Today. Recap: Reasoning Over Time. Demo Bonanza! CS 188: Artificial Intelligence. Advanced HMMs. Speech recognition. HMMs. Start machine learning

Size: px
Start display at page:

Download "Today. Recap: Reasoning Over Time. Demo Bonanza! CS 188: Artificial Intelligence. Advanced HMMs. Speech recognition. HMMs. Start machine learning"

Transcription

1 CS 188: Artificil Intelligence Advnced HMMs Dn Klein, Pieter Aeel University of Cliforni, Berkeley Demo Bonnz! Tody HMMs Demo onnz! Most likely explntion queries Speech recognition A mssive HMM! Detils of this section not required Strt mchine lerning Recp: Resoning Over Time [demo: sttionry] Mrkov models 0.3 X 1 X 2 X 3 X 4 rin sun Hidden Mrkov models X 1 X 2 X 3 X 4 X 5 E 1 X E P rin umrell 0.9 rin no umrell 0.1 E 2 E 3 E 4 E 5 sun umrell 0.2 sun no umrell 0.8

2 Recp: Filtering Elpse time: compute P( X t e 1:t 1 ) Oserve: compute P( X t e 1:t ) X 1 X 2 Belief: <P(rin), P(sun)> <0.5, 0.5> Prior on X 1 <0.82, 0.18> Oserve E 1 E 2 <0.63, 0.37> Elpse time <0.88, 0.12> Oserve [demo: exct filtering] Recp: Prticle Filtering Prticles: trck smples of sttes rther thn n explicit distriution Elpse Weight Resmple Prticles: (1,2) Prticles: (3,1) (1,3) (2,2) Prticles: w=.9 w=.2 w=.9 (3,1) w=.4 w=.4 w=.9 (1,3) w=.1 w=.2 w=.9 (2,2) w=.4 (New) Prticles: (2,2) (1,3) [demo: prticle filtering] Prticle Filtering Root Locliztion In root locliztion: We know the mp, ut not the root s position Oservtions my e vectors of rnge finder redings Stte spce nd redings re typiclly continuous (works siclly like very fine grid) nd so we cnnot store B(X) Prticle filtering is min technique

3 Root Mpping SLAM: Simultneous Locliztion And Mpping We do not know the mp or our loction Stte consists of position AND mp! Min techniques: Klmn filtering (Gussin HMMs) nd prticle methods DP SLAM, Ron Prr Dynmic Byes Nets (DBNs) We wnt to trck multiple vriles over time, using multiple sources of evidence Ide: Repet fixed Byes net structure t ech time Vriles from time t cn condition on those from t 1 t =1 t =2 t =3 G 1 G 2 G 3 G 1 G 2 G 3 E 1 E 1 E 2 E 2 E 3 E 3 Dynmic Byes nets re generliztion of HMMs Dynmic ByesNets DBN Prticle Filters A prticle is complete smple for time step Initilize: Generte prior smples for the t=1 Byes net Exmple prticle: G 1 = G 1 = (5,3) Elpse time: Smple successor for ech prticle Exmple successor: G 2 = G 2 = (6,3) Oserve: Weight ech entire smple y the likelihood of the evidence conditioned on the smple Likelihood: P(E 1 G 1 ) * P(E 1 G 1 ) Resmple: Select prior smples (tuples of vlues) in proportion to their likelihood

4 Most Likely Explntion Stte Trellis Stte trellis: grph of sttes nd trnsitions over time sun sun sun sun rin rin rin rin Ech rc represents some trnsition Ech rc hs weight Ech pth is sequence of sttes (evidence The product of weights on pth is tht sequence s proility long with the evidence Forwrd lgorithm computes sums of pths, Viteri computes est pths HMMs: MLE Queries HMMs defined y Sttes X Oservtions E Initil distriution: Trnsitions: Emissions: X 1 X 2 X 3 X 4 E 1 E 2 E 3 E 4 E 5 X 5 New query: most likely explntion: New method: the Viteri lgorithm Forwrd / Viteri Algorithms sun sun sun sun rin rin rin rin Forwrd Algorithm (Sum) Viteri Algorithm (Mx)

5 Nturl Lnguge Speech technologies (e.g. Siri) Automtic speech recognition (ASR) Text to speech synthesis (TTS) Dilog systems Lnguge processing technologies Question nswering Mchine trnsltion We serch Text clssifiction, spm filtering, etc Digitizing Speech Speech Recognition Speech in n Hour Speech input is n coustic wveform s p ee ch l l to trnsition: Figure: Simon Arnfield,

