Math 416, Spring 2010 Matrix multiplication; subspaces February 2, 2010 MATRIX MULTIPLICATION; SUBSPACES. 1. Announcements

Size: px
Start display at page:

Download "Math 416, Spring 2010 Matrix multiplication; subspaces February 2, 2010 MATRIX MULTIPLICATION; SUBSPACES. 1. Announcements"

Transcription

1 Math 416, Spring 010 Matrix multiplication; subspaces February, 010 MATRIX MULTIPLICATION; SUBSPACES 1 Announcements Office hours on Wednesday are cancelled because Andy will be out of town If you Andy on Tuesday by 7pm, he ll make sure he responds by Wednesday morning He might not have internet access after Wednesday morning, though, so make sure your s get sent by Tuesday night Also, we have a quiz in class on Thursday Matrix Multiplication We have seen in previous classes that one can define certain kinds of matrix multiplication: the dot product of two vectors, the product of n m matrix on the left of a m 1 column vector Today we ll introduce the mother of these multiplications 1 Composing linear operators Suppose we have a r p matrix A corresponding to an operator T A and a p c matrix B corresponding to T B Notice that since T B : R c R p and T A : R p R r, the composition T A T B is a function from R c to R r Indeed, T A T B is a linear operator from R c to R r We can see that it satisfies the first property of a linear operator by the equations (T A T B ( v + w = T A (T B ( v + w = T A (T B ( v + T B ( w = T A (T B ( v + T A (T B ( w = (T A T B v + (T A T B w where the second equality holds because T B is a linear operator and the third equality holds because T A is a linear operator Similarly we have (T A T B (k v = T A (T B (k v = T A (kt B ( v = k(t A (T B ( v = k(t A T B v Now that we know T A T B is a linear operator, we ask: what is the matrix corresponding to T A T B? T A R r R p R c T B T A T B = T C acs@mathuiucedu acs/w10/math416 Page 1 of 6

2 Math 416, Spring 010 Matrix multiplication; subspaces February, 010 We know that the matrix should be given by applying T A T B to the standard basis vectors e i Hence we get that the matrix associated to T A T B is AB e 1 AB e AB e c If we define b i to be B e i (in other words, b i is the ith column of the matrix B, then this expression simply becomes A b 1 A b A b c Definition 1 If A is an r p matrix and B is a p c matrix, then there is a r c matrix AB defined as AB := Ab1 A b c, where b i is the ith column of the matrix B Notice that the matrix/vector products are well defined: A has p columns and each of the b i have p entries Since we can compute the product of a matrix with a vector using dot products, this means that Example Let Then we have whereas the entry in ith row, jth column of AB = the ith entry of A b j BA = AB = A = ( = the dot product of ith row of A with b j and B = ( = = ( Notice that these two matrices aren t just unequal, they don t even have the same dimension! Let s work through a specific geometric example of linear operators and see how matrix multiplication can be interpretted through these geometric actions Example In your last homework assignment, you showed that the linear operator Rot : R R which rotates vectors through 45 in the counterclockwise direction is given by the matrix ( ( cos(45 sin(45 sin(45 cos(45 = Consider the linear operator Ref : R R which reflects across the line y = 0 (ie, the x-axis This operator has matrix form ( acs@mathuiucedu acs/w10/math416 Page of 6

3 Math 416, Spring 010 Matrix multiplication; subspaces February, 010 Now if we draw the action of the operators Rot Ref and Ref Rot on the standard basis { e 1, e }, they will tell us the matrix forms for ( ( ( and ( We show the action of the operator Rot Ref in Figure 1, and the action of the operator Ref Rot in Figure The green vector tracks the images of e 1 and the red vector tracks the images of e before any action after reflection after rotation Figure 1 before any action after rotation after reflection Figure Notice that since the images of e 1 and e are different for the two operators, the given operators are not the same Without using the algebraic definition of matrix multiplication, one can use these pictures to write the matrix products which result from these two compositions Try it out to convince yourself that the different orders of composition really do produce different matrices Notice: The last few examples illustrates a property that matrix multiplication does not have: commutativity That is to say, if you select random matrices A and B so that both AB and BA are defined, then it is likely the case that AB BA Aside from this, though, matrix multiplication has all the properties you would like it to have acs@mathuiucedu acs/w10/math416 Page 3 of 6

