Approximating a single component of the solution to a linear system

Size: px
Start display at page:

Download "Approximating a single component of the solution to a linear system"

Transcription

1 Approximating a single component of the solution to a linear system Christina E. Lee, Asuman Ozdaglar, Devavrat Shah celee@mit.edu asuman@mit.edu devavrat@mit.edu MIT LIDS 1

2 How do I compare to my competitors? Pagerank Bonacich Centrality Rank Centrality 2

3 Q: Do I need to compute the entire solution vector in order to get an estimate of my centrality and the centrality of my competitors? Eek, too expensive!! Stationary distribution of Markov chain Solution to Linear System Pagerank Bonacich Centrality Rank Centrality 3

4 Q: How do we efficiently compute the solution for a single coordinate within a large network? (1) Stationary distribution of Markov chain G = P (i.e. a stochastic matrix), z = 0 Sample short random walks, relies on sharp characterization of π i (2) Solution to Linear System of Equations If A positive definite, then we can choose G, z s.t. spectral radius G < 1, and x = Gx + z equivalent Expand computation in local neighborhood, use sparsity of G to bound size of neighborhood Would like a local method, i.e. cheaper than computing full vector. 4

5 Overview of Literature Probabilistic Monte Carlo Stationary Distribution of Markov Chain MCMC methods x = Gx + z, spectral radius(g) < 1 Ulam von Neumann Samples long random walks Good if G has good spectral properties Challenge is to control the variance of estimator Naturally parallelizable 5

6 Overview of Literature Probabilistic Monte Carlo Stationary Distribution of Markov Chain MCMC methods x = Gx + z, spectral radius(g) < 1 Ulam von Neumann Iterative Algebraic Power method Linear iterative update, Jacobi, Gauss-Seidel Iterative matrix-vector multiplication Good if G is sparse, and has good spectral properties Distributed, but synchronous Each multiplication O(n 2 ) 6

7 Overview of Literature Probabilistic Monte Carlo Stationary Distribution of Markov Chain MCMC methods x = Gx + z, spectral radius(g) < 1 Ulam von Neumann Iterative Algebraic Power method Linear iterative update, Jacobi, Gauss-Seidel Other SVD Gaussian elimination Not designed for single component computation Requires global computation What if we specifically thought about solving for a single component? 7

8 Probabilistic Monte Carlo Iterative Algebraic Contributions Stationary Distribution of Markov Chain MCMC methods Power method x = Gx + z, spectral radius(g) < 1 Ulam von Neumann New Monte Carlo method which uses Samples local truncated returning random walks Convergence is a function of mixing time Estimate always guaranteed to be an upper bound Suggest and analyze specific termination criteria which gives multiplicative error bounds for high π i, and thresholds low π i [L., Ozdaglar, Shah NIPS 2013] Linear iterative update, Jacobi, Gauss-Seidel Other SVD Gaussian elimination 8

9 Contributions Probabilistic Monte Carlo Stationary Distribution of Markov Chain MCMC methods x = Gx + z, spectral radius(g) < 1 Ulam von Neumann Iterative Algebraic Power method Linear iterative update, Jacobi, Gauss-Seidel Can be implemented asynchronously Maintains sparse intermediate vectors Provides invariant which track progress of method [L., Ozdaglar, Shah ArXiv ] Other SVD Gaussian elimination 9

10 Contributions Probabilistic Monte Carlo Iterative Algebraic Stationary Distribution of Markov Chain MCMC methods [JW03, H03, FRCS05, ALNO07, BCG10, BBCT12] Power method x = Gx + z, spectral radius(g) < 1 Ulam von Neumann Linear iterative update, Jacobi, Gauss-Seidel [ABCHMT07] Other SVD Gaussian elimination Both methods are inspired by previous algorithms designed for computing PageRank 10

11 Computing Stationary Probability Consider a Markov chain Finite state space Transition matrix Irreducible, positive recurrent Goal: compute stationary probability focusing on nodes with higher values 11

12 Node-Centric Monte Carlo Standard Monte Carlo method samples long random walks until it converges to stationarity ergodic theorem Our method is based on the property 12

