Quantile Regression Methods for Reference Growth Charts

Size: px
Start display at page:

Download "Quantile Regression Methods for Reference Growth Charts"

Transcription

1 Quantile Regression Methods for Reference Growth Charts 1 Roger Koenker University of Illinois at Urbana-Champaign ASA Workshop on Nonparametric Statistics Texas A&M, January 15, 2005 Based on joint work with: Ying Wei, Columbia Biostatistics Anneli Pere, Children s Hospital, Helsinki Xuming He, UIUC.

2 Quetelet s (1871) Growth Chart 2

3 Penalized Maximum Likelihood Estimation 3 References: Cole (1988), Cole and Green (1992), and Carey(2002) Data: {Y i (t i,j ) : j = 1,..., J i, i = 1,..., n.} Model: Z(t) = (Y (t)/µ(t))λ(t) 1 λ(t)σ(t) N (0, 1) Estimation: max l(λ, µ, σ) ν λ (λ (t)) 2 dt ν µ (µ (t)) 2 dt ν σ (σ (t)) 2 dt, l(λ, µ, σ) = n [λ(t i ) log(y (t i )/µ(t i )) log σ(t i ) 1 2 Z2 (t i )], i=1

4 Quantiles as Argmins 4 The τ th quantile of a random variable Y having distribution function F is: α(τ) = argmin ρ τ (y α)df (y) where ρ τ (u) = u (τ I(u < 0)).

5 Quantiles as Argmins 4 The τ th quantile of a random variable Y having distribution function F is: α(τ) = argmin ρ τ (y α)df (y) where ρ τ (u) = u (τ I(u < 0)). The τth sample quantile is thus: ˆα(τ) = argmin ρ τ (y α)df n (y) n = argmin n 1 ρ τ (y i α) i=1

6 Quantile Regression 5 The τth conditional quantile function of Y X = x is g(τ x) = argmin g G ρ τ (y g(x))df A natural estimator of g(τ x) is ĝ(τ x) = argmin g G n i=1 ρ τ (y i g(x i )) with G chosen as a finite dimensional linear space, g(x) = p ϕ j (x)β j. j=1

7 Choice of Basis 6 There are many possible choices for the basis expansion {ϕ j }. We opt for the (very conventional) cubic B-spline functions: Age In R quantile regression models can be estimated with the command fit <- rq(y bs(x,knots=knots),tau = 1:9/10) Similar functionality in SAS is coming real soon now.

8 Data 7 Longitudinal measurements on height for 2514 Finnish children,

9 Data 7 Longitudinal measurements on height for 2514 Finnish children, 1143 boys, 1162 girls all healthy, full-term, singleton births,

10 Data 7 Longitudinal measurements on height for 2514 Finnish children, 1143 boys, 1162 girls all healthy, full-term, singleton births, About 20 measurements per child,

11 Data 7 Longitudinal measurements on height for 2514 Finnish children, 1143 boys, 1162 girls all healthy, full-term, singleton births, About 20 measurements per child, Two cohorts: 1096 born between , 1209 born between

12 Data 7 Longitudinal measurements on height for 2514 Finnish children, 1143 boys, 1162 girls all healthy, full-term, singleton births, About 20 measurements per child, Two cohorts: 1096 born between , 1209 born between Sample constitutes 0.5 percent of Finns born in these periods.

13 Unconditional Reference Quantiles Boys Years Box Cox Parameter Functions λ(t) Height (cm) µ(t) LMS edf = (7,10,7) LMS edf = (22,25,22) QR edf = 16 σ(t) Age (years) Age (years)

14 9

15 Unconditional Reference Quantiles Boys 2 18 Years Box Cox Parameter Functions λ(t) µ(t) Height (cm) LMS edf = (7,10,7) σ(t) LMS edf = (22,25,22) QR edf = Age (years) Age (years)

16 11

17 Unconditional Reference Quantiles Girls Years Box Cox Parameter Functions λ(t) µ(t) 90 Height (cm) LMS edf = (7,10,7) σ(t) LMS edf = (22,25,22) QR edf = Age (years) Age (years)

18 13

19 14 Unconditional Reference Quantiles Girls 2 18 Years Box Cox Parameter Functions λ(t) Height (cm) µ(t) LMS edf = (7,10,7) σ(t) LMS edf = (22,25,22) QR edf = Age (years) Age (years)

20 Growth Velocity Curves Boys years Girls years τ Boys 2 18 years Girls 2 18 years LMS (7,10,7) LMS (22,25,22) QR Velocity (cm/year) Age (years)

21 16 Estimated Age Specific Density Functions Age = 0.5 Age = 1 Age = 1.5 N= 235 N= 204 N= Boys Data QR LMS N= 215 N= 191 N= Girls Height (cm)

22 17

23 18 Height Density at Age Boys Pooled Born in 1960 Born in Girls Height(cm)

24 Conditioning on Prior Growth 19 It is often important to condition not only on age, but also on prior growth and possibly on other covariates. Autoregressive models are natural, but complicated due to the irregular spacing of typical longitudinal measurements. Data: {Y i (t i,j ) : j = 1,..., J i, i = 1,..., n.} Model: Q Yi (t i,j )(τ t i,j, Y i (t i,j 1 ), x i ) = g τ (t i,j ) + [α(τ) + β(τ)(t i,j t i,j 1 )]Y i (t i,j 1 ) + x i γ(τ).