4 Math 416, Spring 010 Matrix multiplication; subspaces February, 010 Theorem 1 Matrix multiplication is associative and distributive, which means A(BC = (ABC for matrices A, B and C which make the given products defined, and A(B + C = AB + AC and (B + CA = BA + CA for matrices A, B and C which make the given products defined Matrix multiplication shows that a matrix and its inverse have a particular product: Theorem Suppose that T : R n R n is an invertible linear operator, and let A be the corresponding n n matrix Then we have AA 1 = A 1 A = I n Proof You ll establish these equalities in your homework 3 Subspaces Last class period we defined the kernel of an r c matrix A: ker(a = { x R c : A x = 0 } Today we ll start by showing that ker(a has some nice properties: 0 is an element of ker(a; if x 1 and x are elements of ker(a, then x 1 + x is an element of ker(a; and if x is an element of ker(a, then for any scalar k we have k x is an element of ker(a Proof Actually, you ve already proven all of these statements in an earlier homework assignment But just for review, here s how the proofs work The first statement comes from the fact that A 0 = 0 For the second statement, notice that A( x 1 + x = A x 1 + A x = = 0 So x 1 + x is in the kernel of A The last statement is proved similarly: A(k x = k(a x = k 0 = 0 There is another collection of vectors associated to a vector A which are very important: the set of all vectors which are in the image of A In set notation, the image of A is written im(a = { b R r : there exists x R c so that A x = b } Theorem 31 For any matrix A, the image of A is the span of the column vectors of A Proof To see this, choose a vector in the image of A, say b Since b is an element of the image of A, there must be a vector x = x 1 x c so that A x = b But recall that A x = A x 1 x c = x 1 v1 + + x c vc, acs@mathuiucedu acs/w10/math416 Page 4 of 6

5 Math 416, Spring 010 Matrix multiplication; subspaces February, 010 where here v i is the ith column of A Hence we have b written as a linear combination of the columns of A as desired, and so b is in the span of the columns of A These steps can be reversed to show that an element in the span of the column vectors is in the image of A The image of a matrix satisfies conditions analogous to those which we saw in the kernel Theorem 3 For an n m matrix A, 0 is an element of im(a; if b 1 and b are elements of im(a, then b 1 + b is an element of im(a; and if b is an element of im(a, then for any scalar k we have k b is an element of im(a Proof To see that 0 is in the image, we must find a vector x so that A x = 0 But of course A 0 = 0, and so we can choose x = 0 Now suppose b 1 and b are elements in the image of A To show that b 1 + b is in the image of A, we need to find a vector x so that A x = b 1 + b Since b 1 and b are in the image of A, this means there exist inputs x 1 and x so that A x 1 = b 1 and A x = b Hence we have A( x 1 + x = A x 1 + A x = b 1 + b, and so we know the sum b 1 + b is in the image of A You can imagine that a similar proof shows the last condition With this terminology, we now have a handful of ways for expressing when a matrix A represents an invertible linear operator Theorem 33 For an n n matrix, the following statements are equivalent; that is, if one of them is true, then all of them are true, and if one is false, then all are false: A is an invertible matrix rref(a = I n A has rank n For any b R n, the system A x = b has a unique solution ker(a = { 0 } im(a = R n Proof We ve already seen these statements, with the exception of the last statement We ll show that im(a = R n is equivalent to the statement that rank(a = n Suppose, then, that im(a = R n Suppose, for the sake of contradiction, that rank(a < n In the last homework assignment you showed that this implies the existence of some b R n so that A x = b has no solutions This would force b im(a, contradicting the assumption that im(a = R n Hence we must conclude that rank(a = n Conversely, suppose that rank(a = n Since A is an n n matrix, a previous theorem tells us that for any b R n, there is a vector x R n with the property that A x = b This is precisely what it means for b to be an element of im(a Since b was arbitrary, this means that im(a must contain all vectors in R n acs@mathuiucedu acs/w10/math416 Page 5 of 6