6 Spectrl Anlysis Frequency gives pitch; mplitude gives volume Smpling t ~8 khz (phone), ~16 khz (mic) (khz=1000 cycles/sec) s p ee ch l Fourier trnsform of wve displyed s spectrogrm Drkness indictes energy t ech frequency Humn er figure: depion.logspot.com Why These Peks? Articultor process: Vocl cord virtions crete hrmonics The mouth is n mplifier Depending on shpe of mouth, some hrmonics re mplified more thn others Prt of [e] from l Complex wve repeting nine times Plus smller wve tht repets 4x for every lrge cycle Lrge wve: freq of 250 Hz (9 times in.036 seconds) Smll wve roughly 4 times this, or roughly 1000 Hz Resonnces of the Vocl Trct The humn vocl trct s n open tue Open end Closed end Length 17.5 cm. Air in tue of given length will tend to virte t resonnce frequency of tue Constrint: Pressure differentil should e mximl t (closed) glottl end nd miniml t (open) lip end Figure: W. Brry Speech Science slides

7 Spectrum Shpes [ demo ] Figure: Mrk Liermn Acoustic Feture Sequence Time slices re trnslted into coustic feture vectors (~39 rel numers per slice)..e 12 e 13 e 14 e 15 e 16.. These re the oservtions E, now we need the hidden sttes X Vowel [i] sung t successively higher pitches F#2 A2 C3 F#3 A3 C4 (middle C) A4 Grphs: Rtree Wylnd Speech Stte Spce HMM Specifiction P(E X) encodes which coustic vectors re pproprite for ech phoneme (ech kind of sound) P(X X ) encodes how sounds cn e strung together Stte Spce We will hve one stte for ech sound in ech word Mostly, sttes dvnce sound y sound Build little stte grph for ech word nd chin them together to form the stte spce X

8 Trnsitions with Bigrm Model the first the sme the following the world the door the * Trining Counts Sttes in Word Decoding Finding the words given the coustics is n HMM inference prolem Which stte sequence x 1:T is most likely given the evidence e 1:T? From the sequence x, we cn simply red off the words Figure: Hung et l, p. 618 End of Prt II! Now we re done with our unit on proilistic resoning Lst prt of clss: mchine lerning

9 Mchine Lerning Prmeter Estimtion Estimting the distriution of rndom vrile Elicittion: sk humn (why is this hrd?) Empiriclly: use trining dt (lerning!) E.g.: for ech outcome x, look t the empiricl rte of tht vlue: r r This is the estimte tht mximizes the likelihood of the dt r r r Mchine Lerning Up until now: how use model to mke optiml decisions Mchine lerning: how to cquire model from dt / experience Lerning prmeters (e.g. proilities) Lerning structure (e.g. BN grphs) Lerning hidden concepts (e.g. clustering) Estimtion: Smoothing Reltive frequencies re the mximum likelihood estimtes Another option is to consider the most likely prmeter vlue given the dt???? r r

10 Smoothing Estimtion: Lplce Smoothing Lplce s estimte (extended): Pretend you sw every outcome k extr times r r Wht s Lplce with k = 0? k is the strength of the prior Lplce for conditionls: Smooth ech condition independently: Estimtion: Lplce Smoothing Lplce s estimte: Pretend you sw every outcome once more thn you ctully did r r Cn derive this estimte with Dirichlet priors (see cs281)

Today. CS 188: Artificial Intelligence. Recap: Reasoning Over Time. Particle Filters and Applications of HMMs. HMMs

Today. CS 188: Artificial Intelligence. Recap: Reasoning Over Time. Particle Filters and Applications of HMMs. HMMs CS 188: Artificil Intelligence Prticle Filters nd Applictions of HMMs Tody HMMs Prticle filters Demo onnz! Most-likely-explntion queries Instructors: Jco Andres nd Dvis Foote University of Cliforni, Berkeley

More information

CS 188: Artificial Intelligence Fall Announcements

CS 188: Artificial Intelligence Fall Announcements CS 188: Artificil Intelligence Fll 2009 Lecture 20: Prticle Filtering 11/5/2009 Dn Klein UC Berkeley Announcements Written 3 out: due 10/12 Project 4 out: due 10/19 Written 4 proly xed, Project 5 moving

More information

Pacman in the News. Announcements. Pacman in the News. CS 188: Ar7ficial Intelligence Par7cle Filters and A pplica7ons of HMMs

Pacman in the News. Announcements. Pacman in the News. CS 188: Ar7ficial Intelligence Par7cle Filters and A pplica7ons of HMMs Announcements Surveys reminder Pcmn in the News HW 8 edx / grdescope consolid7on Mid- semester survey P4 Due Mondy 4/6 t 11:59pm P5 Ghostusters Due Fridy 4/10 t 5pm Pcmn in the News CS 188: Ar7ficil Intelligence

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Particle Filters and Applications of HMMs Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 20: HMMs / Speech / ML 11/8/2011 Dan Klein UC Berkeley Today HMMs Demo bonanza! Most likely explanation queries Speech recognition A massive HMM! Details

More information

Reasoning over Time or Space. CS 188: Artificial Intelligence. Outline. Markov Models. Conditional Independence. Query: P(X 4 )

