requests/sec. The total channel load is requests/sec. Using slot as the time unit, the total channel load is 50 ( ) = 1

Size: px
Start display at page:

Download "requests/sec. The total channel load is requests/sec. Using slot as the time unit, the total channel load is 50 ( ) = 1"

Transcription

1 Prof. X. Shen E&CE 70 : Examples #2 Problem Consider the following Aloha systems. (a) A group of N users share a 56 kbps pure Aloha channel. Each user generates at a Passion rate of one 000-bit packet every 00 sec, even if the previous one has not yet been sent. What is the maximum value of N? (b) Ten thousand airline reservation stations are competing for the use of a single slotted Aloha channel. The average station makes 8 requests/hour. A slot is 25 µsec. What is the approximate total channel load? (a) With pure ALOHA the maximum usable bandwidth is kbps. Each user requires bps, so N users. 8 (b)the average station makes requests/sec. The total channel load is 0000 requests/sec. Using slot as the time unit, the total channel load is 50 ( ) Problem requests/slot. A large population of Aloha users manages to generate 50 requests/sec, including both new requests and retransmissions. Time is slotted in units of 40 msec. (a) What is the chance of success on the first attempt? (b) What is the probability of exactly k collisions and then a success? (c) What is the expected number of transmission attempts needed? The channel traffic load rate G 50 ( ) 2 requests/slot. In one slot, k requests happen with the probability π k Gk e G. (a) First attempt succeed with the probability Pr[no other request (new or retransmission) occurs within the first slot] π 0 e G e (b) If assuming that things happening in different slots are independent, the probability is ( e G ) k e G k (c) The expected number of transmission needed E traffic load throughput G S G Ge G eg 7.4 Problem 3 A small slotted Aloha system has only k customers, each of whom has a probability /k of transmitting during any slot (both new and retransmission). What is the channel throughput as a function of k? Evaluate this expression numerically for k 2, 3, 4, 5, 0, and lim k A packet transmission succeed in a slot when only one customer attempt to use it and the others not. The probability is C k ( k )k k ( k )k, just meaning the channel throughput is S ( k )k Page of 5

2 Prof. X. Shen E&CE 70 : Examples #2 packets/slot. When k 2, 3, 4, 5, 0, the throughput S are respectively , ,0.429, , Considering the situation lim k + lim ( k + k )k lim ( k + k )k lim ( k + k ) lim ( + x + x ) x lim ( k + k ) lim x + ( + lim ( x )x k + k ) e (x k) Note: Here we can see, the average load in this system is G k k requests/slot. When the population number goes to, the throughput can be calculated by Poisson approximation Ge G e S. C k k, lim x + ( + x )x e Problem 4 Consider a slotted Aloha system with m user terminals, each with an infinitely large buffer. Each terminal generates traffic at a Poisson rate of λ/m. All new arrivals are allowed to enter the system, but are considered as backlogged immediately rather than transmitted in the next slot. While a terminal contains one or more packets, it independently transmits one packet in each slot, with probability q r. Assume that any given transmission is successful with probability p. (a) Show that the mean time from the beginning of a backlogged slot until completion of the first success by a given terminal is /, and that the second moment of this time is (2 )/( ) 2. (b) The assumption of a constant success probability allows each terminal to be considered independently. The results of part (a) can be used as the service time. Show that the mean transit delay is T q r p( ρ) + 2p 2( ρ), ρ λ m (a) Let X be the time in slots from the beginning of a backlogged slot until the completion of the first success at a given terminal. Let q q r p and note that q is the probability that the backlogged terminal will be successful at any given slot. Thus, P {X i} q( q) i ; i (X i means in the first i- slots, the transmission fails, in the ith slot, the transmission is successful.) We see X is geometric distributed, so the mean value E{X} q q r p Also the variance of X is σx 2 q q, therefore the second moment of X can be calculated as 2 E{X 2 } σ 2 X + E 2 {X} q q 2 + q 2 2 q q 2 2 ( ) 2 Page 2 of 5

3 Prof. X. Shen E&CE 70 : Examples #2 (b) Since each terminal is allowed to be considered independently, and we know the arrival is Poisson with rate λ/m, each terminal can be viewed as a M/G/ queue. The first and second moment of service time X have been found in part (a). Thus we can get the mean response time of the M/G/ queue: T µ + ρ/µ( + C2 b ), 2( ρ) where, µ is the mean service time, namely, as calculated in part (a). The utilization factor ρ λ m λ m. Cb 2 σ2 b b σ2 2 X E 2 {X} q. Using all these parameters, we can get: T + ρ(2 ) 2 ( ρ) 2 ρ 2 ( ρ) However, here we have a slotted Aloha system, only at the beginning of each slot, a packet can be served. If a packet arrives within a slot, it has to wait for service until the beginning of next slot. Since the arriving time of a packet is uniformly distributed during a slot, averagely, a packet has to wait /2 slot to get service. Counting in this delay, the mean transit delay should be: T T + /2 2 ρ 2 ( ρ) + ρ 2 ( ρ) ( ρ) + 2ρ 2( ρ) Problem 5 Assume that the number of packets n in a slotted Aloha system at a given time is a Poisson random variable with mean n. Suppose each packet is independently transmitted in the next slot with probability /n. (a) Find the probability that the slot is idle. (b) Show that the posterior probability that there were n packets in the system, given an idle slot, is Poisson with mean n. (c) Find the probability that the slot is successful. (a) Given k packets in the system, with each packet independently transmitted in a slot with probability /n, the probability of an idle slot, P {I k} is ( n )k. The joint probability of an idle slot and k packets in the system is then P {I, k} P {I k}p {k} ( n )k e n n k e n (n ) k e n (n ) k P {I} P {I, k} e k0 k0 The probability that the slot is idle P {I} e. (b) Using the result above, we can find P {n I}, the posteriori probability that there were n packets in the system, given an idle slot. P {n I} P {n, I} P {I} e n (n ) n e n! e (n ) (n ) n n! Page 3 of 5