25 AR Components of the Infant Conditional Growth Model 20 τ Boys Girls ˆα(τ) ˆβ(τ) ˆγ(τ) ˆα(τ) ˆβ(τ) ˆγ(τ) (0.020) (0.011) (0.011) (0.024) (0.011) (0.020) (0.019) (0.025) (0.029) (0.024) (0.024) (0.007) (0.006) (0.009) (0.009) (0.016) (0.016) (0.007) (0.009) (0.013) (0.017) (0.017) (0.018) (0.022) (0.021) (0.027) (0.027) (0.030) (0.038) (0.007) (0.006) (0.008) (0.012) (0.015) (0.024) (0.010) (0.009) (0.008) (0.009) (0.015) (0.018) (0.027)

26 AR Components of the Childrens Conditional Growth Model 21 τ Boys Girls ˆα(τ) ˆβ(τ) ˆγ(τ) ˆα(τ) ˆβ(τ) ˆγ(τ) (0.010) (0.002) (0.013) (0.012) (0.002) (0.005) (0.006) (0.004) (0.004) (0.009) (0.014) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.007) (0.006) (0.004) (0.006) (0.009) (0.015) (0.006) (0.005) (0.007) (0.007) (0.008) (0.013) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.015) (0.007) (0.006) (0.006) (0.006) (0.012) (0.018)

27 Transformation to Normality 22 A presumed advantage of univariate (age-specific) transformation to normality is that once observations are transformed to univariate Z-scores they are automatically prepared to longitudinal autoregression: Z t = α 0 + α 1 Z t 1 + U t Premise: Marginal Normality Joint Normality

28 Transformation to Normality 22 A presumed advantage of univariate (age-specific) transformation to normality is that once observations are transformed to univariate Z-scores they are automatically prepared to longitudinal autoregression: Z t = α 0 + α 1 Z t 1 + U t Premise: Marginal Normality Joint Normality Of course we know it isn t true, but we also think we know that counterexamples are pathological, and don t occur in nature.

29 Boys age 6.5 Theoretical Quantiles Sample Quantiles Boys age 6 Theoretical Quantiles Sample Quantiles Boys AR(1) residuals Theoretical Quantiles Sample Quantiles Girls age 6.5 Theoretical Quantiles Sample Quantiles Girls age 6 Theoretical Quantiles Sample Quantiles Girls AR(1) residuals Theoretical Quantiles Sample Quantiles

30 24

31 25 Height (cm) Subject 89 Subject Age (years)

32 26 1 Subject 89 Subject Quantile Unconditional Conditional Observed Height (cm) Height (cm) 0

33 Conclusions 27 Nonparametric quantile regression using B-splines offers a reasonable alternative to parametric methods for constructing reference growth charts.

34 Conclusions 27 Nonparametric quantile regression using B-splines offers a reasonable alternative to parametric methods for constructing reference growth charts. The flexibility of quantile regression methods exposes features of the data that are not easily observable with conventional parametric methods. Even for height data.

35 Conclusions 27 Nonparametric quantile regression using B-splines offers a reasonable alternative to parametric methods for constructing reference growth charts. The flexibility of quantile regression methods exposes features of the data that are not easily observable with conventional parametric methods. Even for height data. Longitudinal data can be easily accomodated into the quantile regression framework by adding covariates, including the use of autoregressive effects for unequally spaced measurements.

ECAS Summer Course. Quantile Regression for Longitudinal Data. Roger Koenker University of Illinois at Urbana-Champaign

ECAS Summer Course. Quantile Regression for Longitudinal Data. Roger Koenker University of Illinois at Urbana-Champaign ECAS Summer Course 1 Quantile Regression for Longitudinal Data Roger Koenker University of Illinois at Urbana-Champaign La Roche-en-Ardennes: September 2005 Part I: Penalty Methods for Random Effects Part

More information

Nonparametric Quantile Regression

Nonparametric Quantile Regression Nonparametric Quantile Regression Roger Koenker CEMMAP and University of Illinois, Urbana-Champaign LSE: 17 May 2011 Roger Koenker (CEMMAP & UIUC) Nonparametric QR LSE: 17.5.2010 1 / 25 In the Beginning,...