Reasoning over Time or Space. CS 188: Artificial Intelligence. Outline. Markov Models. Conditional Independence. Query: P(X 4 ) CS 88: Artificil Intelligence Lecture 7: HMMs nd Prticle Filtering Resoning over Time or Spce Often, we wnt to reson out sequence of oservtions Speech recognition Root locliztion User ttention Medicl monitoring

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Particle Filters and Applications of HMMs Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Particle Filters and Applications of HMMs Instructor: Wei Xu Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley.] Recap: Reasoning

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Particle Filters and Applications of HMMs Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials

More information

Probabilistic Reasoning. CS 188: Artificial Intelligence Spring Inference by Enumeration. Probability recap. Chain Rule à Bayes net

Probabilistic Reasoning. CS 188: Artificial Intelligence Spring Inference by Enumeration. Probability recap. Chain Rule à Bayes net CS 188: Artificil Intelligence Spring 2011 Finl Review 5/2/2011 Pieter Aeel UC Berkeley Proilistic Resoning Proility Rndom Vriles Joint nd Mrginl Distriutions Conditionl Distriution Inference y Enumertion

More information

Decision Networks. CS 188: Artificial Intelligence Fall Example: Decision Networks. Decision Networks. Decisions as Outcome Trees

Decision Networks. CS 188: Artificial Intelligence Fall Example: Decision Networks. Decision Networks. Decisions as Outcome Trees CS 188: Artificil Intelligence Fll 2011 Decision Networks ME: choose the ction which mximizes the expected utility given the evidence mbrell Lecture 17: Decision Digrms 10/27/2011 Cn directly opertionlize

More information

Bayesian Networks: Approximate Inference

Bayesian Networks: Approximate Inference pproches to inference yesin Networks: pproximte Inference xct inference Vrillimintion Join tree lgorithm pproximte inference Simplify the structure of the network to mkxct inferencfficient (vritionl methods,

More information

Hidden Markov Models

Hidden Markov Models Hidden Mrkov Models Huptseminr Mchine Lerning 18.11.2003 Referent: Nikols Dörfler 1 Overview Mrkov Models Hidden Mrkov Models Types of Hidden Mrkov Models Applictions using HMMs Three centrl problems:

More information

Decision Networks. CS 188: Artificial Intelligence. Decision Networks. Decision Networks. Decision Networks and Value of Information

Decision Networks. CS 188: Artificial Intelligence. Decision Networks. Decision Networks. Decision Networks and Value of Information CS 188: Artificil Intelligence nd Vlue of Informtion Instructors: Dn Klein nd Pieter Abbeel niversity of Cliforni, Berkeley [These slides were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI

More information

CS 188: Artificial Intelligence Fall 2010

CS 188: Artificial Intelligence Fall 2010 CS 188: Artificil Intelligence Fll 2010 Lecture 18: Decision Digrms 10/28/2010 Dn Klein C Berkeley Vlue of Informtion 1 Decision Networks ME: choose the ction which mximizes the expected utility given

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificil Intelligence Lecture 19: Decision Digrms Pieter Abbeel --- C Berkeley Mny slides over this course dpted from Dn Klein, Sturt Russell, Andrew Moore Decision Networks ME: choose the ction

More information

CS 188: Artificial Intelligence Spring 2007

CS 188: Artificial Intelligence Spring 2007 CS 188: Artificil Intelligence Spring 2007 Lecture 3: Queue-Bsed Serch 1/23/2007 Srini Nrynn UC Berkeley Mny slides over the course dpted from Dn Klein, Sturt Russell or Andrew Moore Announcements Assignment

More information

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University CS415 Compilers Lexicl Anlysis nd These slides re sed on slides copyrighted y Keith Cooper, Ken Kennedy & Lind Torczon t Rice University First Progrmming Project Instruction Scheduling Project hs een posted

More information

LECTURE NOTE #12 PROF. ALAN YUILLE

LECTURE NOTE #12 PROF. ALAN YUILLE LECTURE NOTE #12 PROF. ALAN YUILLE 1. Clustering, K-mens, nd EM Tsk: set of unlbeled dt D = {x 1,..., x n } Decompose into clsses w 1,..., w M where M is unknown. Lern clss models p(x w)) Discovery of

More information

Reinforcement learning II

Reinforcement learning II CS 1675 Introduction to Mchine Lerning Lecture 26 Reinforcement lerning II Milos Huskrecht milos@cs.pitt.edu 5329 Sennott Squre Reinforcement lerning Bsics: Input x Lerner Output Reinforcement r Critic

More information

12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2014

12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2014 CS125 Lecture 12 Fll 2014 12.1 Nondeterminism The ide of nondeterministic computtions is to llow our lgorithms to mke guesses, nd only require tht they ccept when the guesses re correct. For exmple, simple