4 Prof. X. Shen E&CE 70 : Examples #2 Thus, this probability is Poisson with mean n Note: Posterior probability is the conditional probability that is assigned after the relevant evidence is taken account. P (A B) P (A B) P (B) P (B A)P (A) P (B) P (A B) P (A B)P (B) P (B A)P (A) (c) Similarly as part (a), we can first find the joint probability of success and k in the system, namely P {S, k}, then calculate the successful probability P {S}. P {S, k} P {S k}p {k} k( n )k n e n n k P {S} P {S, k} k k e n(n )k (k )! e e n(n )k (k )! Problem 6 Consider an unslotted CSMA/CD system in which the propagation delay is negligible compared to the time β required for a user terminal to detect that the channel is idle or busy. Assume that each packet requires one time unit for transmission. Assume further that β time units after either a successful transmission or a collision ends, all backlogged terminals attempt transmission after a random delay and that the composite process of initiation times is Poisson of rate G (up to time β after the first initiation). For simplicity, assume that each collision lasts for β time units. (a) Find the probability that the first transmission initiation after a given idle detection is successful. (b) Find the mean time from one idle detection to the next. (c) Find the throughput (for the given assumption). (d) Optimize the throughput by selecting value of G. (a) The first transmission after a given detection will be successful if no other transmission starts within the next β time units. Since the process of initiation is Poisson with rate G, the probability of this is P succ e βg (P (k initiation) (βg)k e βg, k 0,, 2...) (b) The mean time to the first initiation after an idle detection is /G (note that all terminals detect the channel as being idle at the same time, and the inter-arrival time of a Poisson process is exponential distributed). If this first initiation is successful, (transmission time)+β(for channel detection) are required until the next idle detection; if the initiation is unsuccessful, β(collision time)+ β(for channel detection) time units are required. Thus, E{time between idle detects} G + ( + β)e βg + 2β( e βg ) (c) The throughput can be found by calculating the fraction of time the channel is successfully used. Since the time can be divided to idle detection to idle detection cycles. In such one cycle, time that a channel is used without collisions is P succ e βg. Thus, S e βg G + ( + β)e βg + 2β( e βg ) (G + 2β)e βg + ( β) Page 4 of 5

5 Prof. X. Shen E&CE 70 : Examples #2 (d) To simplify the calculation, we can maximize the throughput S by minimizing /S. Taking the derivative of /S with respect to G and setting it equal to 0, we find that the minimum of /S occurs at βg /2. Submitting this into the expression for S, we get S + β(4 e ) β CSMA CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) is the channel access mechanism used by most wireless LANs in the ISM bands. A channel access mechanism is the part of the protocol which specifies how the node uses the medium: when to listen, when to transmit... CSMA/CA is derived from CSMA/CD (Collision Detection), which is the base of Ethernet. The main difference is the collision avoidance: on a wire, the transceiver has the ability to listen while transmitting and so to detect collisions (with a wire all transmissions have approximately the same strength). But, even if a radio node could listen on the channel while transmitting, the strength of its own transmissions would mask all other signals on the air. So, the protocol can t directly detect collisions like with Ethernet and only tries to avoid them. Under CSMA/CD, when a station has data to send, it first listens to determine whether any other station on the network is occupying the medium. If the channel is busy, the station will wait until it becomes idle before transmitting data. Since it is possible for two stations to listen at the same time and discover an idle channel, it is also possible that two stations could then transmit at the same time. When this occurs a collision will take place, and then a jamming signal is sent throughout the network in order to notify all stations of the collision. The stations will then wait for a random period of time before re-transmitting their respective frames. Currently the 802. DCF resolves collision through multiple levels of CWs and backoff stages. In the initial backoff stage (stage 0), the value of CW has the minimal value CWmin. After each collision, the CW will be doubled until reaching the maximum CWmax. After each successful transmission, the backoff will resume with initial stage (0) and the CW will be reset to CWmin regardless the network condition or the number of competing nodes. By resetting the CW to CWmin, DCF increases the probability of collision and frequent retransmissions remain high until the CW attains appropriate values. This is obviously no optimal since high collision rate in the network means poor network exploitation. On the other hand, the intrinsic backoff randomness makes it difficult to instantaneously absorb an increasing number of flows. The backoff process is basically intended to reduce the collision rate when using a higher contention stage. Page 5 of 5

Wireless Internet Exercises

Wireless Internet Exercises Wireless Internet Exercises Prof. Alessandro Redondi 2018-05-28 1 WLAN 1.1 Exercise 1 A Wi-Fi network has the following features: Physical layer transmission rate: 54 Mbps MAC layer header: 28 bytes MAC

More information

Chapter 5. Elementary Performance Analysis

Chapter 5. Elementary Performance Analysis Chapter 5 Elementary Performance Analysis 1 5.0 2 5.1 Ref: Mischa Schwartz Telecommunication Networks Addison-Wesley publishing company 1988 3 4 p t T m T P(k)= 5 6 5.2 : arrived rate : service rate 7