13 Intuition Estimate: 13

14 Algorithm Gather Samples (i, N, θ) Sample N truncated return paths to i = fraction of samples truncated i i Path length Returned Keep walking exceeded to i! Q: How do we choose appropriate N, θ? 14

15 Increment k Algorithm Gather Samples (i, N (k), θ (k) ) Terminate if Satisfied Compute θ (k+1) and N (k+1) Double θ: θ (k+1) = 2*θ (k) Increase N such that by Chernoff s bound: 15

16 Convergence Q: Can we design a smart termination criteria? 16

17 Increment k Algorithm Gather Samples (i, N (k), θ (k) ) Terminate if Satisfied(Δ) Output current estimate if (a) Stationary prob. is small (b) Fraction of truncated samples is small Compute θ (k+1) and N (k+1) 17

18 Results for Termination Criteria Termination condition 1 guarantees π i small Termination condition 2 guarantees multiplicative error bound Dependent on algorithm parameters, not input Markov chain Results extend to countable state space Markov chains. 18

19 Simulation - Pagerank Stationary probability Random graph using configuration model and power law degree distribution Nodes sorted by stationary probability 19

20 Simulation - Pagerank Stationary probability Obtain close estimates for important nodes Random graph using configuration model and power law degree distribution Nodes sorted by stationary probability 20

21 Simulation - Pagerank corrects for the bias! Stationary probability Obtain close estimates for important nodes Random graph corrects using for configuration the Fraction bias! model and power law degree samples distribution not truncated Nodes sorted by stationary probability 21

22 Compute Stationary Probability by sampling local random walks Pagerank Rank Centrality 22

23 Q: Extend to solving linear system? Ulam von Neumann algorithm When spectral radius of G < 1, Importance sampling, sample walks and reweight unbiased estimator If, may not exist sampling matrix such that variance is finite Does not exploit sparsity Pagerank Bonacich Centrality 23

24 Contributions Probabilistic Monte Carlo Iterative Algebraic Stationary Distribution of Markov Chain MCMC methods [JW03, H03, FRCS05, ALNO07, BCG10, BBCT12] Power method x = Gx + z, spectral radius(g) < 1 Ulam von Neumann Linear iterative update, Jacobi, Gauss-Seidel [ABCHMT07] Other SVD Gaussian elimination 24

25 Synchronous Algorithm Standard stationary linear iterative method x (t) as dense as z Relies upon Neumann series representation Solving for a single coordinate Sparsity pattern is k-hop neighborhood of i 25

26 Synchronous Algorithm Initialize: Update step: Terminate if: Output: Sparsity of p (t) grows as breadth-first traversal 26

27 Synchronous - Guarantee If, then the algorithm terminates with (a) Estimate satisfying (b) Total number of multiplications bounded by where Independent of size of matrix 27

28 Synchronous to Asynchronous Initialize: Update step: Update for node u of r (t), Terminate if: Output: What if we implemented the updates asynchronously instead? 28

29 Asynchronous Algorithm Initialize: Update step: Choose coordinate u Terminate if: Output: Q: Does this converge? At what rate? Yes, if ρ(g) < 1 and u chosen infinitely often For all t, for any chosen sequence of u, 29

30 Asynchronous - Guarantee If, then the algorithm terminates with (a) Estimate satisfying (b) With probability > 1 - δ, total number of multiplications is bounded by where Independent of size of matrix 30

31 Compare different choices for Simulations Bonacich centrality in Erdos-Renyi graph: n=1000 and p=

32 Compute Stationary Probability by sampling local random walks New Monte Carlo method which uses Samples local truncated returning random walks Convergence is a function of mixing time Estimate always guaranteed to be an upper bound Suggest and analyze specific termination criteria which gives multiplicative error bounds for high π i, and thresholds low π i [L., Ozdaglar, Shah NIPS 2013] Compute Ax = b by expanding computation within neighborhood and utilizing sparsity Can be implemented asynchronously Maintains sparse intermediate vectors Provides invariant which track progress of method [L., Ozdaglar, Shah arxiv: ] 32