6 Math 416, Spring 010 Matrix multiplication; subspaces February, 010 The three conditions we have seen in ker(a and im(a endow these sets with special properties which are useful in linear algebra Essentially these properties give ker(a and im(a some stability, in that one can t leave either collection through additions and scalar multiplication We ll be interested in these kinds of stable collections of vectors for the rest of the course Definition 31 A collection of vectors W R n is called a subspace if 0 is an element of W; whenever w 1 and w are elements of W, then w 1 + w are elements of W whenever w is an element of W and k is a scalar, then k w is an element of W Example Suppose that { v 1,, v c } is a collection of vectors in R r Then the span of these vectors is a subspace You can prove this bare-handed, or you can recall that im v 1 v c = span { v 1,, v c } Since we ve already seen that the image of a matrix is a subspace, this means that the given span is also a subspace Non-example The following shaded regions are not subspaces, because they each fail (at least one condition necessary to be a subspace One non-subspace Another non-subspace Figure 3 acs@mathuiucedu acs/w10/math416 Page 6 of 6

Answers in blue. If you have questions or spot an error, let me know. 1. Find all matrices that commute with A =. 4 3

Answers in blue. If you have questions or spot an error, let me know. 1. Find all matrices that commute with A =. 4 3 Answers in blue. If you have questions or spot an error, let me know. 3 4. Find all matrices that commute with A =. 4 3 a b If we set B = and set AB = BA, we see that 3a + 4b = 3a 4c, 4a + 3b = 3b 4d,

More information

Math 21b: Linear Algebra Spring 2018

Math 21b: Linear Algebra Spring 2018 Math b: Linear Algebra Spring 08 Homework 8: Basis This homework is due on Wednesday, February 4, respectively on Thursday, February 5, 08. Which of the following sets are linear spaces? Check in each

More information

Dot Products, Transposes, and Orthogonal Projections

Dot Products, Transposes, and Orthogonal Projections Dot Products, Transposes, and Orthogonal Projections David Jekel November 13, 2015 Properties of Dot Products Recall that the dot product or standard inner product on R n is given by x y = x 1 y 1 + +

More information

Math 416, Spring 2010 More on Algebraic and Geometric Properties January 21, 2010 MORE ON ALGEBRAIC AND GEOMETRIC PROPERTIES

Math 416, Spring 2010 More on Algebraic and Geometric Properties January 21, 2010 MORE ON ALGEBRAIC AND GEOMETRIC PROPERTIES Math 46, Spring 2 More on Algebraic and Geometric Properties January 2, 2 MORE ON ALGEBRAIC AND GEOMETRIC PROPERTIES Algebraic properties Algebraic properties of matrix/vector multiplication Last time

More information

Math 416, Spring 2010 Gram-Schmidt, the QR-factorization, Orthogonal Matrices March 4, 2010 GRAM-SCHMIDT, THE QR-FACTORIZATION, ORTHOGONAL MATRICES

Math 416, Spring 2010 Gram-Schmidt, the QR-factorization, Orthogonal Matrices March 4, 2010 GRAM-SCHMIDT, THE QR-FACTORIZATION, ORTHOGONAL MATRICES Math 46, Spring 00 Gram-Schmidt, the QR-factorization, Orthogonal Matrices March 4, 00 GRAM-SCHMIDT, THE QR-FACTORIZATION, ORTHOGONAL MATRICES Recap Yesterday we talked about several new, important concepts

More information

is Use at most six elementary row operations. (Partial

is Use at most six elementary row operations. (Partial MATH 235 SPRING 2 EXAM SOLUTIONS () (6 points) a) Show that the reduced row echelon form of the augmented matrix of the system x + + 2x 4 + x 5 = 3 x x 3 + x 4 + x 5 = 2 2x + 2x 3 2x 4 x 5 = 3 is. Use

More information

S09 MTH 371 Linear Algebra NEW PRACTICE QUIZ 4, SOLUTIONS Prof. G.Todorov February 15, 2009 Please, justify your answers.