More information

Multiaccess Communication

Multiaccess Communication Information Networks p. 1 Multiaccess Communication Satellite systems, radio networks (WLAN), Ethernet segment The received signal is the sum of attenuated transmitted signals from a set of other nodes,

More information

Analysis of random-access MAC schemes

Analysis of random-access MAC schemes Analysis of random-access MA schemes M. Veeraraghavan and Tao i ast updated: Sept. 203. Slotted Aloha [4] First-order analysis: if we assume there are infinite number of nodes, the number of new arrivals

More information

Random Access Protocols ALOHA

Random Access Protocols ALOHA Random Access Protocols ALOHA 1 ALOHA Invented by N. Abramson in 1970-Pure ALOHA Uncontrolled users (no coordination among users) Same packet (frame) size Instant feedback Large (~ infinite) population

More information

16:330:543 Communication Networks I Midterm Exam November 7, 2005

16:330:543 Communication Networks I Midterm Exam November 7, 2005 l l l l l l l l 1 3 np n = ρ 1 ρ = λ µ λ. n= T = E[N] = 1 λ µ λ = 1 µ 1. 16:33:543 Communication Networks I Midterm Exam November 7, 5 You have 16 minutes to complete this four problem exam. If you know

More information

Multiaccess Problem. How to let distributed users (efficiently) share a single broadcast channel? How to form a queue for distributed users?

Multiaccess Problem. How to let distributed users (efficiently) share a single broadcast channel? How to form a queue for distributed users? Multiaccess Problem How to let distributed users (efficiently) share a single broadcast channel? How to form a queue for distributed users? z The protocols we used to solve this multiaccess problem are

More information

Lan Performance LAB Ethernet : CSMA/CD TOKEN RING: TOKEN

Lan Performance LAB Ethernet : CSMA/CD TOKEN RING: TOKEN Lan Performance LAB Ethernet : CSMA/CD TOKEN RING: TOKEN Ethernet Frame Format 7 b y te s 1 b y te 2 o r 6 b y te s 2 o r 6 b y te s 2 b y te s 4-1 5 0 0 b y te s 4 b y te s P r e a m b le S ta r t F r

More information

Solutions to COMP9334 Week 8 Sample Problems

Solutions to COMP9334 Week 8 Sample Problems Solutions to COMP9334 Week 8 Sample Problems Problem 1: Customers arrive at a grocery store s checkout counter according to a Poisson process with rate 1 per minute. Each customer carries a number of items

More information

Power Laws in ALOHA Systems

Power Laws in ALOHA Systems Power Laws in ALOHA Systems E6083: lecture 8 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA predrag@ee.columbia.edu March 6, 2007 Jelenković (Columbia University)

More information

Giuseppe Bianchi, Ilenia Tinnirello

Giuseppe Bianchi, Ilenia Tinnirello Capacity of WLAN Networs Summary Per-node throughput in case of: Full connected networs each node sees all the others Generic networ topology not all nodes are visible Performance Analysis of single-hop

More information

Performance analysis of IEEE WLANs with saturated and unsaturated sources

Performance analysis of IEEE WLANs with saturated and unsaturated sources Performance analysis of IEEE 82.11 WLANs with saturated and unsaturated sources Suong H. Nguyen, Hai L. Vu, Lachlan L. H. Andrew Centre for Advanced Internet Architectures, Technical Report 11811A Swinburne

More information

Information in Aloha Networks

Information in Aloha Networks Achieving Proportional Fairness using Local Information in Aloha Networks Koushik Kar, Saswati Sarkar, Leandros Tassiulas Abstract We address the problem of attaining proportionally fair rates using Aloha

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modeling and Simulation NETW 707 Lecture 6 ARQ Modeling: Modeling Error/Flow Control Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Data Link Layer Data Link Layer provides

More information

Markov Chain Model for ALOHA protocol

Markov Chain Model for ALOHA protocol Markov Chain Model for ALOHA protocol Laila Daniel and Krishnan Narayanan April 22, 2012 Outline of the talk A Markov chain (MC) model for Slotted ALOHA Basic properties of Discrete-time Markov Chain Stability

More information

Mathematical Analysis of IEEE Energy Efficiency

Mathematical Analysis of IEEE Energy Efficiency Information Engineering Department University of Padova Mathematical Analysis of IEEE 802.11 Energy Efficiency A. Zanella and F. De Pellegrini IEEE WPMC 2004 Padova, Sept. 12 15, 2004 A. Zanella and F.

More information

ANALYSIS OF THE RTS/CTS MULTIPLE ACCESS SCHEME WITH CAPTURE EFFECT

ANALYSIS OF THE RTS/CTS MULTIPLE ACCESS SCHEME WITH CAPTURE EFFECT ANALYSIS OF THE RTS/CTS MULTIPLE ACCESS SCHEME WITH CAPTURE EFFECT Chin Keong Ho Eindhoven University of Technology Eindhoven, The Netherlands Jean-Paul M. G. Linnartz Philips Research Laboratories Eindhoven,

More information

Computer Networks More general queuing systems

Computer Networks More general queuing systems Computer Networks More general queuing systems Saad Mneimneh Computer Science Hunter College of CUNY New York M/G/ Introduction We now consider a queuing system where the customer service times have a

More information

WiFi MAC Models David Malone

WiFi MAC Models David Malone WiFi MAC Models David Malone November 26, MACSI Hamilton Institute, NUIM, Ireland Talk outline Introducing the 82.11 CSMA/CA MAC. Finite load 82.11 model and its predictions. Issues with standard 82.11,