More information

Regression based principal component analysis for sparse functional data with applications to screening pubertal growth paths.

Regression based principal component analysis for sparse functional data with applications to screening pubertal growth paths. Regression based principal component analysis for sparse functional data with applications to screening pubertal growth paths Wenfei Zhang Submitted in partial fulfillment of the requirements for the degree

More information

Mixed Effects Multivariate Adaptive Splines Model for the Analysis of Longitudinal and Growth Curve Data. Heping Zhang.

Mixed Effects Multivariate Adaptive Splines Model for the Analysis of Longitudinal and Growth Curve Data. Heping Zhang. Mixed Effects Multivariate Adaptive Splines Model for the Analysis of Longitudinal and Growth Curve Data Heping Zhang Yale University NIA Workshop on Statistical Methods for Longitudinal Data on Aging

More information

Reference growth charts for Saudi Arabian children and adolescents

Reference growth charts for Saudi Arabian children and adolescents Chapter 7 Reference growth charts for Saudi Arabian children and adolescents P. J. Foster and T. Kecojević Abstract The purpose of this study is to provide Saudi Arabian population reference growth standards

More information

A DYNAMIC QUANTILE REGRESSION TRANSFORMATION MODEL FOR LONGITUDINAL DATA

A DYNAMIC QUANTILE REGRESSION TRANSFORMATION MODEL FOR LONGITUDINAL DATA Statistica Sinica 19 (2009), 1137-1153 A DYNAMIC QUANTILE REGRESSION TRANSFORMATION MODEL FOR LONGITUDINAL DATA Yunming Mu and Ying Wei Portland State University and Columbia University Abstract: This

More information

Quantile Regression: Inference

Quantile Regression: Inference Quantile Regression: Inference Roger Koenker University of Illinois, Urbana-Champaign Aarhus: 21 June 2010 Roger Koenker (UIUC) Introduction Aarhus: 21.6.2010 1 / 28 Inference for Quantile Regression Asymptotics

More information

Reference Growth Charts for Saudi Arabian Children and Adolescents

Reference Growth Charts for Saudi Arabian Children and Adolescents Reference Growth Charts for Saudi Arabian Children and Adolescents P. J. Foster & T. Kecojević First version: 3 September 2009 Research Report No. 12, 2009, Probability and Statistics Group School of Mathematics,

More information

Quantile Regression for Longitudinal Data

Quantile Regression for Longitudinal Data Quantile Regression for Longitudinal Data Roger Koenker CEMMAP and University of Illinois, Urbana-Champaign LSE: 17 May 2011 Roger Koenker (CEMMAP & UIUC) Quantile Regression for Longitudinal Data LSE:

More information

Beyond the Average Man: The Art of Unlikelihood

Beyond the Average Man: The Art of Unlikelihood Beyond the Average Man: The Art of Unlikelihood Roger Koenker University of Illinois, Urbana-Champaign FEMES/Taipei: July, 2007 Roger Koenker (U. of Illinois) Beyond the Average Man FEMES/Taipei: July,

More information

Quantile Regression for Dynamic Panel Data

Quantile Regression for Dynamic Panel Data Quantile Regression for Dynamic Panel Data Antonio Galvao 1 1 Department of Economics University of Illinois NASM Econometric Society 2008 June 22nd 2008 Panel Data Panel data allows the possibility of

More information

Quantile Regression: Inference

Quantile Regression: Inference Quantile Regression: Inference Roger Koenker University of Illinois, Urbana-Champaign 5th RMetrics Workshop, Meielisalp: 28 June 2011 Roger Koenker (UIUC) Introduction Meielisalp: 28.6.2011 1 / 29 Inference

More information

ECAS Summer Course. Fundamentals of Quantile Regression Roger Koenker University of Illinois at Urbana-Champaign

ECAS Summer Course. Fundamentals of Quantile Regression Roger Koenker University of Illinois at Urbana-Champaign ECAS Summer Course 1 Fundamentals of Quantile Regression Roger Koenker University of Illinois at Urbana-Champaign La Roche-en-Ardennes: September, 2005 An Outline 2 Beyond Average Treatment Effects Computation

More information

Recovering Copulae from Conditional Quantiles

Recovering Copulae from Conditional Quantiles Wolfgang K. Härdle Chen Huang Alexander Ristig Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Center for Applied Statistics and Economics HumboldtUniversität zu Berlin http://lvb.wiwi.hu-berlin.de

More information

Quantile Regression: Past and Prospects

Quantile Regression: Past and Prospects Quantile Regression: Past and Prospects Roger Koenker University of Illinois, Urbana-Champaign Northern Illinois University: 31 October 2014 Roger Koenker (UIUC) Quantile Regression NIU: 31.10.2014 1 /

More information

Quantile Regression: 40 Years On

Quantile Regression: 40 Years On Quantile Regression: 40 Years On Roger Koenker Department of Economics, University of Illinois, Urbana, IL 61801, USA; email: rkoenker@uiuc.edu xxxxxx 0000. 00:1 25 Copyright c 0000 by Annual Reviews.