More information

Forward algorithm vs. particle filtering

Forward algorithm vs. particle filtering Particle Filtering ØSometimes X is too big to use exact inference X may be too big to even store B(X) E.g. X is continuous X 2 may be too big to do updates ØSolution: approximate inference Track samples

More information

CS 188 Introduction to Artificial Intelligence Fall 2018 Note 7

CS 188 Introduction to Artificial Intelligence Fall 2018 Note 7 CS 188 Introduction to Artificil Intelligence Fll 2018 Note 7 These lecture notes re hevily bsed on notes originlly written by Nikhil Shrm. Decision Networks In the third note, we lerned bout gme trees

More information

19 Optimal behavior: Game theory

19 Optimal behavior: Game theory Intro. to Artificil Intelligence: Dle Schuurmns, Relu Ptrscu 1 19 Optiml behvior: Gme theory Adversril stte dynmics hve to ccount for worst cse Compute policy π : S A tht mximizes minimum rewrd Let S (,

More information

Genetic Programming. Outline. Evolutionary Strategies. Evolutionary strategies Genetic programming Summary

Genetic Programming. Outline. Evolutionary Strategies. Evolutionary strategies Genetic programming Summary Outline Genetic Progrmming Evolutionry strtegies Genetic progrmming Summry Bsed on the mteril provided y Professor Michel Negnevitsky Evolutionry Strtegies An pproch simulting nturl evolution ws proposed

More information

Inductive and statistical learning of formal grammars

Inductive and statistical learning of formal grammars Inductive nd sttisticl lerning of forml grmmrs Pierre Dupont Grmmr Induction Mchine Lerning Gol: to give the lerning ility to mchine Design progrms the performnce of which improves over time pdupont@info.ucl.c.e

More information

Finite Automata-cont d

Finite Automata-cont d Automt Theory nd Forml Lnguges Professor Leslie Lnder Lecture # 6 Finite Automt-cont d The Pumping Lemm WEB SITE: http://ingwe.inghmton.edu/ ~lnder/cs573.html Septemer 18, 2000 Exmple 1 Consider L = {ww

More information

Learning Partially Observable Markov Models from First Passage Times

Learning Partially Observable Markov Models from First Passage Times Lerning Prtilly Oservle Mrkov s from First Pssge s Jérôme Cllut nd Pierre Dupont Europen Conferene on Mhine Lerning (ECML) 8 Septemer 7 Outline. FPT in models nd sequenes. Prtilly Oservle Mrkov s (POMMs).

More information

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4 Intermedite Mth Circles Wednesdy, Novemer 14, 2018 Finite Automt II Nickols Rollick nrollick@uwterloo.c Regulr Lnguges Lst time, we were introduced to the ide of DFA (deterministic finite utomton), one

More information

Continuous Joint Distributions Chris Piech CS109, Stanford University

Continuous Joint Distributions Chris Piech CS109, Stanford University Continuous Joint Distriutions Chris Piech CS09, Stnford University CS09 Flow Tody Discrete Joint Distriutions: Generl Cse Multinomil: A prmetric Discrete Joint Cont. Joint Distriutions: Generl Cse Lerning

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Hidden Markov Models Instructor: Anca Dragan --- University of California, Berkeley [These slides were created by Dan Klein, Pieter Abbeel, and Anca. http://ai.berkeley.edu.]

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automt Theory nd Forml Lnguges TMV027/DIT321 LP4 2018 Lecture 10 An Bove April 23rd 2018 Recp: Regulr Lnguges We cn convert between FA nd RE; Hence both FA nd RE ccept/generte regulr lnguges; More

More information

Bellman Optimality Equation for V*

Bellman Optimality Equation for V* Bellmn Optimlity Eqution for V* The vlue of stte under n optiml policy must equl the expected return for the best ction from tht stte: V (s) mx Q (s,) A(s) mx A(s) mx A(s) Er t 1 V (s t 1 ) s t s, t s

More information

Monte Carlo method in solving numerical integration and differential equation

Monte Carlo method in solving numerical integration and differential equation Monte Crlo method in solving numericl integrtion nd differentil eqution Ye Jin Chemistry Deprtment Duke University yj66@duke.edu Abstrct: Monte Crlo method is commonly used in rel physics problem. The

More information

Minimal DFA. minimal DFA for L starting from any other

Minimal DFA. minimal DFA for L starting from any other Miniml DFA Among the mny DFAs ccepting the sme regulr lnguge L, there is exctly one (up to renming of sttes) which hs the smllest possile numer of sttes. Moreover, it is possile to otin tht miniml DFA

More information

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions.