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018 Lab 8: Measuring Graph Centrality - PageRank Monday, November 5 CompSci 531, Fall 2018 Outline Measuring Graph Centrality: Motivation Random Walks, Markov Chains, and Stationarity Distributions Google

More information

Markov Chains, Random Walks on Graphs, and the Laplacian

Markov Chains, Random Walks on Graphs, and the Laplacian Markov Chains, Random Walks on Graphs, and the Laplacian CMPSCI 791BB: Advanced ML Sridhar Mahadevan Random Walks! There is significant interest in the problem of random walks! Markov chain analysis! Computer

More information

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford Probabilistic Model Checking Michaelmas Term 2011 Dr. Dave Parker Department of Computer Science University of Oxford Probabilistic model checking System Probabilistic model e.g. Markov chain Result 0.5

More information

Lecture 15: MCMC Sanjeev Arora Elad Hazan. COS 402 Machine Learning and Artificial Intelligence Fall 2016

Lecture 15: MCMC Sanjeev Arora Elad Hazan. COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 15: MCMC Sanjeev Arora Elad Hazan COS 402 Machine Learning and Artificial Intelligence Fall 2016 Course progress Learning from examples Definition + fundamental theorem of statistical learning,

More information

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015 Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in NUMERICAL ANALYSIS Spring 2015 Instructions: Do exactly two problems from Part A AND two

More information

Monte Carlo simulation inspired by computational optimization. Colin Fox Al Parker, John Bardsley MCQMC Feb 2012, Sydney

Monte Carlo simulation inspired by computational optimization. Colin Fox Al Parker, John Bardsley MCQMC Feb 2012, Sydney Monte Carlo simulation inspired by computational optimization Colin Fox fox@physics.otago.ac.nz Al Parker, John Bardsley MCQMC Feb 2012, Sydney Sampling from π(x) Consider : x is high-dimensional (10 4

More information

LINK ANALYSIS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

LINK ANALYSIS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS LINK ANALYSIS Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Retrieval models Retrieval evaluation Link analysis Models

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Robert Collins CSE586, PSU. Markov-Chain Monte Carlo

Robert Collins CSE586, PSU. Markov-Chain Monte Carlo Markov-Chain Monte Carlo References Problem Intuition: In high dimension problems, the Typical Set (volume of nonnegligable prob in state space) is a small fraction of the total space. High-Dimensional

More information

Iterative Methods. Splitting Methods

Iterative Methods. Splitting Methods Iterative Methods Splitting Methods 1 Direct Methods Solving Ax = b using direct methods. Gaussian elimination (using LU decomposition) Variants of LU, including Crout and Doolittle Other decomposition

More information

Probability & Computing

Probability & Computing Probability & Computing Stochastic Process time t {X t t 2 T } state space Ω X t 2 state x 2 discrete time: T is countable T = {0,, 2,...} discrete space: Ω is finite or countably infinite X 0,X,X 2,...

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Mark Schmidt University of British Columbia Winter 2018 Last Time: Monte Carlo Methods If we want to approximate expectations of random functions, E[g(x)] = g(x)p(x) or E[g(x)]

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC CompSci 590.02 Instructor: AshwinMachanavajjhala Lecture 4 : 590.02 Spring 13 1 Recap: Monte Carlo Method If U is a universe of items, and G is a subset satisfying some property,

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Mark Schmidt University of British Columbia Winter 2019 Last Time: Monte Carlo Methods If we want to approximate expectations of random functions, E[g(x)] = g(x)p(x) or E[g(x)]

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Peter Beerli October 10, 2005 [this chapter is highly influenced by chapter 1 in Markov chain Monte Carlo in Practice, eds Gilks W. R. et al. Chapman and Hall/CRC, 1996] 1 Short

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

Practical unbiased Monte Carlo for Uncertainty Quantification

Practical unbiased Monte Carlo for Uncertainty Quantification Practical unbiased Monte Carlo for Uncertainty Quantification Sergios Agapiou Department of Statistics, University of Warwick MiR@W day: Uncertainty in Complex Computer Models, 2nd February 2015, University

More information

Link Analysis. Stony Brook University CSE545, Fall 2016

Link Analysis. Stony Brook University CSE545, Fall 2016 Link Analysis Stony Brook University CSE545, Fall 2016 The Web, circa 1998 The Web, circa 1998 The Web, circa 1998 Match keywords, language (information retrieval) Explore directory The Web, circa 1998

More information

Homework 2 will be posted by tomorrow morning, due Friday, October 16 at 5 PM.