More information

Lecture 22 Survival Analysis: An Introduction

Lecture 22 Survival Analysis: An Introduction University of Illinois Department of Economics Spring 2017 Econ 574 Roger Koenker Lecture 22 Survival Analysis: An Introduction There is considerable interest among economists in models of durations, which

More information

Quantile regression 40 years on

Quantile regression 40 years on Quantile regression 40 years on Roger Koenker The Institute for Fiscal Studies Department of Economics, UCL cemmap working paper CWP36/17 QUANTILE REGRESSION 40 YEARS ON ROGER KOENKER Abstract. Since Quetelet

More information

Motivational Example

Motivational Example Motivational Example Data: Observational longitudinal study of obesity from birth to adulthood. Overall Goal: Build age-, gender-, height-specific growth charts (under 3 year) to diagnose growth abnomalities.

More information

mboost - Componentwise Boosting for Generalised Regression Models

mboost - Componentwise Boosting for Generalised Regression Models mboost - Componentwise Boosting for Generalised Regression Models Thomas Kneib & Torsten Hothorn Department of Statistics Ludwig-Maximilians-University Munich 13.8.2008 Boosting in a Nutshell Boosting

More information

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models Supporting Information for Estimating restricted mean treatment effects with stacked survival models Andrew Wey, David Vock, John Connett, and Kyle Rudser Section 1 presents several extensions to the simulation

More information

Lecture 5 Models and methods for recurrent event data

Lecture 5 Models and methods for recurrent event data Lecture 5 Models and methods for recurrent event data Recurrent and multiple events are commonly encountered in longitudinal studies. In this chapter we consider ordered recurrent and multiple events.

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 24 Paper 153 A Note on Empirical Likelihood Inference of Residual Life Regression Ying Qing Chen Yichuan

More information

Modeling Real Estate Data using Quantile Regression

Modeling Real Estate Data using Quantile Regression Modeling Real Estate Data using Semiparametric Quantile Regression Department of Statistics University of Innsbruck September 9th, 2011 Overview 1 Application: 2 3 4 Hedonic regression data for house prices

More information

Issues on quantile autoregression

Issues on quantile autoregression Issues on quantile autoregression Jianqing Fan and Yingying Fan We congratulate Koenker and Xiao on their interesting and important contribution to the quantile autoregression (QAR). The paper provides

More information

INFERENCE ON QUANTILE REGRESSION FOR HETEROSCEDASTIC MIXED MODELS

INFERENCE ON QUANTILE REGRESSION FOR HETEROSCEDASTIC MIXED MODELS Statistica Sinica 19 (2009), 1247-1261 INFERENCE ON QUANTILE REGRESSION FOR HETEROSCEDASTIC MIXED MODELS Huixia Judy Wang North Carolina State University Abstract: This paper develops two weighted quantile

More information

Dynamic Disease Screening

Dynamic Disease Screening Dynamic Disease Screening Peihua Qiu pqiu@ufl.edu Department of Biostatistics University of Florida December 10, 2014, NCTS Lecture, Taiwan p.1/25 Motivating Example SHARe Framingham Heart Study of NHLBI.

More information

Quantile regression in varying coefficient models

Quantile regression in varying coefficient models Quantile regression in varying coefficient models Irène Gijbels KU Leuven Department of Mathematics and Leuven Statistics Research Centre Belgium July 6, 2017 Irène Gijbels (KU Leuven) ICORS 2017, Wollongong,

More information

Asymmetric least squares estimation and testing

Asymmetric least squares estimation and testing Asymmetric least squares estimation and testing Whitney Newey and James Powell Princeton University and University of Wisconsin-Madison January 27, 2012 Outline ALS estimators Large sample properties Asymptotic

More information

Quantile Regression for Panel/Longitudinal Data

Quantile Regression for Panel/Longitudinal Data Quantile Regression for Panel/Longitudinal Data Roger Koenker University of Illinois, Urbana-Champaign University of Minho 12-14 June 2017 y it 0 5 10 15 20 25 i = 1 i = 2 i = 3 0 2 4 6 8 Roger Koenker

More information

Recap. HW due Thursday by 5 pm Next HW coming on Thursday Logistic regression: Pr(G = k X) linear on the logit scale Linear discriminant analysis:

Recap. HW due Thursday by 5 pm Next HW coming on Thursday Logistic regression: Pr(G = k X) linear on the logit scale Linear discriminant analysis: 1 / 23 Recap HW due Thursday by 5 pm Next HW coming on Thursday Logistic regression: Pr(G = k X) linear on the logit scale Linear discriminant analysis: Pr(G = k X) Pr(X G = k)pr(g = k) Theory: LDA more