More information

Giuseppe Bianchi, Ilenia Tinnirello

Giuseppe Bianchi, Ilenia Tinnirello Capacity of WLAN Networs Summary Ł Ł Ł Ł Arbitrary networ capacity [Gupta & Kumar The Capacity of Wireless Networs ] Ł! Ł "! Receiver Model Ł Ł # Ł $%&% Ł $% '( * &%* r (1+ r Ł + 1 / n 1 / n log n Area

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

Discrete Random Variables

Discrete Random Variables CPSC 53 Systems Modeling and Simulation Discrete Random Variables Dr. Anirban Mahanti Department of Computer Science University of Calgary mahanti@cpsc.ucalgary.ca Random Variables A random variable is

More information

Performance Evaluation of Queuing Systems

Performance Evaluation of Queuing Systems Performance Evaluation of Queuing Systems Introduction to Queuing Systems System Performance Measures & Little s Law Equilibrium Solution of Birth-Death Processes Analysis of Single-Station Queuing Systems

More information

Detecting Stations Cheating on Backoff Rules in Networks Using Sequential Analysis

Detecting Stations Cheating on Backoff Rules in Networks Using Sequential Analysis Detecting Stations Cheating on Backoff Rules in 82.11 Networks Using Sequential Analysis Yanxia Rong Department of Computer Science George Washington University Washington DC Email: yxrong@gwu.edu Sang-Kyu

More information

Performance analysis of IEEE WLANs with saturated and unsaturated sources

Performance analysis of IEEE WLANs with saturated and unsaturated sources 1 Performance analysis of IEEE 8.11 WLANs with saturated and unsaturated sources Suong H. Nguyen, Student Member, IEEE, Hai L. Vu, Senior Member, IEEE, and Lachlan L. H. Andrew, Senior Member, IEEE Abstract

More information

On the Stability and Optimal Decentralized Throughput of CSMA with Multipacket Reception Capability

On the Stability and Optimal Decentralized Throughput of CSMA with Multipacket Reception Capability On the Stability and Optimal Decentralized Throughput of CSMA with Multipacket Reception Capability Douglas S. Chan Toby Berger Lang Tong School of Electrical & Computer Engineering Cornell University,

More information

Multimedia Communication Services Traffic Modeling and Streaming

Multimedia Communication Services Traffic Modeling and Streaming Multimedia Communication Services Medium Access Control algorithms Aloha Slotted: performance analysis with finite nodes Università degli Studi di Brescia A.A. 2014/2015 Francesco Gringoli Master of Science

More information

Design and Analysis of a Propagation Delay Tolerant ALOHA Protocol for Underwater Networks

Design and Analysis of a Propagation Delay Tolerant ALOHA Protocol for Underwater Networks Design and Analysis of a Propagation Delay Tolerant ALOHA Protocol for Underwater Networks Joon Ahn a, Affan Syed b, Bhaskar Krishnamachari a, John Heidemann b a Ming Hsieh Department of Electrical Engineering,

More information

Channel Allocation Using Pricing in Satellite Networks

Channel Allocation Using Pricing in Satellite Networks Channel Allocation Using Pricing in Satellite Networks Jun Sun and Eytan Modiano Laboratory for Information and Decision Systems Massachusetts Institute of Technology {junsun, modiano}@mitedu Abstract

More information

CDA5530: Performance Models of Computers and Networks. Chapter 4: Elementary Queuing Theory

CDA5530: Performance Models of Computers and Networks. Chapter 4: Elementary Queuing Theory CDA5530: Performance Models of Computers and Networks Chapter 4: Elementary Queuing Theory Definition Queuing system: a buffer (waiting room), service facility (one or more servers) a scheduling policy

More information

CHAPTER 4. Networks of queues. 1. Open networks Suppose that we have a network of queues as given in Figure 4.1. Arrivals

CHAPTER 4. Networks of queues. 1. Open networks Suppose that we have a network of queues as given in Figure 4.1. Arrivals CHAPTER 4 Networks of queues. Open networks Suppose that we have a network of queues as given in Figure 4.. Arrivals Figure 4.. An open network can occur from outside of the network to any subset of nodes.

More information

Service differentiation without prioritization in IEEE WLANs

Service differentiation without prioritization in IEEE WLANs Service differentiation without prioritization in IEEE 8. WLANs Suong H. Nguyen, Student Member, IEEE, Hai L. Vu, Senior Member, IEEE, and Lachlan L. H. Andrew, Senior Member, IEEE Abstract Wireless LANs

More information

COMP9334: Capacity Planning of Computer Systems and Networks

COMP9334: Capacity Planning of Computer Systems and Networks COMP9334: Capacity Planning of Computer Systems and Networks Week 2: Operational analysis Lecturer: Prof. Sanjay Jha NETWORKS RESEARCH GROUP, CSE, UNSW Operational analysis Operational: Collect performance

More information

Answers to the problems from problem solving classes

Answers to the problems from problem solving classes Answers to the problems from problem solving classes Class, multiaccess communication 3. Solution : Let λ Q 5 customers per minute be the rate at which customers arrive to the queue for ordering, T Q 5

More information

Modeling Approximations for an IEEE WLAN under Poisson MAC-Level Arrivals

Modeling Approximations for an IEEE WLAN under Poisson MAC-Level Arrivals Modeling Approximations for an IEEE 802.11 WLAN under Poisson MAC-Level Arrivals Ioannis Koukoutsidis 1 and Vasilios A. Siris 1,2 1 FORTH-ICS, P.O. Box 1385, 71110 Heraklion, Crete, Greece 2 Computer Science