Homework 2 will be posted by tomorrow morning, due Friday, October 16 at 5 PM. Stationary Distributions: Application Monday, October 05, 2015 2:04 PM Homework 2 will be posted by tomorrow morning, due Friday, October 16 at 5 PM. To prepare to describe the conditions under which the

More information

16 : Markov Chain Monte Carlo (MCMC)

16 : Markov Chain Monte Carlo (MCMC) 10-708: Probabilistic Graphical Models 10-708, Spring 2014 16 : Markov Chain Monte Carlo MCMC Lecturer: Matthew Gormley Scribes: Yining Wang, Renato Negrinho 1 Sampling from low-dimensional distributions

More information

Web Ranking. Classification (manual, automatic) Link Analysis (today s lesson)

Web Ranking. Classification (manual, automatic) Link Analysis (today s lesson) Link Analysis Web Ranking Documents on the web are first ranked according to their relevance vrs the query Additional ranking methods are needed to cope with huge amount of information Additional ranking

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

Computational Economics and Finance

Computational Economics and Finance Computational Economics and Finance Part II: Linear Equations Spring 2016 Outline Back Substitution, LU and other decomposi- Direct methods: tions Error analysis and condition numbers Iterative methods:

More information

Stochastic processes. MAS275 Probability Modelling. Introduction and Markov chains. Continuous time. Markov property

Stochastic processes. MAS275 Probability Modelling. Introduction and Markov chains. Continuous time. Markov property Chapter 1: and Markov chains Stochastic processes We study stochastic processes, which are families of random variables describing the evolution of a quantity with time. In some situations, we can treat

More information

Link Analysis Ranking

Link Analysis Ranking Link Analysis Ranking How do search engines decide how to rank your query results? Guess why Google ranks the query results the way it does How would you do it? Naïve ranking of query results Given query

More information

A hybrid reordered Arnoldi method to accelerate PageRank computations

A hybrid reordered Arnoldi method to accelerate PageRank computations A hybrid reordered Arnoldi method to accelerate PageRank computations Danielle Parker Final Presentation Background Modeling the Web The Web The Graph (A) Ranks of Web pages v = v 1... Dominant Eigenvector

More information

LECTURE 15 Markov chain Monte Carlo

LECTURE 15 Markov chain Monte Carlo LECTURE 15 Markov chain Monte Carlo There are many settings when posterior computation is a challenge in that one does not have a closed form expression for the posterior distribution. Markov chain Monte

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning Bayesian Nets, MCMC, and more Marek Petrik 4/18/2017 Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10. Conditional Independence Independent

More information

Weakly interacting particle systems on graphs: from dense to sparse

Weakly interacting particle systems on graphs: from dense to sparse Weakly interacting particle systems on graphs: from dense to sparse Ruoyu Wu University of Michigan (Based on joint works with Daniel Lacker and Kavita Ramanan) USC Math Finance Colloquium October 29,

More information

Stochastic Processes. Theory for Applications. Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS

Stochastic Processes. Theory for Applications. Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS Stochastic Processes Theory for Applications Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv Swgg&sfzoMj ybr zmjfr%cforj owf fmdy xix Acknowledgements xxi 1 Introduction and review

More information

Online Social Networks and Media. Link Analysis and Web Search

Online Social Networks and Media. Link Analysis and Web Search Online Social Networks and Media Link Analysis and Web Search How to Organize the Web First try: Human curated Web directories Yahoo, DMOZ, LookSmart How to organize the web Second try: Web Search Information

More information

PageRank algorithm Hubs and Authorities. Data mining. Web Data Mining PageRank, Hubs and Authorities. University of Szeged.