S09 MTH 371 Linear Algebra NEW PRACTICE QUIZ 4, SOLUTIONS Prof. G.Todorov February 15, 2009 Please, justify your answers. S09 MTH 37 Linear Algebra NEW PRACTICE QUIZ 4, SOLUTIONS Prof. G.Todorov February, 009 Please, justify your answers. 3 0. Let A = 0 3. 7 Determine whether the column vectors of A are dependent or independent.

More information

Announcements Wednesday, October 04

Announcements Wednesday, October 04 Announcements Wednesday, October 04 Please fill out the mid-semester survey under Quizzes on Canvas. WeBWorK 1.8, 1.9 are due today at 11:59pm. The quiz on Friday covers 1.7, 1.8, and 1.9. My office is

More information

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2 Final Review Sheet The final will cover Sections Chapters 1,2,3 and 4, as well as sections 5.1-5.4, 6.1-6.2 and 7.1-7.3 from chapters 5,6 and 7. This is essentially all material covered this term. Watch

More information

We see that this is a linear system with 3 equations in 3 unknowns. equation is A x = b, where

We see that this is a linear system with 3 equations in 3 unknowns. equation is A x = b, where Practice Problems Math 35 Spring 7: Solutions. Write the system of equations as a matrix equation and find all solutions using Gauss elimination: x + y + 4z =, x + 3y + z = 5, x + y + 5z = 3. We see that

More information

Math 217 Midterm 1. Winter Solutions. Question Points Score Total: 100

Math 217 Midterm 1. Winter Solutions. Question Points Score Total: 100 Math 7 Midterm Winter 4 Solutions Name: Section: Question Points Score 8 5 3 4 5 5 6 8 7 6 8 8 Total: Math 7 Solutions Midterm, Page of 7. Write complete, precise definitions for each of the following

More information

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS 1. HW 1: Due September 4 1.1.21. Suppose v, w R n and c is a scalar. Prove that Span(v + cw, w) = Span(v, w). We must prove two things: that every element

More information

Math 416, Spring 2010 Coordinate systems and Change of Basis February 16, 2010 COORDINATE SYSTEMS AND CHANGE OF BASIS. 1.

Math 416, Spring 2010 Coordinate systems and Change of Basis February 16, 2010 COORDINATE SYSTEMS AND CHANGE OF BASIS. 1. Math 46 Spring Coordinate systems and Change of asis February 6 COORDINAE SYSEMS AND CHANGE OF ASIS Announcements Don t forget that we have a quiz on hursday and test coming up the following hursday Finishing

More information

Announcements Monday, September 18

Announcements Monday, September 18 Announcements Monday, September 18 WeBWorK 1.4, 1.5 are due on Wednesday at 11:59pm. The first midterm is on this Friday, September 22. Midterms happen during recitation. The exam covers through 1.5. About

More information

Math 220 F11 Lecture Notes

Math 220 F11 Lecture Notes Math 22 F Lecture Notes William Chen November 4, 2. Lecture. Firstly, lets just get some notation out of the way. Notation. R, Q, C, Z, N,,,, {},, A B. Everyone in high school should have studied equations

More information

Spring 2015 Midterm 1 03/04/15 Lecturer: Jesse Gell-Redman

Spring 2015 Midterm 1 03/04/15 Lecturer: Jesse Gell-Redman Math 0 Spring 05 Midterm 03/04/5 Lecturer: Jesse Gell-Redman Time Limit: 50 minutes Name (Print): Teaching Assistant This exam contains pages (including this cover page) and 5 problems. Check to see if

More information

Math 110 Answers for Homework 6

Math 110 Answers for Homework 6 Math 0 Answers for Homework 6. We know both the matrix A, and its RREF: 0 6 A = 0 0 9 0 0 0 0 0 0 0 (a) A basis for the image of A is (,, ), (0,, 0), and (, 0, ). The reason we know this is that we know

More information

Eigenspaces. (c) Find the algebraic multiplicity and the geometric multiplicity for the eigenvaules of A.