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions. CS 88: Artificial Intelligence Fall 27 Lecture 2: HMMs /6/27 Markov Models A Markov model is a chain-structured BN Each node is identically distributed (stationarity) Value of X at a given time is called

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

More on automata. Michael George. March 24 April 7, 2014

More on automata. Michael George. March 24 April 7, 2014 More on utomt Michel George Mrch 24 April 7, 2014 1 Automt constructions Now tht we hve forml model of mchine, it is useful to mke some generl constructions. 1.1 DFA Union / Product construction Suppose

More information

Learning Moore Machines from Input-Output Traces

Learning Moore Machines from Input-Output Traces Lerning Moore Mchines from Input-Output Trces Georgios Gintmidis 1 nd Stvros Tripkis 1,2 1 Alto University, Finlnd 2 UC Berkeley, USA Motivtion: lerning models from blck boxes Inputs? Lerner Forml Model

More information

First Midterm Examination

First Midterm Examination 24-25 Fll Semester First Midterm Exmintion ) Give the stte digrm of DFA tht recognizes the lnguge A over lphet Σ = {, } where A = {w w contins or } 2) The following DFA recognizes the lnguge B over lphet

More information

Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language.

Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language. Section: Other Models of Turing Mchines Definition: Two utomt re equivlent if they ccept the sme lnguge. Turing Mchines with Sty Option Modify δ, Theorem Clss of stndrd TM s is equivlent to clss of TM

More information

Hybrid Control and Switched Systems. Lecture #2 How to describe a hybrid system? Formal models for hybrid system

Hybrid Control and Switched Systems. Lecture #2 How to describe a hybrid system? Formal models for hybrid system Hyrid Control nd Switched Systems Lecture #2 How to descrie hyrid system? Forml models for hyrid system João P. Hespnh University of Cliforni t Snt Brr Summry. Forml models for hyrid systems: Finite utomt

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

Module 6 Value Iteration. CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo

Module 6 Value Iteration. CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo Module 6 Vlue Itertion CS 886 Sequentil Decision Mking nd Reinforcement Lerning University of Wterloo Mrkov Decision Process Definition Set of sttes: S Set of ctions (i.e., decisions): A Trnsition model:

More information

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2. Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot

More information

Nondeterminism and Nodeterministic Automata

Nondeterminism and Nodeterministic Automata Nondeterminism nd Nodeterministic Automt 61 Nondeterminism nd Nondeterministic Automt The computtionl mchine models tht we lerned in the clss re deterministic in the sense tht the next move is uniquely

More information

DATA Search I 魏忠钰. 复旦大学大数据学院 School of Data Science, Fudan University. March 7 th, 2018

DATA Search I 魏忠钰. 复旦大学大数据学院 School of Data Science, Fudan University. March 7 th, 2018 DATA620006 魏忠钰 Serch I Mrch 7 th, 2018 Outline Serch Problems Uninformed Serch Depth-First Serch Bredth-First Serch Uniform-Cost Serch Rel world tsk - Pc-mn Serch problems A serch problem consists of:

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true. York University CSE 2 Unit 3. DFA Clsses Converting etween DFA, NFA, Regulr Expressions, nd Extended Regulr Expressions Instructor: Jeff Edmonds Don t chet y looking t these nswers premturely.. For ech

More information

Fingerprint idea. Assume:

Fingerprint idea. Assume: Fingerprint ide Assume: We cn compute fingerprint f(p) of P in O(m) time. If f(p) f(t[s.. s+m 1]), then P T[s.. s+m 1] We cn compre fingerprints in O(1) We cn compute f = f(t[s+1.. s+m]) from f(t[s.. s+m

More information

Hidden Markov Model Induction by Bayesian Model Merging

Hidden Markov Model Induction by Bayesian Model Merging To pper in: C. L. Giles, S. J. Hnson, & J. D. Cown, eds., Advnces in Neurl Informtion Processing Systems 5, Sn Mteo, CA, Morgn Kufmn, 1993 Hidden Mrkov Model Induction y Byesin Model Merging Andres Stolcke,

More information

What We re Talking About Today. Lecture 8. Part I. Review. LVCSR Training

What We re Talking About Today. Lecture 8. Part I. Review. LVCSR Training Wht We re Tlking out Tody Lecture 8 LVCSR Trining nd Decoding Michel Picheny, Bhuvn Rmhdrn, Stnley F. Chen Lrge-voculry continuous speech recognition (LVCSR). coustic model trining. How to estimte prmeters,

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2016

12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2016 CS125 Lecture 12 Fll 2016 12.1 Nondeterminism The ide of nondeterministic computtions is to llow our lgorithms to mke guesses, nd only require tht they ccept when the guesses re correct. For exmple, simple

More information

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.) CS 373, Spring 29. Solutions to Mock midterm (sed on first midterm in CS 273, Fll 28.) Prolem : Short nswer (8 points) The nswers to these prolems should e short nd not complicted. () If n NF M ccepts

More information

CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata

CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata CS103B ndout 18 Winter 2007 Ferury 28, 2007 Finite Automt Initil text y Mggie Johnson. Introduction Severl childrens gmes fit the following description: Pieces re set up on plying ord; dice re thrown or

