology

More information

Polynomial Matrix Formulation-Based Capon Beamformer

Polynomial Matrix Formulation-Based Capon Beamformer Alzin, Ahmed and Coutts, Fraser K. and Corr, Jamie and Weiss, Stephan and Proudler, Ian K. and Chambers, Jonathon A. (26) Polynomial matrix formulation-based Capon beamformer. In: th IMA International

More information

Eigenvector Pruning Method for High Resolution Beamforming

Eigenvector Pruning Method for High Resolution Beamforming Portland State University PDXScholar Electrical and Computer Engineering Faculty Publications and Presentations Electrical and Computer Engineering 2015 Eigenvector Pruning Method for High Resolution Beamforming

More information

ADAPTIVE FILTER THEORY

ADAPTIVE FILTER THEORY ADAPTIVE FILTER THEORY Fifth Edition Simon Haykin Communications Research Laboratory McMaster University Hamilton, Ontario, Canada International Edition contributions by Telagarapu Prabhakar Department

More information

Response Vector Constrained Robust LCMV. Beamforming Based on Semidefinite Programming

Response Vector Constrained Robust LCMV. Beamforming Based on Semidefinite Programming 1.119/TSP.215.246221, IEEE Transactions on Signal Processing Response Vector Constrained Robust LCMV 1 Beamforming Based on Semidefinite Programming Jingwei Xu, Guisheng Liao, Member, IEEE, Shengqi Zhu,

More information

Partially Constrained Adaptive Beamforming. Erik Hornberger

Partially Constrained Adaptive Beamforming. Erik Hornberger Partially Constrained Adaptive Beamforming By Erik Hornberger Submitted to the Department of Electrical Engineering and Computer Science and the Graduate Faculty of the University of Kansas in partial

More information

ARRAY signal processing has wide applications in radar,

ARRAY signal processing has wide applications in radar, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 9, SEPTEMBER 2004 2407 Doubly Constrained Robust Capon Beamformer Jian Li, Senior Member, IEEE, Petre Stoica, Fellow, IEEE, and Zhisong Wang, Student

More information

Robust Adaptive Beamforming for. General-Rank Signal Model with Positive Semi-Definite Constraint via POTDC

Robust Adaptive Beamforming for. General-Rank Signal Model with Positive Semi-Definite Constraint via POTDC Robust Adaptive Beamforming for 1 General-Rank Signal Model with Positive Semi-Definite Constraint via POTDC arxiv:1212.3624v1 [cs.it] 14 Dec 2012 Arash Khabbazibasmenj, Student Member, IEEE, Sergiy A.

More information

Direction of Arrival Estimation: Subspace Methods. Bhaskar D Rao University of California, San Diego

Direction of Arrival Estimation: Subspace Methods. Bhaskar D Rao University of California, San Diego Direction of Arrival Estimation: Subspace Methods Bhaskar D Rao University of California, San Diego Email: brao@ucsdedu Reference Books and Papers 1 Optimum Array Processing, H L Van Trees 2 Stoica, P,

More information

A Novel Beamformer Robust to Steering Vector Mismatch

A Novel Beamformer Robust to Steering Vector Mismatch A Novel Beamformer Robust to Steering Vector Mismatch Chun-Yang Chen and P. P. Vaidyanathan Dept. of Electrical Engineering, MC 136-93 California Institute of Technology, Pasadena, CA 9115, USA E-mail:

More information

EUSIPCO

EUSIPCO EUSIPCO 03 56974375 ON THE RESOLUTION PROBABILITY OF CONDITIONAL AND UNCONDITIONAL MAXIMUM LIKELIHOOD DOA ESTIMATION Xavier Mestre, Pascal Vallet, Philippe Loubaton 3, Centre Tecnològic de Telecomunicacions

More information

IN future generations of satellite communication systems, the

IN future generations of satellite communication systems, the 2432 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 9, SEPTEMBER 2004 Signal Waveform Estimation in the Presence of Uncertainties About the Steering Vector Olivier Besson, Member, IEEE, Andrei A.