More information

Generalized additive modelling of hydrological sample extremes

Generalized additive modelling of hydrological sample extremes Generalized additive modelling of hydrological sample extremes Valérie Chavez-Demoulin 1 Joint work with A.C. Davison (EPFL) and Marius Hofert (ETHZ) 1 Faculty of Business and Economics, University of

More information

The Faroese Cohort 2. Structural Equation Models Latent growth models. Multiple indicator growth modeling. Response profiles. Number of children: 182

The Faroese Cohort 2. Structural Equation Models Latent growth models. Multiple indicator growth modeling. Response profiles. Number of children: 182 The Faroese Cohort 2 Structural Equation Models Latent growth models Exposure: Blood Hg Hair Hg Age: Birth 3.5 years 4.5 years 5.5 years 7.5 years Number of children: 182 Multiple indicator growth modeling

More information

Impact Evaluation Technical Workshop:

Impact Evaluation Technical Workshop: Impact Evaluation Technical Workshop: Asian Development Bank Sept 1 3, 2014 Manila, Philippines Session 19(b) Quantile Treatment Effects I. Quantile Treatment Effects Most of the evaluation literature

More information

Tutorial 6: Tutorial on Translating between GLIMMPSE Power Analysis and Data Analysis. Acknowledgements:

Tutorial 6: Tutorial on Translating between GLIMMPSE Power Analysis and Data Analysis. Acknowledgements: Tutorial 6: Tutorial on Translating between GLIMMPSE Power Analysis and Data Analysis Anna E. Barón, Keith E. Muller, Sarah M. Kreidler, and Deborah H. Glueck Acknowledgements: The project was supported

More information

APPLICATIONS OF QUANTILE REGRESSION TO ESTIMATION AND DETECTION OF SOME TAIL CHARACTERISTICS YA-HUI HSU DISSERTATION

APPLICATIONS OF QUANTILE REGRESSION TO ESTIMATION AND DETECTION OF SOME TAIL CHARACTERISTICS YA-HUI HSU DISSERTATION c 21 Ya-Hui Hsu APPLICATIONS OF QUANTILE REGRESSION TO ESTIMATION AND DETECTION OF SOME TAIL CHARACTERISTICS BY YA-HUI HSU DISSERTATION Submitted in partial fulfillment of the requirements for the degree

More information

Approximation of Functions

Approximation of Functions Approximation of Functions Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Nov 7th, 217 C. Hurtado (UIUC - Economics) Numerical Methods On the Agenda

More information

An Introduction to Nonstationary Time Series Analysis

An Introduction to Nonstationary Time Series Analysis An Introduction to Analysis Ting Zhang 1 tingz@bu.edu Department of Mathematics and Statistics Boston University August 15, 2016 Boston University/Keio University Workshop 2016 A Presentation Friendly

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Modelling geoadditive survival data

Modelling geoadditive survival data Modelling geoadditive survival data Thomas Kneib & Ludwig Fahrmeir Department of Statistics, Ludwig-Maximilians-University Munich 1. Leukemia survival data 2. Structured hazard regression 3. Mixed model

More information

Remedial Measures Wrap-Up and Transformations Box Cox

Remedial Measures Wrap-Up and Transformations Box Cox Remedial Measures Wrap-Up and Transformations Box Cox Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 1, Slide 1 Last Class Graphical procedures for determining appropriateness

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Linear Mixed Models for Longitudinal Data Yan Lu April, 2018, week 15 1 / 38 Data structure t1 t2 tn i 1st subject y 11 y 12 y 1n1 Experimental 2nd subject

More information

Asymptotic standard errors of MLE

Asymptotic standard errors of MLE Asymptotic standard errors of MLE Suppose, in the previous example of Carbon and Nitrogen in soil data, that we get the parameter estimates For maximum likelihood estimation, we can use Hessian matrix

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Longitudinal Data?

When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Longitudinal Data? When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Longitudinal Data? Kosuke Imai Princeton University Asian Political Methodology Conference University of Sydney Joint

More information

Quantile Processes for Semi and Nonparametric Regression

Quantile Processes for Semi and Nonparametric Regression Quantile Processes for Semi and Nonparametric Regression Shih-Kang Chao Department of Statistics Purdue University IMS-APRM 2016 A joint work with Stanislav Volgushev and Guang Cheng Quantile Response

More information

arxiv: v2 [stat.me] 4 Jun 2016

arxiv: v2 [stat.me] 4 Jun 2016 Variable Selection for Additive Partial Linear Quantile Regression with Missing Covariates 1 Variable Selection for Additive Partial Linear Quantile Regression with Missing Covariates Ben Sherwood arxiv:1510.00094v2