PageRank algorithm Hubs and Authorities. Data mining. Web Data Mining PageRank, Hubs and Authorities. University of Szeged. Web Data Mining PageRank, University of Szeged Why ranking web pages is useful? We are starving for knowledge It earns Google a bunch of money. How? How does the Web looks like? Big strongly connected

More information

Learning Energy-Based Models of High-Dimensional Data

Learning Energy-Based Models of High-Dimensional Data Learning Energy-Based Models of High-Dimensional Data Geoffrey Hinton Max Welling Yee-Whye Teh Simon Osindero www.cs.toronto.edu/~hinton/energybasedmodelsweb.htm Discovering causal structure as a goal

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

Likelihood-Based Methods

Likelihood-Based Methods Likelihood-Based Methods Handbook of Spatial Statistics, Chapter 4 Susheela Singh September 22, 2016 OVERVIEW INTRODUCTION MAXIMUM LIKELIHOOD ESTIMATION (ML) RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION (REML)

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

Robert Collins CSE586, PSU Intro to Sampling Methods

Robert Collins CSE586, PSU Intro to Sampling Methods Robert Collins Intro to Sampling Methods CSE586 Computer Vision II Penn State Univ Robert Collins A Brief Overview of Sampling Monte Carlo Integration Sampling and Expected Values Inverse Transform Sampling

More information

DATA MINING LECTURE 13. Link Analysis Ranking PageRank -- Random walks HITS

DATA MINING LECTURE 13. Link Analysis Ranking PageRank -- Random walks HITS DATA MINING LECTURE 3 Link Analysis Ranking PageRank -- Random walks HITS How to organize the web First try: Manually curated Web Directories How to organize the web Second try: Web Search Information

More information

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION EDMOND CHOW AND AFTAB PATEL Abstract. This paper presents a new fine-grained parallel algorithm for computing an incomplete LU factorization. All nonzeros

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos Contents Markov Chain Monte Carlo Methods Sampling Rejection Importance Hastings-Metropolis Gibbs Markov Chains

More information

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn Today s class Linear Algebraic Equations LU Decomposition 1 Linear Algebraic Equations Gaussian Elimination works well for solving linear systems of the form: AX = B What if you have to solve the linear

More information

Lecture 6: Markov Chain Monte Carlo

Lecture 6: Markov Chain Monte Carlo Lecture 6: Markov Chain Monte Carlo D. Jason Koskinen koskinen@nbi.ku.dk Photo by Howard Jackman University of Copenhagen Advanced Methods in Applied Statistics Feb - Apr 2016 Niels Bohr Institute 2 Outline

More information

Hidden Markov Models. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 19 Apr 2012

Hidden Markov Models. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 19 Apr 2012 Hidden Markov Models Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 19 Apr 2012 Many slides courtesy of Dan Klein, Stuart Russell, or

More information

Graph Partitioning Using Random Walks

Graph Partitioning Using Random Walks Graph Partitioning Using Random Walks A Convex Optimization Perspective Lorenzo Orecchia Computer Science Why Spectral Algorithms for Graph Problems in practice? Simple to implement Can exploit very efficient

More information

Preserving sparsity in dynamic network computations

Preserving sparsity in dynamic network computations GoBack Preserving sparsity in dynamic network computations Francesca Arrigo and Desmond J. Higham Network Science meets Matrix Functions Oxford, Sept. 1, 2016 This work was funded by the Engineering and

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

Iterative solvers for linear equations

Iterative solvers for linear equations Spectral Graph Theory Lecture 23 Iterative solvers for linear equations Daniel A. Spielman November 26, 2018 23.1 Overview In this and the next lecture, I will discuss iterative algorithms for solving

More information

Markov Model. Model representing the different resident states of a system, and the transitions between the different states

Markov Model. Model representing the different resident states of a system, and the transitions between the different states Markov Model Model representing the different resident states of a system, and the transitions between the different states (applicable to repairable, as well as non-repairable systems) System behavior

More information

Model Counting for Logical Theories

Model Counting for Logical Theories Model Counting for Logical Theories Wednesday Dmitry Chistikov Rayna Dimitrova Department of Computer Science University of Oxford, UK Max Planck Institute for Software Systems (MPI-SWS) Kaiserslautern