More information

EXTENDED GLRT DETECTORS OF CORRELATION AND SPHERICITY: THE UNDERSAMPLED REGIME. Xavier Mestre 1, Pascal Vallet 2

EXTENDED GLRT DETECTORS OF CORRELATION AND SPHERICITY: THE UNDERSAMPLED REGIME. Xavier Mestre 1, Pascal Vallet 2 EXTENDED GLRT DETECTORS OF CORRELATION AND SPHERICITY: THE UNDERSAMPLED REGIME Xavier Mestre, Pascal Vallet 2 Centre Tecnològic de Telecomunicacions de Catalunya, Castelldefels, Barcelona (Spain) 2 Institut

More information

Sensitivity Considerations in Compressed Sensing

Sensitivity Considerations in Compressed Sensing Sensitivity Considerations in Compressed Sensing Louis L. Scharf, 1 Edwin K. P. Chong, 1,2 Ali Pezeshki, 2 and J. Rockey Luo 2 1 Department of Mathematics, Colorado State University Fort Collins, CO 8523,

More information

Generalized Sidelobe Canceller and MVDR Power Spectrum Estimation. Bhaskar D Rao University of California, San Diego

Generalized Sidelobe Canceller and MVDR Power Spectrum Estimation. Bhaskar D Rao University of California, San Diego Generalized Sidelobe Canceller and MVDR Power Spectrum Estimation Bhaskar D Rao University of California, San Diego Email: brao@ucsd.edu Reference Books 1. Optimum Array Processing, H. L. Van Trees 2.

More information

SPARSITY-BASED ROBUST ADAPTIVE BEAMFORMING EXPLOITING COPRIME ARRAY

SPARSITY-BASED ROBUST ADAPTIVE BEAMFORMING EXPLOITING COPRIME ARRAY SPARSITY-BASED ROBUST ADAPTIVE BEAMFORMING EXPLOITING COPRIME ARRAY K. Liu 1,2 and Y. D. Zhang 2 1 College of Automation, Harbin Engineering University, Harbin 151, China 2 Department of Electrical and

More information

2-D SENSOR POSITION PERTURBATION ANALYSIS: EQUIVALENCE TO AWGN ON ARRAY OUTPUTS. Volkan Cevher, James H. McClellan

2-D SENSOR POSITION PERTURBATION ANALYSIS: EQUIVALENCE TO AWGN ON ARRAY OUTPUTS. Volkan Cevher, James H. McClellan 2-D SENSOR POSITION PERTURBATION ANALYSIS: EQUIVALENCE TO AWGN ON ARRAY OUTPUTS Volkan Cevher, James H McClellan Georgia Institute of Technology Atlanta, GA 30332-0250 cevher@ieeeorg, jimmcclellan@ecegatechedu

More information

MULTIPLE-CHANNEL DETECTION IN ACTIVE SENSING. Kaitlyn Beaudet and Douglas Cochran

MULTIPLE-CHANNEL DETECTION IN ACTIVE SENSING. Kaitlyn Beaudet and Douglas Cochran MULTIPLE-CHANNEL DETECTION IN ACTIVE SENSING Kaitlyn Beaudet and Douglas Cochran School of Electrical, Computer and Energy Engineering Arizona State University, Tempe AZ 85287-576 USA ABSTRACT The problem

More information

Robust covariance matrices estimation and applications in signal processing

Robust covariance matrices estimation and applications in signal processing Robust covariance matrices estimation and applications in signal processing F. Pascal SONDRA/Supelec GDR ISIS Journée Estimation et traitement statistique en grande dimension May 16 th, 2013 FP (SONDRA/Supelec)

More information

Microphone-Array Signal Processing

Microphone-Array Signal Processing Microphone-Array Signal Processing, c Apolinárioi & Campos p. 1/30 Microphone-Array Signal Processing José A. Apolinário Jr. and Marcello L. R. de Campos {apolin},{mcampos}@ieee.org IME Lab. Processamento

More information

APPLICATION OF MVDR BEAMFORMING TO SPHERICAL ARRAYS

APPLICATION OF MVDR BEAMFORMING TO SPHERICAL ARRAYS AMBISONICS SYMPOSIUM 29 June 2-27, Graz APPLICATION OF MVDR BEAMFORMING TO SPHERICAL ARRAYS Anton Schlesinger 1, Marinus M. Boone 2 1 University of Technology Delft, The Netherlands (a.schlesinger@tudelft.nl)