More information

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1 NICTA Short Course Network Analysis Vijay Sivaraman Day 1 Queueing Systems and Markov Chains Network Analysis, 2008s2 1-1 Outline Why a short course on mathematical analysis? Limited current course offering

More information

Lecture on Sensor Networks

Lecture on Sensor Networks Lecture on Sensor Networks Cyclic Historical Redundancy Development Copyright (c) 2008 Dr. Thomas Haenselmann (University of Mannheim, Germany). Permission is granted to copy, distribute and/or modify

More information

Power Controlled FCFS Splitting Algorithm for Wireless Networks

Power Controlled FCFS Splitting Algorithm for Wireless Networks Power Controlled FCFS Splitting Algorithm for Wireless Networks Ashutosh Deepak Gore Abhay Karandikar Department of Electrical Engineering Indian Institute of Technology - Bombay COMNET Workshop, July

More information

P e = 0.1. P e = 0.01

P e = 0.1. P e = 0.01 23 10 0 10-2 P e = 0.1 Deadline Failure Probability 10-4 10-6 10-8 P e = 0.01 10-10 P e = 0.001 10-12 10 11 12 13 14 15 16 Number of Slots in a Frame Fig. 10. The deadline failure probability as a function

More information

ECE 3511: Communications Networks Theory and Analysis. Fall Quarter Instructor: Prof. A. Bruce McDonald. Lecture Topic

ECE 3511: Communications Networks Theory and Analysis. Fall Quarter Instructor: Prof. A. Bruce McDonald. Lecture Topic ECE 3511: Communications Networks Theory and Analysis Fall Quarter 2002 Instructor: Prof. A. Bruce McDonald Lecture Topic Introductory Analysis of M/G/1 Queueing Systems Module Number One Steady-State

More information

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking Lecture 7: Simulation of Markov Processes Pasi Lassila Department of Communications and Networking Contents Markov processes theory recap Elementary queuing models for data networks Simulation of Markov

More information

THE Slotted Aloha (S-Aloha) protocol, since its appearance

THE Slotted Aloha (S-Aloha) protocol, since its appearance IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018 451 The Throughput and Access Delay of Slotted-Aloha With Exponential Backoff Luca Barletta, Member, IEEE, Flaminio Borgonovo, Member,

More information

CS115 Computer Simulation Project list

CS115 Computer Simulation Project list CS115 Computer Simulation Project list The final project for this class is worth 40% of your grade. Below are your choices. You only need to do one of them. Project MC: Monte Carlo vs. Deterministic Volume

More information

EP2200 Course Project 2017 Project II - Mobile Computation Offloading

EP2200 Course Project 2017 Project II - Mobile Computation Offloading EP2200 Course Project 2017 Project II - Mobile Computation Offloading 1 Introduction Queuing theory provides us a very useful mathematic tool that can be used to analytically evaluate the performance of

More information

ATM VP-Based Ring Network Exclusive Video or Data Traffics

ATM VP-Based Ring Network Exclusive Video or Data Traffics ATM VP-Based Ring Network Exclusive Video or Data Traffics In this chapter, the performance characteristic of the proposed ATM VP-Based Ring Network exclusive video or data traffic is studied. The maximum

More information

Tuning the TCP Timeout Mechanism in Wireless Networks to Maximize Throughput via Stochastic Stopping Time Methods

Tuning the TCP Timeout Mechanism in Wireless Networks to Maximize Throughput via Stochastic Stopping Time Methods Tuning the TCP Timeout Mechanism in Wireless Networks to Maximize Throughput via Stochastic Stopping Time Methods George Papageorgiou and John S. Baras Abstract We present an optimization problem that

More information

A Comprehensive Study of the IEEE e Enhanced Distributed Control Access (EDCA) Function. Chunyu Hu and Jennifer C. Hou.

A Comprehensive Study of the IEEE e Enhanced Distributed Control Access (EDCA) Function. Chunyu Hu and Jennifer C. Hou. Report No. UIUCDCS-R-26-27 UILU-ENG-26-743 A Comprehensive Study of the IEEE 82.e Enhanced Distributed Control Access EDCA) Function by Chunyu Hu and Jennifer C. Hou April 26 A Comprehensive Study of the

More information

Maximum Sum Rate of Slotted Aloha with Capture

Maximum Sum Rate of Slotted Aloha with Capture Maximum Sum Rate of Slotted Aloha with Capture Yitong Li and Lin Dai, Senior Member, IEEE arxiv:50.03380v3 [cs.it] 7 Dec 205 Abstract The sum rate performance of random-access networks crucially depends

More information

Delay and throughput analysis of tree algorithms for random access over noisy collision channels

Delay and throughput analysis of tree algorithms for random access over noisy collision channels Delay and throughput analysis of tree algorithms for random access over noisy collision channels Benny Van Houdt, Robbe Block To cite this version: Benny Van Houdt, Robbe Block. Delay and throughput analysis

More information

IN conventional spectrum management, most of the spectrum

IN conventional spectrum management, most of the spectrum 2164 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 5, JUNE 2011 A Two-Level AC Protocol Strategy for Opportunistic Spectrum Access in Cognitive Radio Networks Qian Chen, Student ember, IEEE,

More information

Link Models for Packet Switching

Link Models for Packet Switching Link Models for Packet Switching To begin our study of the performance of communications networks, we will study a model of a single link in a message switched network. The important feature of this model