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility

Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility American Economic Review: Papers & Proceedings 2016, 106(5): 400 404 http://dx.doi.org/10.1257/aer.p20161082 Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility By Gary Chamberlain*

More information

Mixed models with correlated measurement errors

Mixed models with correlated measurement errors Mixed models with correlated measurement errors Rasmus Waagepetersen October 9, 2018 Example from Department of Health Technology 25 subjects where exposed to electric pulses of 11 different durations

More information

Quantile Regression: An Introductory Overview

Quantile Regression: An Introductory Overview Quantile Regression: An Introductory Overview Roger Koenker U. of Illinois Xuming He U. of Michigan Lan Wang U. of Minnesota JSM Baltimore: 2 August 2017 Koenker, He and Wang Quantile Regression JSM Baltimore:

More information

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data 1 Part III. Hypothesis Testing III.1. Log-rank Test for Right-censored Failure Time Data Consider a survival study consisting of n independent subjects from p different populations with survival functions

More information

Modern Statistical Process Control Charts and Their Applications in Analyzing Big Data

Modern Statistical Process Control Charts and Their Applications in Analyzing Big Data Modern Statistical Process Control Charts and Their Applications in Analyzing Big Data (Part III: Profile Monitoring and Dynamic Screening) Peihua Qiu pqiu@ufl.edu Department of Biostatistics University

More information

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models Thomas Kneib Institute of Statistics and Econometrics Georg-August-University Göttingen Department of Statistics

More information

,..., θ(2),..., θ(n)

,..., θ(2),..., θ(n) Likelihoods for Multivariate Binary Data Log-Linear Model We have 2 n 1 distinct probabilities, but we wish to consider formulations that allow more parsimonious descriptions as a function of covariates.

More information

Rejoinder. 1 Phase I and Phase II Profile Monitoring. Peihua Qiu 1, Changliang Zou 2 and Zhaojun Wang 2

Rejoinder. 1 Phase I and Phase II Profile Monitoring. Peihua Qiu 1, Changliang Zou 2 and Zhaojun Wang 2 Rejoinder Peihua Qiu 1, Changliang Zou 2 and Zhaojun Wang 2 1 School of Statistics, University of Minnesota 2 LPMC and Department of Statistics, Nankai University, China We thank the editor Professor David

More information

Quantile Regression Computation: From the Inside and the Outside

Quantile Regression Computation: From the Inside and the Outside Quantile Regression Computation: From the Inside and the Outside Roger Koenker University of Illinois, Urbana-Champaign UI Statistics: 24 May 2008 Slides will be available on my webpages: click Software.

More information

CTDL-Positive Stable Frailty Model

CTDL-Positive Stable Frailty Model CTDL-Positive Stable Frailty Model M. Blagojevic 1, G. MacKenzie 2 1 Department of Mathematics, Keele University, Staffordshire ST5 5BG,UK and 2 Centre of Biostatistics, University of Limerick, Ireland

More information

Quantile Regression Computation: From Outside, Inside and the Proximal

Quantile Regression Computation: From Outside, Inside and the Proximal Quantile Regression Computation: From Outside, Inside and the Proximal Roger Koenker University of Illinois, Urbana-Champaign University of Minho 12-14 June 2017 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0

More information

Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data

Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data Xuelin Huang Department of Biostatistics M. D. Anderson Cancer Center The University of Texas Joint Work with Jing Ning, Sangbum

More information

Introduction to Regression

Introduction to Regression Introduction to Regression p. 1/97 Introduction to Regression Chad Schafer cschafer@stat.cmu.edu Carnegie Mellon University Introduction to Regression p. 1/97 Acknowledgement Larry Wasserman, All of Nonparametric

More information

Introduction: Nonparametric series quantile regression

Introduction: Nonparametric series quantile regression CONTRIBUTED RESEARCH ARTICLES 370 quantreg.nonpar: An R Package for Performing Nonparametric Series Quantile Regression by Michael Lipsitz, Alexandre Belloni, Victor Chernozhukov, and Iván Fernández-Val

More information

Unit Root and Cointegration

Unit Root and Cointegration Unit Root and Cointegration Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt@illinois.edu Oct 7th, 016 C. Hurtado (UIUC - Economics) Applied Econometrics On the

More information

Sample Size and Power Considerations for Longitudinal Studies

Sample Size and Power Considerations for Longitudinal Studies Sample Size and Power Considerations for Longitudinal Studies Outline Quantities required to determine the sample size in longitudinal studies Review of type I error, type II error, and power For continuous

More information

Bayesian Multivariate Logistic Regression

Bayesian Multivariate Logistic Regression Bayesian Multivariate Logistic Regression Sean M. O Brien and David B. Dunson Biostatistics Branch National Institute of Environmental Health Sciences Research Triangle Park, NC 1 Goals Brief review of