More information

DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Uniform Linear Array with Fewer Sensors than Sources

DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Uniform Linear Array with Fewer Sensors than Sources Progress In Electromagnetics Research M, Vol. 63, 185 193, 218 DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Uniform Linear Array with Fewer Sensors than Sources Kai-Chieh Hsu and

More information

Beamspace Adaptive Beamforming and the GSC

Beamspace Adaptive Beamforming and the GSC April 27, 2011 Overview The MVDR beamformer: performance and behavior. Generalized Sidelobe Canceller reformulation. Implementation of the GSC. Beamspace interpretation of the GSC. Reduced complexity of

More information

Optimal Time Division Multiplexing Schemes for DOA Estimation of a Moving Target Using a Colocated MIMO Radar

Optimal Time Division Multiplexing Schemes for DOA Estimation of a Moving Target Using a Colocated MIMO Radar Optimal Division Multiplexing Schemes for DOA Estimation of a Moving Target Using a Colocated MIMO Radar Kilian Rambach, Markus Vogel and Bin Yang Institute of Signal Processing and System Theory University

More information

Imaging using GPU. V-K Veligatla, Kapteyn Institute P. Labropoulos, ASTRON and Kapteyn Institute L. Koopmans, Kapteyn Institute

Imaging using GPU. V-K Veligatla, Kapteyn Institute P. Labropoulos, ASTRON and Kapteyn Institute L. Koopmans, Kapteyn Institute Imaging using GPU V-K Veligatla, Kapteyn Institute P. Labropoulos, ASTRON and Kapteyn Institute L. Koopmans, Kapteyn Institute Introduction What is a GPU? Why another Imager? Large amount of data to be

More information

Novel spectrum sensing schemes for Cognitive Radio Networks

Novel spectrum sensing schemes for Cognitive Radio Networks Novel spectrum sensing schemes for Cognitive Radio Networks Cantabria University Santander, May, 2015 Supélec, SCEE Rennes, France 1 The Advanced Signal Processing Group http://gtas.unican.es The Advanced

More information

Performance Analysis of Coarray-Based MUSIC and the Cramér-Rao Bound

Performance Analysis of Coarray-Based MUSIC and the Cramér-Rao Bound Performance Analysis of Coarray-Based MUSIC and the Cramér-Rao Bound Mianzhi Wang, Zhen Zhang, and Arye Nehorai Preston M. Green Department of Electrical & Systems Engineering Washington University in

More information

OPTIMAL ADAPTIVE TRANSMIT BEAMFORMING FOR COGNITIVE MIMO SONAR IN A SHALLOW WATER WAVEGUIDE

OPTIMAL ADAPTIVE TRANSMIT BEAMFORMING FOR COGNITIVE MIMO SONAR IN A SHALLOW WATER WAVEGUIDE OPTIMAL ADAPTIVE TRANSMIT BEAMFORMING FOR COGNITIVE MIMO SONAR IN A SHALLOW WATER WAVEGUIDE Nathan Sharaga School of EE Tel-Aviv University Tel-Aviv, Israel natyshr@gmail.com Joseph Tabrikian Dept. of

More information

Massive MIMO: Signal Structure, Efficient Processing, and Open Problems II

Massive MIMO: Signal Structure, Efficient Processing, and Open Problems II Massive MIMO: Signal Structure, Efficient Processing, and Open Problems II Mahdi Barzegar Communications and Information Theory Group (CommIT) Technische Universität Berlin Heisenberg Communications and

More information

Beamspace Adaptive Channel Compensation for Sensor Arrays with Faulty Elements

Beamspace Adaptive Channel Compensation for Sensor Arrays with Faulty Elements 1 2005 Asilomar Conference Beamspace Adaptive Channel Compensation for Sensor Arrays with Faulty Elements Oguz R. Kazanci and Jeffrey L. Krolik Duke University Department of Electrical and Computer Engineering

More information

arxiv: v1 [cs.it] 5 Mar 2013

arxiv: v1 [cs.it] 5 Mar 2013 REDUCED-RANK DOA ESTIMATION BASED ON JOINT ITERATIVE SUBSPACE OPTIMIZATION AND GRID SEARC Lei Wang and Rodrigo C. de Lamare Communications Research Group, Department of Electronics University of York,