More information

Examples of Countable State Markov Chains Thursday, October 16, :12 PM

Examples of Countable State Markov Chains Thursday, October 16, :12 PM stochnotes101608 Page 1 Examples of Countable State Markov Chains Thursday, October 16, 2008 12:12 PM Homework 2 solutions will be posted later today. A couple of quick examples. Queueing model (without

More information

Lecture: Local Spectral Methods (2 of 4) 19 Computing spectral ranking with the push procedure

Lecture: Local Spectral Methods (2 of 4) 19 Computing spectral ranking with the push procedure Stat260/CS294: Spectral Graph Methods Lecture 19-04/02/2015 Lecture: Local Spectral Methods (2 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Quantized Average Consensus on Gossip Digraphs

Quantized Average Consensus on Gossip Digraphs Quantized Average Consensus on Gossip Digraphs Hideaki Ishii Tokyo Institute of Technology Joint work with Kai Cai Workshop on Uncertain Dynamical Systems Udine, Italy August 25th, 2011 Multi-Agent Consensus

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

Markov Processes Hamid R. Rabiee

Markov Processes Hamid R. Rabiee Markov Processes Hamid R. Rabiee Overview Markov Property Markov Chains Definition Stationary Property Paths in Markov Chains Classification of States Steady States in MCs. 2 Markov Property A discrete

More information

MULTILEVEL ADAPTIVE AGGREGATION FOR MARKOV CHAINS, WITH APPLICATION TO WEB RANKING

MULTILEVEL ADAPTIVE AGGREGATION FOR MARKOV CHAINS, WITH APPLICATION TO WEB RANKING MULTILEVEL ADAPTIVE AGGREGATION FOR MARKOV CHAINS, WITH APPLICATION TO WEB RANKING H. DE STERCK, THOMAS A. MANTEUFFEL, STEPHEN F. MCCORMICK, QUOC NGUYEN, AND JOHN RUGE Abstract. A multilevel adaptive aggregation

More information

Quantifying Uncertainty

Quantifying Uncertainty Sai Ravela M. I. T Last Updated: Spring 2013 1 Markov Chain Monte Carlo Monte Carlo sampling made for large scale problems via Markov Chains Monte Carlo Sampling Rejection Sampling Importance Sampling

More information

Lect4: Exact Sampling Techniques and MCMC Convergence Analysis

Lect4: Exact Sampling Techniques and MCMC Convergence Analysis Lect4: Exact Sampling Techniques and MCMC Convergence Analysis. Exact sampling. Convergence analysis of MCMC. First-hit time analysis for MCMC--ways to analyze the proposals. Outline of the Module Definitions

More information

Dimension reduction for semidefinite programming

Dimension reduction for semidefinite programming 1 / 22 Dimension reduction for semidefinite programming Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

More information

0.1 Naive formulation of PageRank

0.1 Naive formulation of PageRank PageRank is a ranking system designed to find the best pages on the web. A webpage is considered good if it is endorsed (i.e. linked to) by other good webpages. The more webpages link to it, and the more

More information

Markov chain Monte Carlo

Markov chain Monte Carlo 1 / 26 Markov chain Monte Carlo Timothy Hanson 1 and Alejandro Jara 2 1 Division of Biostatistics, University of Minnesota, USA 2 Department of Statistics, Universidad de Concepción, Chile IAP-Workshop

More information

Finite-Horizon Statistics for Markov chains

Finite-Horizon Statistics for Markov chains Analyzing FSDT Markov chains Friday, September 30, 2011 2:03 PM Simulating FSDT Markov chains, as we have said is very straightforward, either by using probability transition matrix or stochastic update

More information

Stat. 758: Computation and Programming

Stat. 758: Computation and Programming Stat. 758: Computation and Programming Eric B. Laber Department of Statistics, North Carolina State University Lecture 4a Sept. 10, 2015 Ambition is like a frog sitting on a Venus flytrap. The flytrap

More information

STAT 425: Introduction to Bayesian Analysis

STAT 425: Introduction to Bayesian Analysis STAT 425: Introduction to Bayesian Analysis Marina Vannucci Rice University, USA Fall 2017 Marina Vannucci (Rice University, USA) Bayesian Analysis (Part 2) Fall 2017 1 / 19 Part 2: Markov chain Monte