More information

Models for Clustered Data

Models for Clustered Data Models for Clustered Data Edps/Psych/Soc 589 Carolyn J Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Spring 2019 Outline Notation NELS88 data Fixed Effects ANOVA

More information

Models for Clustered Data

Models for Clustered Data Models for Clustered Data Edps/Psych/Stat 587 Carolyn J Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Fall 2017 Outline Notation NELS88 data Fixed Effects ANOVA

More information

Penalty Methods for Bivariate Smoothing and Chicago Land Values

Penalty Methods for Bivariate Smoothing and Chicago Land Values Penalty Methods for Bivariate Smoothing and Chicago Land Values Roger Koenker University of Illinois, Urbana-Champaign Ivan Mizera University of Alberta, Edmonton Northwestern University: October 2001

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Spatial omain Hierarchical Modelling for Univariate Spatial ata Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

More information

Likelihood ratio testing for zero variance components in linear mixed models

Likelihood ratio testing for zero variance components in linear mixed models Likelihood ratio testing for zero variance components in linear mixed models Sonja Greven 1,3, Ciprian Crainiceanu 2, Annette Peters 3 and Helmut Küchenhoff 1 1 Department of Statistics, LMU Munich University,

More information

Longitudinal Modeling with Logistic Regression

Longitudinal Modeling with Logistic Regression Newsom 1 Longitudinal Modeling with Logistic Regression Longitudinal designs involve repeated measurements of the same individuals over time There are two general classes of analyses that correspond to

More information

Modelling the Covariance

Modelling the Covariance Modelling the Covariance Jamie Monogan Washington University in St Louis February 9, 2010 Jamie Monogan (WUStL) Modelling the Covariance February 9, 2010 1 / 13 Objectives By the end of this meeting, participants

More information

STAT 420: Methods of Applied Statistics

STAT 420: Methods of Applied Statistics STAT 420: Methods of Applied Statistics Model Diagnostics Transformation Shiwei Lan, Ph.D. Course website: http://shiwei.stat.illinois.edu/lectures/stat420.html August 15, 2018 Department

More information

Course topics (tentative) The role of random effects

Course topics (tentative) The role of random effects Course topics (tentative) random effects linear mixed models analysis of variance frequentist likelihood-based inference (MLE and REML) prediction Bayesian inference The role of random effects Rasmus Waagepetersen

More information

Lecture 7 Autoregressive Processes in Space

Lecture 7 Autoregressive Processes in Space Lecture 7 Autoregressive Processes in Space Dennis Sun Stanford University Stats 253 July 8, 2015 1 Last Time 2 Autoregressive Processes in Space 3 Estimating Parameters 4 Testing for Spatial Autocorrelation

More information

A Generalized Global Rank Test for Multiple, Possibly Censored, Outcomes

A Generalized Global Rank Test for Multiple, Possibly Censored, Outcomes A Generalized Global Rank Test for Multiple, Possibly Censored, Outcomes Ritesh Ramchandani Harvard School of Public Health August 5, 2014 Ritesh Ramchandani (HSPH) Global Rank Test for Multiple Outcomes

More information

Estimation and Inference of Quantile Regression. for Survival Data under Biased Sampling

Estimation and Inference of Quantile Regression. for Survival Data under Biased Sampling Estimation and Inference of Quantile Regression for Survival Data under Biased Sampling Supplementary Materials: Proofs of the Main Results S1 Verification of the weight function v i (t) for the lengthbiased

More information

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models Thomas Kneib Department of Mathematics Carl von Ossietzky University Oldenburg Sonja Greven Department of

More information

PEP-PMMA Technical Note Series (PTN 01) Percentile Weighed Regression

PEP-PMMA Technical Note Series (PTN 01) Percentile Weighed Regression PEP-PMMA Technical Note Series (PTN 01) Percentile Weighed Regression Araar Abdelkrim University of Laval, aabd@ecn.ulaval.ca May 29, 2016 Abstract - In this brief note, we review the quantile and unconditional

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Introduction to Functional Data Analysis A CSCU Workshop. Giles Hooker Biological Statistics and Computational Biology

Introduction to Functional Data Analysis A CSCU Workshop. Giles Hooker Biological Statistics and Computational Biology Introduction to Functional Data Analysis A CSCU Workshop Giles Hooker Biological Statistics and Computational Biology gjh27@cornell.edu www.bscb.cornell.edu/ hooker/fdaworkshop 1 / 26 Agenda What is Functional

More information

Which Quantile is the Most Informative? Maximum Likelihood, Maximum Entropy and Quantile Regression

Which Quantile is the Most Informative? Maximum Likelihood, Maximum Entropy and Quantile Regression Which Quantile is the Most Informative? Maximum Likelihood, Maximum Entropy and Quantile Regression Anil K. Bera Antonio F. Galvao Jr. Gabriel V. Montes-Rojas Sung Y. Park Abstract This paper studies the