More information

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014 CMPSCI 250: Introduction to Computtion Lecture #31: Wht DFA s Cn nd Cn t Do Dvid Mix Brrington 9 April 2014 Wht DFA s Cn nd Cn t Do Deterministic Finite Automt Forml Definition of DFA s Exmples of DFA

More information

FABER Formal Languages, Automata and Models of Computation

FABER Formal Languages, Automata and Models of Computation DVA337 FABER Forml Lnguges, Automt nd Models of Computtion Lecture 5 chool of Innovtion, Design nd Engineering Mälrdlen University 2015 1 Recp of lecture 4 y definition suset construction DFA NFA stte

More information

Convert the NFA into DFA

Convert the NFA into DFA Convert the NF into F For ech NF we cn find F ccepting the sme lnguge. The numer of sttes of the F could e exponentil in the numer of sttes of the NF, ut in prctice this worst cse occurs rrely. lgorithm:

More information

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages Deprtment of Computer Science, Austrlin Ntionl University COMP2600 Forml Methods for Softwre Engineering Semester 2, 206 Assignment Automt, Lnguges, nd Computility Smple Solutions Finite Stte Automt nd

More information

2D1431 Machine Learning Lab 3: Reinforcement Learning

2D1431 Machine Learning Lab 3: Reinforcement Learning 2D1431 Mchine Lerning Lb 3: Reinforcement Lerning Frnk Hoffmnn modified by Örjn Ekeberg December 7, 2004 1 Introduction In this lb you will lern bout dynmic progrmming nd reinforcement lerning. It is ssumed

More information

Chapter 5 Plan-Space Planning

Chapter 5 Plan-Space Planning Lecture slides for Automted Plnning: Theory nd Prctice Chpter 5 Pln-Spce Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Stte-Spce Plnning Motivtion g 1 1 g 4 4 s 0 g 5 5 g 2

More information

Compiler Design. Fall Lexical Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compiler Design. Fall Lexical Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz University of Southern Cliforni Computer Science Deprtment Compiler Design Fll Lexicl Anlysis Smple Exercises nd Solutions Prof. Pedro C. Diniz USC / Informtion Sciences Institute 4676 Admirlty Wy, Suite

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Lerning Tom Mitchell, Mchine Lerning, chpter 13 Outline Introduction Comprison with inductive lerning Mrkov Decision Processes: the model Optiml policy: The tsk Q Lerning: Q function Algorithm

More information

Non-Linear & Logistic Regression

Non-Linear & Logistic Regression Non-Liner & Logistic Regression If the sttistics re boring, then you've got the wrong numbers. Edwrd R. Tufte (Sttistics Professor, Yle University) Regression Anlyses When do we use these? PART 1: find

More information

Lexical Analysis Part III

Lexical Analysis Part III Lexicl Anlysis Prt III Chpter 3: Finite Automt Slides dpted from : Roert vn Engelen, Florid Stte University Alex Aiken, Stnford University Design of Lexicl Anlyzer Genertor Trnslte regulr expressions to

More information

Model Reduction of Finite State Machines by Contraction

Model Reduction of Finite State Machines by Contraction Model Reduction of Finite Stte Mchines y Contrction Alessndro Giu Dip. di Ingegneri Elettric ed Elettronic, Università di Cgliri, Pizz d Armi, 09123 Cgliri, Itly Phone: +39-070-675-5892 Fx: +39-070-675-5900

More information

CSCI 340: Computational Models. Transition Graphs. Department of Computer Science

CSCI 340: Computational Models. Transition Graphs. Department of Computer Science CSCI 340: Computtionl Models Trnsition Grphs Chpter 6 Deprtment of Computer Science Relxing Restrints on Inputs We cn uild n FA tht ccepts only the word! 5 sttes ecuse n FA cn only process one letter t

More information

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 17

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 17 EECS 70 Discrete Mthemtics nd Proility Theory Spring 2013 Annt Shi Lecture 17 I.I.D. Rndom Vriles Estimting the is of coin Question: We wnt to estimte the proportion p of Democrts in the US popultion,

More information

This lecture covers Chapter 8 of HMU: Properties of CFLs

This lecture covers Chapter 8 of HMU: Properties of CFLs This lecture covers Chpter 8 of HMU: Properties of CFLs Turing Mchine Extensions of Turing Mchines Restrictions of Turing Mchines Additionl Reding: Chpter 8 of HMU. Turing Mchine: Informl Definition B

More information

Solution for Assignment 1 : Intro to Probability and Statistics, PAC learning

Solution for Assignment 1 : Intro to Probability and Statistics, PAC learning Solution for Assignment 1 : Intro to Probbility nd Sttistics, PAC lerning 10-701/15-781: Mchine Lerning (Fll 004) Due: Sept. 30th 004, Thursdy, Strt of clss Question 1. Bsic Probbility ( 18 pts) 1.1 (

More information

Formal Language and Automata Theory (CS21004)