More information

Gradient Estimation for Attractor Networks

Gradient Estimation for Attractor Networks Gradient Estimation for Attractor Networks Thomas Flynn Department of Computer Science Graduate Center of CUNY July 2017 1 Outline Motivations Deterministic attractor networks Stochastic attractor networks

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Computing Stationary Distribution Locally

Computing Stationary Distribution Locally Computing Stationary Distribution Locally by Christina Lee B.S. in Computer Science, California Institute of Technology, 2011 Submitted to the Department of Electrical Engineering and Computer Science

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Bias-Variance Error Bounds for Temporal Difference Updates

Bias-Variance Error Bounds for Temporal Difference Updates Bias-Variance Bounds for Temporal Difference Updates Michael Kearns AT&T Labs mkearns@research.att.com Satinder Singh AT&T Labs baveja@research.att.com Abstract We give the first rigorous upper bounds

More information

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION EDMOND CHOW AND AFTAB PATEL Abstract. This paper presents a new fine-grained parallel algorithm for computing an incomplete LU factorization. All nonzeros

More information

Approximate Inference

Approximate Inference Approximate Inference Simulation has a name: sampling Sampling is a hot topic in machine learning, and it s really simple Basic idea: Draw N samples from a sampling distribution S Compute an approximate

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

Message-Passing Algorithms for GMRFs and Non-Linear Optimization

Message-Passing Algorithms for GMRFs and Non-Linear Optimization Message-Passing Algorithms for GMRFs and Non-Linear Optimization Jason Johnson Joint Work with Dmitry Malioutov, Venkat Chandrasekaran and Alan Willsky Stochastic Systems Group, MIT NIPS Workshop: Approximate

More information

Random Walks A&T and F&S 3.1.2

Random Walks A&T and F&S 3.1.2 Random Walks A&T 110-123 and F&S 3.1.2 As we explained last time, it is very difficult to sample directly a general probability distribution. - If we sample from another distribution, the overlap will

More information

MSc MT15. Further Statistical Methods: MCMC. Lecture 5-6: Markov chains; Metropolis Hastings MCMC. Notes and Practicals available at

MSc MT15. Further Statistical Methods: MCMC. Lecture 5-6: Markov chains; Metropolis Hastings MCMC. Notes and Practicals available at MSc MT15. Further Statistical Methods: MCMC Lecture 5-6: Markov chains; Metropolis Hastings MCMC Notes and Practicals available at www.stats.ox.ac.uk\ nicholls\mscmcmc15 Markov chain Monte Carlo Methods

More information

APPLIED NUMERICAL LINEAR ALGEBRA

APPLIED NUMERICAL LINEAR ALGEBRA APPLIED NUMERICAL LINEAR ALGEBRA James W. Demmel University of California Berkeley, California Society for Industrial and Applied Mathematics Philadelphia Contents Preface 1 Introduction 1 1.1 Basic Notation

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 13: Learning in Gaussian Graphical Models, Non-Gaussian Inference, Monte Carlo Methods Some figures

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Approximate Counting and Markov Chain Monte Carlo

Approximate Counting and Markov Chain Monte Carlo Approximate Counting and Markov Chain Monte Carlo A Randomized Approach Arindam Pal Department of Computer Science and Engineering Indian Institute of Technology Delhi March 18, 2011 April 8, 2011 Arindam

More information

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation CS234: RL Emma Brunskill Winter 2018 Material builds on structure from David SIlver s Lecture 4: Model-Free

More information

A quick introduction to Markov chains and Markov chain Monte Carlo (revised version)

A quick introduction to Markov chains and Markov chain Monte Carlo (revised version) A quick introduction to Markov chains and Markov chain Monte Carlo (revised version) Rasmus Waagepetersen Institute of Mathematical Sciences Aalborg University 1 Introduction These notes are intended to