More information

A POMDP Framework for Cognitive MAC Based on Primary Feedback Exploitation

A POMDP Framework for Cognitive MAC Based on Primary Feedback Exploitation A POMDP Framework for Cognitive MAC Based on Primary Feedback Exploitation Karim G. Seddik and Amr A. El-Sherif 2 Electronics and Communications Engineering Department, American University in Cairo, New

More information

Exact Distribution of Access Delay in IEEE DCF MAC

Exact Distribution of Access Delay in IEEE DCF MAC Exact Distribution of Access Delay in IEEE 8.11 DCF MAC Teerawat Issariyakul, Dusit Niyato, Ekram Hossain, and Attahiru Sule Alfa University of Manitoba and TRLabs Winnipeg, MB, Canada. Email: teerawat,

More information

Stability analysis of a cognitive multiple access channel with primary QoS constraints

Stability analysis of a cognitive multiple access channel with primary QoS constraints tability analysis of a cognitive multiple access channel with primary o constraints J. Gambini 1,2,O.imeone 1, U. pagnolini 2,.Bar-Ness 1 andungsooim 3 1 CWCR, NJIT, Newark, New Jersey 07102-1982, UA 2

More information

Random Access Game. Medium Access Control Design for Wireless Networks 1. Sandip Chakraborty. Department of Computer Science and Engineering,

Random Access Game. Medium Access Control Design for Wireless Networks 1. Sandip Chakraborty. Department of Computer Science and Engineering, Random Access Game Medium Access Control Design for Wireless Networks 1 Sandip Chakraborty Department of Computer Science and Engineering, INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR October 22, 2016 1 Chen

More information

Queueing Theory and Simulation. Introduction

Queueing Theory and Simulation. Introduction Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University, Japan

More information

On the Throughput-Optimality of CSMA Policies in Multihop Wireless Networks

On the Throughput-Optimality of CSMA Policies in Multihop Wireless Networks Technical Report Computer Networks Research Lab Department of Computer Science University of Toronto CNRL-08-002 August 29th, 2008 On the Throughput-Optimality of CSMA Policies in Multihop Wireless Networks

More information

On the Throughput, Capacity and Stability Regions of Random Multiple Access over Standard Multi-Packet Reception Channels

On the Throughput, Capacity and Stability Regions of Random Multiple Access over Standard Multi-Packet Reception Channels On the Throughput, Capacity and Stability Regions of Random Multiple Access over Standard Multi-Packet Reception Channels Jie Luo, Anthony Ephremides ECE Dept. Univ. of Maryland College Park, MD 20742

More information

Chapter 2 Queueing Theory and Simulation

Chapter 2 Queueing Theory and Simulation Chapter 2 Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University,

More information

Introduction to Markov Chains, Queuing Theory, and Network Performance

Introduction to Markov Chains, Queuing Theory, and Network Performance Introduction to Markov Chains, Queuing Theory, and Network Performance Marceau Coupechoux Telecom ParisTech, departement Informatique et Réseaux marceau.coupechoux@telecom-paristech.fr IT.2403 Modélisation

More information

TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS

TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS The 20 Military Communications Conference - Track - Waveforms and Signal Processing TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS Gam D. Nguyen, Jeffrey E. Wieselthier 2, Sastry Kompella,

More information

6 Solving Queueing Models

6 Solving Queueing Models 6 Solving Queueing Models 6.1 Introduction In this note we look at the solution of systems of queues, starting with simple isolated queues. The benefits of using predefined, easily classified queues will

More information

Conference Paper. Stability and Delay of Network-Diversity Multiple Access with Backlog Retransmission Control. Ramiro Robles CISTER-TR

Conference Paper. Stability and Delay of Network-Diversity Multiple Access with Backlog Retransmission Control. Ramiro Robles CISTER-TR Conference Paper Stability and Delay of Network-Diversity Multiple Access with Backlog Retransmission Control Ramiro Robles CISTER-TR-742 27/5/2 Conference Paper CISTER-TR-742 Stability and Delay of Network-Diversity

More information

IEOR 4106: Spring Solutions to Homework Assignment 7: Due on Tuesday, March 22.

IEOR 4106: Spring Solutions to Homework Assignment 7: Due on Tuesday, March 22. IEOR 46: Spring Solutions to Homework Assignment 7: Due on Tuesday, March. More of Chapter 5: Read the rest of Section 5.3, skipping Examples 5.7 (Coupon Collecting), 5. (Insurance claims)and Subsection

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

Approximate Queueing Model for Multi-rate Multi-user MIMO systems.

Approximate Queueing Model for Multi-rate Multi-user MIMO systems. An Approximate Queueing Model for Multi-rate Multi-user MIMO systems Boris Bellalta,Vanesa Daza, Miquel Oliver Abstract A queueing model for Multi-rate Multi-user MIMO systems is presented. The model is

More information

Stability and Performance of Contention Resolution Protocols. Hesham M. Al-Ammal

Stability and Performance of Contention Resolution Protocols. Hesham M. Al-Ammal Stability and Performance of Contention Resolution Protocols by Hesham M. Al-Ammal Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy Computer Science August 2000 Contents

More information

Queues and Queueing Networks

Queues and Queueing Networks Queues and Queueing Networks Sanjay K. Bose Dept. of EEE, IITG Copyright 2015, Sanjay K. Bose 1 Introduction to Queueing Models and Queueing Analysis Copyright 2015, Sanjay K. Bose 2 Model of a Queue Arrivals

More information

Performance Analysis and Evaluation of Digital Connection Oriented Internet Service Systems