Formal Language and Automata Theory (CS21004) Forml Lnguge nd Automt Forml Lnguge nd Automt Theory (CS21004) Khrgpur Khrgpur Khrgpur Forml Lnguge nd Automt Tle of Contents Forml Lnguge nd Automt Khrgpur 1 2 3 Khrgpur Forml Lnguge nd Automt Forml Lnguge

More information

Chapter 2 Finite Automata

Chapter 2 Finite Automata Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht

More information

Non-deterministic Finite Automata

Non-deterministic Finite Automata Non-deterministic Finite Automt Eliminting non-determinism Rdoud University Nijmegen Non-deterministic Finite Automt H. Geuvers nd T. vn Lrhoven Institute for Computing nd Informtion Sciences Intelligent

More information

Announcements. CS 188: Artificial Intelligence Fall VPI Example. VPI Properties. Reasoning over Time. Markov Models. Lecture 19: HMMs 11/4/2008

Announcements. CS 188: Artificial Intelligence Fall VPI Example. VPI Properties. Reasoning over Time. Markov Models. Lecture 19: HMMs 11/4/2008 CS 88: Artificial Intelligence Fall 28 Lecture 9: HMMs /4/28 Announcements Midterm solutions up, submit regrade requests within a week Midterm course evaluation up on web, please fill out! Dan Klein UC

More information

TM M ... TM M. right half left half # # ...

TM M ... TM M. right half left half # # ... CPS 140 - Mthemticl Foundtions of CS Dr. S. Rodger Section: Other Models of Turing Mchines èhndoutè Deænition: Two utomt re equivlent if they ccept the sme lnguge. We will demonstrte equivlence etween

More information

A likelihood-ratio test for identifying probabilistic deterministic real-time automata from positive data

A likelihood-ratio test for identifying probabilistic deterministic real-time automata from positive data A likelihood-rtio test for identifying proilistic deterministic rel-time utomt from positive dt Sicco Verwer 1, Mthijs de Weerdt 2, nd Cees Witteveen 2 1 Eindhoven University of Technology 2 Delft University

More information

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ). AP Clculus BC Review Chpter 8 Prt nd Chpter 9 Things to Know nd Be Ale to Do Know everything from the first prt of Chpter 8 Given n integrnd figure out how to ntidifferentite it using ny of the following

More information

CS 330 Formal Methods and Models Dana Richards, George Mason University, Spring 2016 Quiz Solutions

CS 330 Formal Methods and Models Dana Richards, George Mason University, Spring 2016 Quiz Solutions CS 330 Forml Methods nd Models Dn Richrds, George Mson University, Spring 2016 Quiz Solutions Quiz 1, Propositionl Logic Dte: Ferury 9 1. (4pts) ((p q) (q r)) (p r), prove tutology using truth tles. p

More information

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 17

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 17 CS 70 Discrete Mthemtics nd Proility Theory Summer 2014 Jmes Cook Note 17 I.I.D. Rndom Vriles Estimting the is of coin Question: We wnt to estimte the proportion p of Democrts in the US popultion, y tking

More information

Formal languages, automata, and theory of computation

Formal languages, automata, and theory of computation Mälrdlen University TEN1 DVA337 2015 School of Innovtion, Design nd Engineering Forml lnguges, utomt, nd theory of computtion Thursdy, Novemer 5, 14:10-18:30 Techer: Dniel Hedin, phone 021-107052 The exm

More information

Tutorial 4. b a. h(f) = a b a ln 1. b a dx = ln(b a) nats = log(b a) bits. = ln λ + 1 nats. = log e λ bits. = ln 1 2 ln λ + 1. nats. = ln 2e. bits.

Tutorial 4. b a. h(f) = a b a ln 1. b a dx = ln(b a) nats = log(b a) bits. = ln λ + 1 nats. = log e λ bits. = ln 1 2 ln λ + 1. nats. = ln 2e. bits. Tutoril 4 Exercises on Differentil Entropy. Evlute the differentil entropy h(x) f ln f for the following: () The uniform distribution, f(x) b. (b) The exponentil density, f(x) λe λx, x 0. (c) The Lplce

More information

Simple Harmonic Motion I Sem

Simple Harmonic Motion I Sem Simple Hrmonic Motion I Sem Sllus: Differentil eqution of liner SHM. Energ of prticle, potentil energ nd kinetic energ (derivtion), Composition of two rectngulr SHM s hving sme periods, Lissjous figures.