More information

http://www.math.uah.edu/stat/markov/.xhtml 1 of 9 7/16/2009 7:20 AM Virtual Laboratories > 16. Markov Chains > 1 2 3 4 5 6 7 8 9 10 11 12 1. A Markov process is a random process in which the future is

More information

Introduction to Search Engine Technology Introduction to Link Structure Analysis. Ronny Lempel Yahoo Labs, Haifa

Introduction to Search Engine Technology Introduction to Link Structure Analysis. Ronny Lempel Yahoo Labs, Haifa Introduction to Search Engine Technology Introduction to Link Structure Analysis Ronny Lempel Yahoo Labs, Haifa Outline Anchor-text indexing Mathematical Background Motivation for link structure analysis

More information

Why should you care about the solution strategies?

Why should you care about the solution strategies? Optimization Why should you care about the solution strategies? Understanding the optimization approaches behind the algorithms makes you more effectively choose which algorithm to run Understanding the

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

Lesson Plan. AM 121: Introduction to Optimization Models and Methods. Lecture 17: Markov Chains. Yiling Chen SEAS. Stochastic process Markov Chains

Lesson Plan. AM 121: Introduction to Optimization Models and Methods. Lecture 17: Markov Chains. Yiling Chen SEAS. Stochastic process Markov Chains AM : Introduction to Optimization Models and Methods Lecture 7: Markov Chains Yiling Chen SEAS Lesson Plan Stochastic process Markov Chains n-step probabilities Communicating states, irreducibility Recurrent

More information

Markov Chains Handout for Stat 110

Markov Chains Handout for Stat 110 Markov Chains Handout for Stat 0 Prof. Joe Blitzstein (Harvard Statistics Department) Introduction Markov chains were first introduced in 906 by Andrey Markov, with the goal of showing that the Law of

More information

16 : Approximate Inference: Markov Chain Monte Carlo

16 : Approximate Inference: Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models 10-708, Spring 2017 16 : Approximate Inference: Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Yuan Yang, Chao-Ming Yen 1 Introduction As the target distribution

More information

Chapter 7. Markov chain background. 7.1 Finite state space

Chapter 7. Markov chain background. 7.1 Finite state space Chapter 7 Markov chain background A stochastic process is a family of random variables {X t } indexed by a varaible t which we will think of as time. Time can be discrete or continuous. We will only consider

More information

5. Solving the Bellman Equation

5. Solving the Bellman Equation 5. Solving the Bellman Equation In the next two lectures, we will look at several methods to solve Bellman s Equation (BE) for the stochastic shortest path problem: Value Iteration, Policy Iteration and

More information

Complex Social System, Elections. Introduction to Network Analysis 1

Complex Social System, Elections. Introduction to Network Analysis 1 Complex Social System, Elections Introduction to Network Analysis 1 Complex Social System, Network I person A voted for B A is more central than B if more people voted for A In-degree centrality index

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 6: Numerical Linear Algebra: Applications in Machine Learning Cho-Jui Hsieh UC Davis April 27, 2017 Principal Component Analysis Principal

More information

Online Social Networks and Media. Link Analysis and Web Search

Online Social Networks and Media. Link Analysis and Web Search Online Social Networks and Media Link Analysis and Web Search How to Organize the Web First try: Human curated Web directories Yahoo, DMOZ, LookSmart How to organize the web Second try: Web Search Information

More information

Birth-death chain models (countable state)

Birth-death chain models (countable state) Countable State Birth-Death Chains and Branching Processes Tuesday, March 25, 2014 1:59 PM Homework 3 posted, due Friday, April 18. Birth-death chain models (countable state) S = We'll characterize the

More information

Applicability and Robustness of Monte Carlo Algorithms for Very Large Linear Algebra Problems. Ivan Dimov

Applicability and Robustness of Monte Carlo Algorithms for Very Large Linear Algebra Problems. Ivan Dimov Applicability and Robustness of Monte Carlo Algorithms for Very Large Linear Algebra Problems Ivan Dimov ACET, The University of Reading and IPP - BAS, Sofia Outline Motivation Markov Chain Monte Carlo

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices)

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Chapter 14 SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Today we continue the topic of low-dimensional approximation to datasets and matrices. Last time we saw the singular

More information