Performance Analysis and Evaluation of Digital Connection Oriented Internet Service Systems Performance Analysis and Evaluation of Digital Connection Oriented Internet Service Systems Shunfu Jin 1 and Wuyi Yue 2 1 College of Information Science and Engineering Yanshan University, Qinhuangdao

More information

Dynamic resource sharing

Dynamic resource sharing J. Virtamo 38.34 Teletraffic Theory / Dynamic resource sharing and balanced fairness Dynamic resource sharing In previous lectures we have studied different notions of fair resource sharing. Our focus

More information

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS Andrea Bobbio Anno Accademico 999-2000 Queueing Systems 2 Notation for Queueing Systems /λ mean time between arrivals S = /µ ρ = λ/µ N mean service time traffic

More information

TCP over Cognitive Radio Channels

TCP over Cognitive Radio Channels 1/43 TCP over Cognitive Radio Channels Sudheer Poojary Department of ECE, Indian Institute of Science, Bangalore IEEE-IISc I-YES seminar 19 May 2016 2/43 Acknowledgments The work presented here was done

More information

Exercises Stochastic Performance Modelling. Hamilton Institute, Summer 2010

Exercises Stochastic Performance Modelling. Hamilton Institute, Summer 2010 Exercises Stochastic Performance Modelling Hamilton Institute, Summer Instruction Exercise Let X be a non-negative random variable with E[X ]

More information

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017 CPSC 531: System Modeling and Simulation Carey Williamson Department of Computer Science University of Calgary Fall 2017 Motivating Quote for Queueing Models Good things come to those who wait - poet/writer

More information

STABILITY OF FINITE-USER SLOTTED ALOHA UNDER PARTIAL INTERFERENCE IN WIRELESS MESH NETWORKS

STABILITY OF FINITE-USER SLOTTED ALOHA UNDER PARTIAL INTERFERENCE IN WIRELESS MESH NETWORKS The 8th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 7) STABILITY OF FINITE-USER SLOTTED ALOHA UNDER PARTIAL INTERFERENCE IN WIRELESS MESH NETWORKS Ka-Hung

More information

Analysis and Performance Evaluation of Dynamic Frame Slotted-ALOHA in Wireless Machine-to-Machine Networks with Energy Harvesting

Analysis and Performance Evaluation of Dynamic Frame Slotted-ALOHA in Wireless Machine-to-Machine Networks with Energy Harvesting and Performance Evaluation of Dynamic Frame Slotted-ALOHA in Wireless Machine-to-Machine Networks with Energy Harvesting Shuang Wu, Yue Chen, Kok K Chai Queen Mary University of London London, U.K. Email:

More information

Congestion Control. Need to understand: What is congestion? How do we prevent or manage it?

Congestion Control. Need to understand: What is congestion? How do we prevent or manage it? Congestion Control Phenomenon: when too much traffic enters into system, performance degrades excessive traffic can cause congestion Problem: regulate traffic influx such that congestion does not occur

More information

Link Models for Circuit Switching

Link Models for Circuit Switching Link Models for Circuit Switching The basis of traffic engineering for telecommunication networks is the Erlang loss function. It basically allows us to determine the amount of telephone traffic that can

More information

Computer Networks ( Classroom Practice Booklet Solutions)

Computer Networks ( Classroom Practice Booklet Solutions) Computer Networks ( Classroom Practice Booklet Solutions). Concept Of Layering 0. Ans: (b) Sol: Data Link Layer is responsible for decoding bit stream into frames. 0. Ans: (c) Sol: Network Layer has the

More information

A Study on Performance Analysis of Queuing System with Multiple Heterogeneous Servers

A Study on Performance Analysis of Queuing System with Multiple Heterogeneous Servers UNIVERSITY OF OKLAHOMA GENERAL EXAM REPORT A Study on Performance Analysis of Queuing System with Multiple Heterogeneous Servers Prepared by HUSNU SANER NARMAN husnu@ou.edu based on the papers 1) F. S.

More information

Performance Evaluation of Deadline Monotonic Policy over protocol

Performance Evaluation of Deadline Monotonic Policy over protocol Performance Evaluation of Deadline Monotonic Policy over 80. protocol Ines El Korbi and Leila Azouz Saidane National School of Computer Science University of Manouba, 00 Tunisia Emails: ines.korbi@gmail.com

More information

UNIVERSITY OF YORK. MSc Examinations 2004 MATHEMATICS Networks. Time Allowed: 3 hours.

UNIVERSITY OF YORK. MSc Examinations 2004 MATHEMATICS Networks. Time Allowed: 3 hours. UNIVERSITY OF YORK MSc Examinations 2004 MATHEMATICS Networks Time Allowed: 3 hours. Answer 4 questions. Standard calculators will be provided but should be unnecessary. 1 Turn over 2 continued on next

More information

On the stability of flow-aware CSMA

On the stability of flow-aware CSMA On the stability of flow-aware CSMA Thomas Bonald, Mathieu Feuillet To cite this version: Thomas Bonald, Mathieu Feuillet. On the stability of flow-aware CSMA. Performance Evaluation, Elsevier, 010, .