More information

Quantum Nonlocality Pt. 2: No-Signaling and Local Hidden Variables May 1, / 16

Quantum Nonlocality Pt. 2: No-Signaling and Local Hidden Variables May 1, / 16 Quntum Nonloclity Pt. 2: No-Signling nd Locl Hidden Vriles My 1, 2018 Quntum Nonloclity Pt. 2: No-Signling nd Locl Hidden Vriles My 1, 2018 1 / 16 Non-Signling Boxes The primry lesson from lst lecture

More information

A Symbolic Approach to Control via Approximate Bisimulations

A Symbolic Approach to Control via Approximate Bisimulations A Symolic Approch to Control vi Approximte Bisimultions Antoine Girrd Lortoire Jen Kuntzmnn, Université Joseph Fourier Grenole, Frnce Interntionl Symposium on Innovtive Mthemticl Modelling Tokyo, Jpn,

More information

Terminal Velocity and Raindrop Growth

Terminal Velocity and Raindrop Growth Terminl Velocity nd Rindrop Growth Terminl velocity for rindrop represents blnce in which weight mss times grvity is equl to drg force. F 3 π3 ρ L g in which is drop rdius, g is grvittionl ccelertion,

More information

Module 9: Tries and String Matching

Module 9: Tries and String Matching Module 9: Tries nd String Mtching CS 240 - Dt Structures nd Dt Mngement Sjed Hque Veronik Irvine Tylor Smith Bsed on lecture notes by mny previous cs240 instructors Dvid R. Cheriton School of Computer

More information

Module 9: Tries and String Matching

Module 9: Tries and String Matching Module 9: Tries nd String Mtching CS 240 - Dt Structures nd Dt Mngement Sjed Hque Veronik Irvine Tylor Smith Bsed on lecture notes by mny previous cs240 instructors Dvid R. Cheriton School of Computer

More information

Describe in words how you interpret this quantity. Precisely what information do you get from x?

Describe in words how you interpret this quantity. Precisely what information do you get from x? WAVE FUNCTIONS AND PROBABILITY 1 I: Thinking out the wve function In quntum mechnics, the term wve function usully refers to solution to the Schrödinger eqution, Ψ(x, t) i = 2 2 Ψ(x, t) + V (x)ψ(x, t),

More information

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

More information

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont.

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont. NFA DFA Exmple 3 CMSC 330: Orgniztion of Progrmming Lnguges NFA {B,D,E {A,E {C,D {E Finite Automt, con't. R = { {A,E, {B,D,E, {C,D, {E 2 Equivlence of DFAs nd NFAs Any string from {A to either {D or {CD

More information

Hidden Markov Models. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 19 Apr 2012

Hidden Markov Models. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 19 Apr 2012 Hidden Markov Models Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 19 Apr 2012 Many slides courtesy of Dan Klein, Stuart Russell, or

More information

Some Theory of Computation Exercises Week 1

Some Theory of Computation Exercises Week 1 Some Theory of Computtion Exercises Week 1 Section 1 Deterministic Finite Automt Question 1.3 d d d d u q 1 q 2 q 3 q 4 q 5 d u u u u Question 1.4 Prt c - {w w hs even s nd one or two s} First we sk whether

More information

Fully Kinetic Simulations of Ion Beam Neutralization

Fully Kinetic Simulations of Ion Beam Neutralization Fully Kinetic Simultions of Ion Bem Neutrliztion Joseph Wng University of Southern Cliforni Hideyuki Usui Kyoto University E-mil: josephjw@usc.edu; usui@rish.kyoto-u.c.jp 1. Introduction Ion em emission/neutrliztion

More information

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science CSCI 340: Computtionl Models Kleene s Theorem Chpter 7 Deprtment of Computer Science Unifiction In 1954, Kleene presented (nd proved) theorem which (in our version) sttes tht if lnguge cn e defined y ny

More information

The Value 1 Problem for Probabilistic Automata

The Value 1 Problem for Probabilistic Automata The Vlue 1 Prolem for Proilistic Automt Bruxelles Nthnël Fijlkow LIAFA, Université Denis Diderot - Pris 7, Frnce Institute of Informtics, Wrsw University, Polnd nth@lif.univ-pris-diderot.fr June 20th,

More information

Reasoning with Bayesian Networks

Reasoning with Bayesian Networks Complexity of Probbilistic Inference Compiling Byesin Networks Resoning with Byesin Networks Lecture 5: Complexity of Probbilistic Inference, Compiling Byesin Networks Jinbo Hung NICTA nd ANU Jinbo Hung

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 18: HMMs and Particle Filtering 4/4/2011 Pieter Abbeel --- UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore

More information

CS S-12 Turing Machine Modifications 1. When we added a stack to NFA to get a PDA, we increased computational power

CS S-12 Turing Machine Modifications 1. When we added a stack to NFA to get a PDA, we increased computational power CS411-2015S-12 Turing Mchine Modifictions 1 12-0: Extending Turing Mchines When we dded stck to NFA to get PDA, we incresed computtionl power Cn we do the sme thing for Turing Mchines? Tht is, cn we dd

More information

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true. York University CSE 2 Unit 3. DFA Clsses Converting etween DFA, NFA, Regulr Expressions, nd Extended Regulr Expressions Instructor: Jeff Edmonds Don t chet y looking t these nswers premturely.. For ech

More information