Eigenspaces. (c) Find the algebraic multiplicity and the geometric multiplicity for the eigenvaules of A. Eigenspaces 1. (a) Find all eigenvalues and eigenvectors of A = (b) Find the corresponding eigenspaces. [ ] 1 1 1 Definition. If A is an n n matrix and λ is a scalar, the λ-eigenspace of A (usually denoted

More information

Announcements Monday, October 02

Announcements Monday, October 02 Announcements Monday, October 02 Please fill out the mid-semester survey under Quizzes on Canvas WeBWorK 18, 19 are due Wednesday at 11:59pm The quiz on Friday covers 17, 18, and 19 My office is Skiles

More information

Linear Algebra (MATH ) Spring 2011 Final Exam Practice Problem Solutions

Linear Algebra (MATH ) Spring 2011 Final Exam Practice Problem Solutions Linear Algebra (MATH 4) Spring 2 Final Exam Practice Problem Solutions Instructions: Try the following on your own, then use the book and notes where you need help. Afterwards, check your solutions with

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 6

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 6 EECS 16A Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 6 6.1 Introduction: Matrix Inversion In the last note, we considered a system of pumps and reservoirs where the water

More information

2. (10 pts) How many vectors are in the null space of the matrix A = 0 1 1? (i). Zero. (iv). Three. (ii). One. (v).

2. (10 pts) How many vectors are in the null space of the matrix A = 0 1 1? (i). Zero. (iv). Three. (ii). One. (v). Exam 3 MAS 3105 Applied Linear Algebra, Spring 2018 (Clearly!) Print Name: Apr 10, 2018 Read all of what follows carefully before starting! 1. This test has 7 problems and is worth 110 points. Please be

More information

18.06 Problem Set 3 Due Wednesday, 27 February 2008 at 4 pm in

18.06 Problem Set 3 Due Wednesday, 27 February 2008 at 4 pm in 8.6 Problem Set 3 Due Wednesday, 27 February 28 at 4 pm in 2-6. Problem : Do problem 7 from section 2.7 (pg. 5) in the book. Solution (2+3+3+2 points) a) False. One example is when A = [ ] 2. 3 4 b) False.

More information

Chapter SSM: Linear Algebra. 5. Find all x such that A x = , so that x 1 = x 2 = 0.

Chapter SSM: Linear Algebra. 5. Find all x such that A x = , so that x 1 = x 2 = 0. Chapter Find all x such that A x : Chapter, so that x x ker(a) { } Find all x such that A x ; note that all x in R satisfy the equation, so that ker(a) R span( e, e ) 5 Find all x such that A x 5 ; x x

More information

Math 110, Spring 2015: Midterm Solutions

Math 110, Spring 2015: Midterm Solutions Math 11, Spring 215: Midterm Solutions These are not intended as model answers ; in many cases far more explanation is provided than would be necessary to receive full credit. The goal here is to make

More information

Linear Algebra, Summer 2011, pt. 2

Linear Algebra, Summer 2011, pt. 2 Linear Algebra, Summer 2, pt. 2 June 8, 2 Contents Inverses. 2 Vector Spaces. 3 2. Examples of vector spaces..................... 3 2.2 The column space......................... 6 2.3 The null space...........................

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

Chapter 2. Matrix Arithmetic. Chapter 2

Chapter 2. Matrix Arithmetic. Chapter 2 Matrix Arithmetic Matrix Addition and Subtraction Addition and subtraction act element-wise on matrices. In order for the addition/subtraction (A B) to be possible, the two matrices A and B must have the

More information

This lecture is a review for the exam. The majority of the exam is on what we ve learned about rectangular matrices.