More information

Detection and Localization of Tones and Pulses using an Uncalibrated Array

Detection and Localization of Tones and Pulses using an Uncalibrated Array Detection and Localization of Tones and Pulses using an Uncalibrated Array Steven W. Ellingson January 24, 2002 Contents 1 Introduction 2 2 Traditional Method (BF) 2 3 Proposed Method Version 1 (FXE) 3

More information

Raj Rao Nadakuditi Electrical Engineering Faculty Candidate Massachusetts Institute of Technology Phone: ,

Raj Rao Nadakuditi Electrical Engineering Faculty Candidate Massachusetts Institute of Technology Phone: , Raj Rao Nadakuditi Electrical Engineering Faculty Candidate Massachusetts Institute of Technology Phone: 857 891 8303, Email: raj@mit.edu Research Focus The development and analysis of statistical signal

More information

ML ESTIMATION AND CRB FOR NARROWBAND AR SIGNALS ON A SENSOR ARRAY

ML ESTIMATION AND CRB FOR NARROWBAND AR SIGNALS ON A SENSOR ARRAY 2014 IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP ML ESTIMATION AND CRB FOR NARROWBAND AR SIGNALS ON A SENSOR ARRAY Langford B White School of Electrical and Electronic

More information

Arash Khabbazibasmenj, Student Member, IEEE, Sergiy A. Vorobyov, Senior Member, IEEE, Aboulnasr Hassanien, Member, IEEE. Abstract

Arash Khabbazibasmenj, Student Member, IEEE, Sergiy A. Vorobyov, Senior Member, IEEE, Aboulnasr Hassanien, Member, IEEE. Abstract Robust Adaptive Beamforming Based on 1 Steering Vector Estimation via Semidefinite Programming Relaxation arxiv:1008.1047v1 [cs.it] 5 Aug 2010 Arash Khabbazibasmenj, Student Member, IEEE, Sergiy A. Vorobyov,

More information

DOA Estimation using MUSIC and Root MUSIC Methods

DOA Estimation using MUSIC and Root MUSIC Methods DOA Estimation using MUSIC and Root MUSIC Methods EE602 Statistical signal Processing 4/13/2009 Presented By: Chhavipreet Singh(Y515) Siddharth Sahoo(Y5827447) 2 Table of Contents 1 Introduction... 3 2

More information

Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling

Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling 140 IEEE SIGNAL PROCESSING LETTERS, VOL. 21, NO. 2, FEBRUARY 2014 Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling Cheng Qian, Lei Huang, and H. C. So Abstract A novel pseudo-noise

More information

ADAPTIVE beamforming and smart antennas are gaining

ADAPTIVE beamforming and smart antennas are gaining 2874 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 61, NO 11, JUNE 1, 2013 Dual-Domain Adaptive Beamformer Under Linearly and Quadratically Constrained Minimum Variance Masahiro Yukawa, Member, IEEE, Youngchul

More information

Finite Sampling Considerations for GMTI STAP and Sensor Modeling

Finite Sampling Considerations for GMTI STAP and Sensor Modeling MTR 03B0000075 MITRE TECHNICAL REPORT Finite Sampling Considerations for GMTI STAP and Sensor Modeling September 2003 T. P. Guella B. N. Suresh Babu Sponsor: ESC Contract No.: F19628-99-C-0001 Dept. No.:

More information

Statistical and Adaptive Signal Processing

Statistical and Adaptive Signal Processing r Statistical and Adaptive Signal Processing Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing Dimitris G. Manolakis Massachusetts Institute of Technology Lincoln Laboratory

More information

Previously Monte Carlo Integration

Previously Monte Carlo Integration Previously Simulation, sampling Monte Carlo Simulations Inverse cdf method Rejection sampling Today: sampling cont., Bayesian inference via sampling Eigenvalues and Eigenvectors Markov processes, PageRank

More information

Reduced-Rank Multi-Antenna Cyclic Wiener Filtering for Interference Cancellation

Reduced-Rank Multi-Antenna Cyclic Wiener Filtering for Interference Cancellation Reduced-Rank Multi-Antenna Cyclic Wiener Filtering for Interference Cancellation Hong Zhang, Ali Abdi and Alexander Haimovich Center for Wireless Communications and Signal Processing Research Department