More information

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Christopher Paciorek, Department of Statistics, University

More information

7.1 The Hazard and Survival Functions

7.1 The Hazard and Survival Functions Chapter 7 Survival Models Our final chapter concerns models for the analysis of data which have three main characteristics: (1) the dependent variable or response is the waiting time until the occurrence

More information

Nuisance Parameter Estimation in Survival Models

Nuisance Parameter Estimation in Survival Models Nuisance Parameter Estimation in Survival Models A Dissertation submitted to the faculty of the University of Minnesota by Andrew Wey In partial fulfillment of the requirements for the degree of Doctor

More information

Outline. Topic 20 - Diagnostics and Remedies. Residuals. Overview. Diagnostics Plots Residual checks Formal Tests. STAT Fall 2013

Outline. Topic 20 - Diagnostics and Remedies. Residuals. Overview. Diagnostics Plots Residual checks Formal Tests. STAT Fall 2013 Topic 20 - Diagnostics and Remedies - Fall 2013 Diagnostics Plots Residual checks Formal Tests Remedial Measures Outline Topic 20 2 General assumptions Overview Normally distributed error terms Independent

More information

Combining Model and Test Data for Optimal Determination of Percentiles and Allowables: CVaR Regression Approach, Part I

Combining Model and Test Data for Optimal Determination of Percentiles and Allowables: CVaR Regression Approach, Part I 9 Combining Model and Test Data for Optimal Determination of Percentiles and Allowables: CVaR Regression Approach, Part I Stan Uryasev 1 and A. Alexandre Trindade 2 1 American Optimal Decisions, Inc. and

More information

From Practical Data Analysis with JMP, Second Edition. Full book available for purchase here. About This Book... xiii About The Author...

From Practical Data Analysis with JMP, Second Edition. Full book available for purchase here. About This Book... xiii About The Author... From Practical Data Analysis with JMP, Second Edition. Full book available for purchase here. Contents About This Book... xiii About The Author... xxiii Chapter 1 Getting Started: Data Analysis with JMP...

More information

Supplementary Material to General Functional Concurrent Model

Supplementary Material to General Functional Concurrent Model Supplementary Material to General Functional Concurrent Model Janet S. Kim Arnab Maity Ana-Maria Staicu June 17, 2016 This Supplementary Material contains six sections. Appendix A discusses modifications

More information

Introduction to Regression

Introduction to Regression Introduction to Regression David E Jones (slides mostly by Chad M Schafer) June 1, 2016 1 / 102 Outline General Concepts of Regression, Bias-Variance Tradeoff Linear Regression Nonparametric Procedures

More information

Introduction to Regression

Introduction to Regression Introduction to Regression Chad M. Schafer May 20, 2015 Outline General Concepts of Regression, Bias-Variance Tradeoff Linear Regression Nonparametric Procedures Cross Validation Local Polynomial Regression

More information

INFERENCE APPROACHES FOR INSTRUMENTAL VARIABLE QUANTILE REGRESSION. 1. Introduction

INFERENCE APPROACHES FOR INSTRUMENTAL VARIABLE QUANTILE REGRESSION. 1. Introduction INFERENCE APPROACHES FOR INSTRUMENTAL VARIABLE QUANTILE REGRESSION VICTOR CHERNOZHUKOV CHRISTIAN HANSEN MICHAEL JANSSON Abstract. We consider asymptotic and finite-sample confidence bounds in instrumental

More information

Quantile Regression for Residual Life and Empirical Likelihood

Quantile Regression for Residual Life and Empirical Likelihood Quantile Regression for Residual Life and Empirical Likelihood Mai Zhou email: mai@ms.uky.edu Department of Statistics, University of Kentucky, Lexington, KY 40506-0027, USA Jong-Hyeon Jeong email: jeong@nsabp.pitt.edu

More information

Analysis of Longitudinal Data: Comparison between PROC GLM and PROC MIXED.

Analysis of Longitudinal Data: Comparison between PROC GLM and PROC MIXED. Analysis of Longitudinal Data: Comparison between PROC GLM and PROC MIXED. Maribeth Johnson, Medical College of Georgia, Augusta, GA ABSTRACT Longitudinal data refers to datasets with multiple measurements

More information

Gaussian Copula Regression Application

Gaussian Copula Regression Application International Mathematical Forum, Vol. 11, 2016, no. 22, 1053-1065 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2016.68118 Gaussian Copula Regression Application Samia A. Adham Department

More information

Outline. Overview of Issues. Spatial Regression. Luc Anselin

Outline. Overview of Issues. Spatial Regression. Luc Anselin Spatial Regression Luc Anselin University of Illinois, Urbana-Champaign http://www.spacestat.com Outline Overview of Issues Spatial Regression Specifications Space-Time Models Spatial Latent Variable Models

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information