More information

An Evolutionary Game Perspective to ALOHA with power control

An Evolutionary Game Perspective to ALOHA with power control An Evolutionary Game Perspective to ALOHA with power control E. Altman a, N. Bonneau a, M. Debbah b and G. Caire b a MAESTRO, INRIA Sophia-Antipolis, 004 Route des Lucioles, B.P.93, 0690 Sophia-Antipolis,

More information

Week 5: Markov chains Random access in communication networks Solutions

Week 5: Markov chains Random access in communication networks Solutions Week 5: Markov chains Random access in communication networks Solutions A Markov chain model. The model described in the homework defines the following probabilities: P [a terminal receives a packet in

More information

Integrity-Oriented Content Transmission in Highway Vehicular Ad Hoc Networks

Integrity-Oriented Content Transmission in Highway Vehicular Ad Hoc Networks VANET Analysis Integrity-Oriented Content Transmission in Highway Vehicular Ad Hoc Networks Tom Hao Luan, Xuemin (Sherman) Shen, and Fan Bai BBCR, ECE, University of Waterloo, Waterloo, Ontario, N2L 3G1,

More information

Flow-level performance of wireless data networks

Flow-level performance of wireless data networks Flow-level performance of wireless data networks Aleksi Penttinen Department of Communications and Networking, TKK Helsinki University of Technology CLOWN seminar 28.8.08 1/31 Outline 1. Flow-level model

More information

A preemptive repeat priority queue with resampling: Performance analysis

A preemptive repeat priority queue with resampling: Performance analysis Ann Oper Res (2006) 46:89 202 DOI 0.007/s0479-006-0053-4 A preemptive repeat priority queue with resampling: Performance analysis Joris Walraevens Bart Steyaert Herwig Bruneel Published online: 6 July

More information

λ 2 1 = 2 = 2 2 2P 1 =4P 2 P 0 + P 1 + P 2 =1 P 0 =, P 1 =, P 2 = ρ 1 = P 1 + P 2 =, ρ 2 = P 1 + P 2 =

λ 2 1 = 2 = 2 2 2P 1 =4P 2 P 0 + P 1 + P 2 =1 P 0 =, P 1 =, P 2 = ρ 1 = P 1 + P 2 =, ρ 2 = P 1 + P 2 = Urban Operations Research Compiled by James S. Kang Fall 001 Quiz Solutions 1//001 Problem 1 (Larson, 001) 1 (a) One is tempted to say yes by setting ρ = Nµ = =.But = is not the rate at which customers

More information

The Timing Capacity of Single-Server Queues with Multiple Flows

The Timing Capacity of Single-Server Queues with Multiple Flows The Timing Capacity of Single-Server Queues with Multiple Flows Xin Liu and R. Srikant Coordinated Science Laboratory University of Illinois at Urbana Champaign March 14, 2003 Timing Channel Information

More information

Channel Selection in Cognitive Radio Networks with Opportunistic RF Energy Harvesting

Channel Selection in Cognitive Radio Networks with Opportunistic RF Energy Harvesting 1 Channel Selection in Cognitive Radio Networks with Opportunistic RF Energy Harvesting Dusit Niyato 1, Ping Wang 1, and Dong In Kim 2 1 School of Computer Engineering, Nanyang Technological University

More information

Computer Systems Modelling

Computer Systems Modelling Computer Systems Modelling Computer Laboratory Computer Science Tripos, Part II Michaelmas Term 2003 R. J. Gibbens Problem sheet William Gates Building JJ Thomson Avenue Cambridge CB3 0FD http://www.cl.cam.ac.uk/

More information

A Simple Model for the Window Size Evolution of TCP Coupled with MAC and PHY Layers

A Simple Model for the Window Size Evolution of TCP Coupled with MAC and PHY Layers A Simple Model for the Window Size Evolution of TCP Coupled with and PHY Layers George Papageorgiou, John S. Baras Institute for Systems Research, University of Maryland, College Par, MD 20742 Email: gpapag,

More information

Reliable Data Transport: Sliding Windows

Reliable Data Transport: Sliding Windows Reliable Data Transport: Sliding Windows 6.02 Fall 2013 Lecture 23 Exclusive! A Brief History of the Internet guest lecture by Prof. Hari Balakrishnan Wenesday December 4, 2013, usual 6.02 lecture time

More information

Introduction to queuing theory

Introduction to queuing theory Introduction to queuing theory Claude Rigault ENST claude.rigault@enst.fr Introduction to Queuing theory 1 Outline The problem The number of clients in a system The client process Delay processes Loss

More information

CS418 Operating Systems

CS418 Operating Systems CS418 Operating Systems Lecture 14 Queuing Analysis Textbook: Operating Systems by William Stallings 1 1. Why Queuing Analysis? If the system environment changes (like the number of users is doubled),

More information

Stochastic Learning Solution for Constrained Nash Equilibrium Throughput in Non Saturated Wireless Collision Channels

Stochastic Learning Solution for Constrained Nash Equilibrium Throughput in Non Saturated Wireless Collision Channels Stochastic Learning Solution for Constrained Nash Equilibrium Throughput in Non Saturated Wireless Collision Channels Essaid Sabir, 2 LIA/CERI, University of Avignon, Agroparc BP 228 Cedex 9, Avignon,

More information

Intro to Queueing Theory

Intro to Queueing Theory 1 Intro to Queueing Theory Little s Law M/G/1 queue Conservation Law 1/31/017 M/G/1 queue (Simon S. Lam) 1 Little s Law No assumptions applicable to any system whose arrivals and departures are observable

More information

Distributed Systems Fundamentals

Distributed Systems Fundamentals February 17, 2000 ECS 251 Winter 2000 Page 1 Distributed Systems Fundamentals 1. Distributed system? a. What is it? b. Why use it? 2. System Architectures a. minicomputer mode b. workstation model c. processor

More information