More information

COMPARISON OF NOTCH DEPTH FOR CONSTRAINED LEAST MEAN SQUARES AND DOMINANT MODE REJECTION BEAMFORMERS

COMPARISON OF NOTCH DEPTH FOR CONSTRAINED LEAST MEAN SQUARES AND DOMINANT MODE REJECTION BEAMFORMERS COMPARISON OF NOTCH DEPTH FOR CONSTRAINED LEAST MEAN SQUARES AND DOMINANT MODE REJECTION BEAMFORMERS by Mani Shanker Krishna Bojja AThesis Submitted to the Graduate Faculty of George Mason University In

More information

Using an Oblique Projection Operator for Highly Correlated Signal Direction-of-Arrival Estimations

Using an Oblique Projection Operator for Highly Correlated Signal Direction-of-Arrival Estimations Appl. Math. Inf. Sci. 9, No. 5, 2663-2671 (2015) 2663 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/090552 Using an Oblique Projection Operator for

More information

Noncooperative Optimization of Space-Time Signals in Ad hoc Networks

Noncooperative Optimization of Space-Time Signals in Ad hoc Networks Noncooperative Optimization of Space-Time Signals in Ad hoc Networks Ronald A. Iltis and Duong Hoang Dept. of Electrical and Computer Engineering University of California Santa Barbara, CA 93106 {iltis,hoang}@ece.ucsb.edu

More information

Research Article Robust STAP for MIMO Radar Based on Direct Data Domain Approach

Research Article Robust STAP for MIMO Radar Based on Direct Data Domain Approach Hindawi International Journal of Antennas and Propagation Volume 217, Article ID 696713, 9 pages https://doi.org/1.1155/217/696713 Research Article Robust STAP for MIMO Radar Based on Direct Data Domain

More information

Robust and Automatic Data-Adaptive Beamforming for Multi-Dimensional Arrays

Robust and Automatic Data-Adaptive Beamforming for Multi-Dimensional Arrays Robust and Automatic Data-Adaptive Beamforming for Multi-Dimensional Arrays S. D. SOMASUNDARAM, A. JAKOBSSON, AND N. H. PARSONS Published in: IEEE Trans. Geosci. Remote Sens. doi:1.119/tgrs.12.21925 Lund

More information

SPACE-TIME ADAPTIVE PROCESSING BASED ON WEIGHTED REGULARIZED SPARSE RECOVERY

SPACE-TIME ADAPTIVE PROCESSING BASED ON WEIGHTED REGULARIZED SPARSE RECOVERY Progress In Electromagnetics Research B, Vol. 42, 245 262, 212 SPACE-TIME ADAPTIVE PROCESSING BASED ON WEIGHTED REGULARIZED SPARSE RECOVERY Z. C. Yang *, X. Li, and H. Q. Wang Electronics Science and Engineering

More information

DIFFUSION-BASED DISTRIBUTED MVDR BEAMFORMER

DIFFUSION-BASED DISTRIBUTED MVDR BEAMFORMER 14 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) DIFFUSION-BASED DISTRIBUTED MVDR BEAMFORMER Matt O Connor 1 and W. Bastiaan Kleijn 1,2 1 School of Engineering and Computer

More information

Robust Space-Time Adaptive Processing Using Projection Statistics

Robust Space-Time Adaptive Processing Using Projection Statistics Robust Space-Time Adaptive Processing Using Projection Statistics André P. des Rosiers 1, Gregory N. Schoenig 2, Lamine Mili 3 1: Adaptive Processing Section, Radar Division United States Naval Research

More information

Joint Direction-of-Arrival and Order Estimation in Compressed Sensing using Angles between Subspaces

Joint Direction-of-Arrival and Order Estimation in Compressed Sensing using Angles between Subspaces Aalborg Universitet Joint Direction-of-Arrival and Order Estimation in Compressed Sensing using Angles between Subspaces Christensen, Mads Græsbøll; Nielsen, Jesper Kjær Published in: I E E E / S P Workshop

More information

Tight Lower Bounds on the Ergodic Capacity of Rayleigh Fading MIMO Channels

Tight Lower Bounds on the Ergodic Capacity of Rayleigh Fading MIMO Channels Tight Lower Bounds on the Ergodic Capacity of Rayleigh Fading MIMO Channels Özgür Oyman ), Rohit U. Nabar ), Helmut Bölcskei 2), and Arogyaswami J. Paulraj ) ) Information Systems Laboratory, Stanford

More information

Source localization and separation for binaural hearing aids

Source localization and separation for binaural hearing aids Source localization and separation for binaural hearing aids Mehdi Zohourian, Gerald Enzner, Rainer Martin Listen Workshop, July 218 Institute of Communication Acoustics Outline 1 Introduction 2 Binaural

More information

Beamforming Arrays with Faulty Sensors in Dynamic Environments

Beamforming Arrays with Faulty Sensors in Dynamic Environments Beamforming Arrays with Faulty Sensors in Dynamic Environments Jeffrey Krolik and Oguz R. Kazanci Duke University phone: 919-660-5274 email: jk@ee.duke.edu Abstract This paper addresses the problem of

More information

SIGNALS with sparse representations can be recovered

SIGNALS with sparse representations can be recovered IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER 2015 1497 Cramér Rao Bound for Sparse Signals Fitting the Low-Rank Model with Small Number of Parameters Mahdi Shaghaghi, Student Member, IEEE,

More information

ASYMPTOTIC PERFORMANCE ANALYSIS OF DOA ESTIMATION METHOD FOR AN INCOHERENTLY DISTRIBUTED SOURCE. 2πd λ. E[ϱ(θ, t)ϱ (θ,τ)] = γ(θ; µ)δ(θ θ )δ t,τ, (2)

ASYMPTOTIC PERFORMANCE ANALYSIS OF DOA ESTIMATION METHOD FOR AN INCOHERENTLY DISTRIBUTED SOURCE. 2πd λ. E[ϱ(θ, t)ϱ (θ,τ)] = γ(θ; µ)δ(θ θ )δ t,τ, (2) ASYMPTOTIC PERFORMANCE ANALYSIS OF DOA ESTIMATION METHOD FOR AN INCOHERENTLY DISTRIBUTED SOURCE Jooshik Lee and Doo Whan Sang LG Electronics, Inc. Seoul, Korea Jingon Joung School of EECS, KAIST Daejeon,

More information

Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted Least Squares

Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted Least Squares IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS Source Localization and Sensing: A i Nonparametric Iterative Adaptive Approach Based on Weighted Least Squares Tarik Yardibi, Student Member, IEEE,

More information

Random Matrix Theory Lecture 3 Free Probability Theory. Symeon Chatzinotas March 4, 2013 Luxembourg

Random Matrix Theory Lecture 3 Free Probability Theory. Symeon Chatzinotas March 4, 2013 Luxembourg Random Matrix Theory Lecture 3 Free Probability Theory Symeon Chatzinotas March 4, 2013 Luxembourg Outline 1. Free Probability Theory 1. Definitions 2. Asymptotically free matrices 3. R-transform 4. Additive

More information

WHEN IS A MAXIMAL INVARIANT HYPOTHESIS TEST BETTER THAN THE GLRT? Hyung Soo Kim and Alfred O. Hero

WHEN IS A MAXIMAL INVARIANT HYPOTHESIS TEST BETTER THAN THE GLRT? Hyung Soo Kim and Alfred O. Hero WHEN IS A MAXIMAL INVARIANT HYPTHESIS TEST BETTER THAN THE GLRT? Hyung Soo Kim and Alfred. Hero Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, MI 489-222 ABSTRACT

More information

AN APPROACH TO PREVENT ADAPTIVE BEAMFORMERS FROM CANCELLING THE DESIRED SIGNAL. Tofigh Naghibi and Beat Pfister

AN APPROACH TO PREVENT ADAPTIVE BEAMFORMERS FROM CANCELLING THE DESIRED SIGNAL. Tofigh Naghibi and Beat Pfister AN APPROACH TO PREVENT ADAPTIVE BEAMFORMERS FROM CANCELLING THE DESIRED SIGNAL Tofigh Naghibi and Beat Pfister Speech Processing Group, Computer Engineering and Networks Lab., ETH Zurich, Switzerland {naghibi,pfister}@tik.ee.ethz.ch

More information

PERFORMANCE ANALYSIS OF COARRAY-BASED MUSIC AND THE CRAMÉR-RAO BOUND. Mianzhi Wang, Zhen Zhang, and Arye Nehorai

PERFORMANCE ANALYSIS OF COARRAY-BASED MUSIC AND THE CRAMÉR-RAO BOUND. Mianzhi Wang, Zhen Zhang, and Arye Nehorai PERFORANCE ANALYSIS OF COARRAY-BASED USIC AND THE CRAÉR-RAO BOUND ianzhi Wang, Zhen Zhang, and Arye Nehorai Preston. Green Department of Electrical and Systems Engineering, Washington University in St.

More information

ALARGE class of modern array processing techniques are

ALARGE class of modern array processing techniques are IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 6, JUNE 2004 1537 Detection of Distributed Sources Using Sensor Arrays Yuanwei Jin, Member, IEEE, and Benjamin Friedlander, Fellow, IEEE Abstract In

More information

EE 5407 Part II: Spatial Based Wireless Communications

EE 5407 Part II: Spatial Based Wireless Communications EE 5407 Part II: Spatial Based Wireless Communications Instructor: Prof. Rui Zhang E-mail: rzhang@i2r.a-star.edu.sg Website: http://www.ece.nus.edu.sg/stfpage/elezhang/ Lecture II: Receive Beamforming

More information

1.1 Basis of Statistical Decision Theory

1.1 Basis of Statistical Decision Theory ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 1: Introduction Lecturer: Yihong Wu Scribe: AmirEmad Ghassami, Jan 21, 2016 [Ed. Jan 31] Outline: Introduction of

More information

PASSIVE array signal processing has gained considerable

PASSIVE array signal processing has gained considerable IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 11, NOVEMBER 2002 2617 General Asymptotic Analysis of the Generalized Likelihood Ratio Test for a Gaussian Point Source Under Statistical or Spatial

More information

X. Zhang, G. Feng, and D. Xu Department of Electronic Engineering Nanjing University of Aeronautics & Astronautics Nanjing , China

X. Zhang, G. Feng, and D. Xu Department of Electronic Engineering Nanjing University of Aeronautics & Astronautics Nanjing , China Progress In Electromagnetics Research Letters, Vol. 13, 11 20, 2010 BLIND DIRECTION OF ANGLE AND TIME DELAY ESTIMATION ALGORITHM FOR UNIFORM LINEAR ARRAY EMPLOYING MULTI-INVARIANCE MUSIC X. Zhang, G. Feng,

More information

DOA AND POLARIZATION ACCURACY STUDY FOR AN IMPERFECT DUAL-POLARIZED ANTENNA ARRAY. Miriam Häge, Marc Oispuu

DOA AND POLARIZATION ACCURACY STUDY FOR AN IMPERFECT DUAL-POLARIZED ANTENNA ARRAY. Miriam Häge, Marc Oispuu 19th European Signal Processing Conference (EUSIPCO 211) Barcelona, Spain, August 29 - September 2, 211 DOA AND POLARIZATION ACCURACY STUDY FOR AN IMPERFECT DUAL-POLARIZED ANTENNA ARRAY Miriam Häge, Marc

More information

Azimuth-elevation direction finding, using one fourcomponent acoustic vector-sensor spread spatially along a straight line

Azimuth-elevation direction finding, using one fourcomponent acoustic vector-sensor spread spatially along a straight line Volume 23 http://acousticalsociety.org/ 169th Meeting of the Acoustical Society of America Pittsburgh, Pennsylvania 18-22 May 2015 Signal Processing in Acoustics: Paper 4aSP4 Azimuth-elevation direction

More information

Passive Sonar Detection Performance Prediction of a Moving Source in an Uncertain Environment

Passive Sonar Detection Performance Prediction of a Moving Source in an Uncertain Environment Acoustical Society of America Meeting Fall 2005 Passive Sonar Detection Performance Prediction of a Moving Source in an Uncertain Environment Vivek Varadarajan and Jeffrey Krolik Duke University Department

More information