This lecture is a review for the exam. The majority of the exam is on what we ve learned about rectangular matrices. Exam review This lecture is a review for the exam. The majority of the exam is on what we ve learned about rectangular matrices. Sample question Suppose u, v and w are non-zero vectors in R 7. They span

More information

Math 31 Lesson Plan. Day 5: Intro to Groups. Elizabeth Gillaspy. September 28, 2011

Math 31 Lesson Plan. Day 5: Intro to Groups. Elizabeth Gillaspy. September 28, 2011 Math 31 Lesson Plan Day 5: Intro to Groups Elizabeth Gillaspy September 28, 2011 Supplies needed: Sign in sheet Goals for students: Students will: Improve the clarity of their proof-writing. Gain confidence

More information

x y + z = 3 2y z = 1 4x + y = 0

x y + z = 3 2y z = 1 4x + y = 0 MA 253: Practice Exam Solutions You may not use a graphing calculator, computer, textbook, notes, or refer to other people (except the instructor). Show all of your work; your work is your answer. Problem

More information

Announcements Wednesday, October 10

Announcements Wednesday, October 10 Announcements Wednesday, October 10 The second midterm is on Friday, October 19 That is one week from this Friday The exam covers 35, 36, 37, 39, 41, 42, 43, 44 (through today s material) WeBWorK 42, 43

More information

MAT2342 : Introduction to Applied Linear Algebra Mike Newman, fall Projections. introduction

MAT2342 : Introduction to Applied Linear Algebra Mike Newman, fall Projections. introduction MAT4 : Introduction to Applied Linear Algebra Mike Newman fall 7 9. Projections introduction One reason to consider projections is to understand approximate solutions to linear systems. A common example

More information

3x + 2y 2z w = 3 x + y + z + 2w = 5 3y 3z 3w = 0. 2x + y z = 0 x + 2y + 4z = 3 2y + 6z = 4. 5x + 6y + 2z = 28 4x + 4y + z = 20 2x + 3y + z = 13

3x + 2y 2z w = 3 x + y + z + 2w = 5 3y 3z 3w = 0. 2x + y z = 0 x + 2y + 4z = 3 2y + 6z = 4. 5x + 6y + 2z = 28 4x + 4y + z = 20 2x + 3y + z = 13 Answers in blue. If you have questions or spot an error, let me know.. Use Gauss-Jordan elimination to find all solutions of the system: (a) (b) (c) (d) x t/ y z = 2 t/ 2 4t/ w t x 2t y = 2 t z t x 2 y

More information

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018 Homework #1 Assigned: August 20, 2018 Review the following subjects involving systems of equations and matrices from Calculus II. Linear systems of equations Converting systems to matrix form Pivot entry

More information

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2 Week 22 Equations, Matrices and Transformations Coefficient Matrix and Vector Forms of a Linear System Suppose we have a system of m linear equations in n unknowns a 11 x 1 + a 12 x 2 + + a 1n x n b 1

More information

Topic 2 Quiz 2. choice C implies B and B implies C. correct-choice C implies B, but B does not imply C

Topic 2 Quiz 2. choice C implies B and B implies C. correct-choice C implies B, but B does not imply C Topic 1 Quiz 1 text A reduced row-echelon form of a 3 by 4 matrix can have how many leading one s? choice must have 3 choice may have 1, 2, or 3 correct-choice may have 0, 1, 2, or 3 choice may have 0,

More information

Math 33A Discussion Notes

Math 33A Discussion Notes Math 33A Discussion Notes Jean-Michel Maldague October 21, 2017 Week 3 Incomplete! Will update soon. - A function T : R k R n is called injective, or one-to-one, if each input gets a unique output. The

More information

Choose three of: Choose three of: Choose three of:

Choose three of: Choose three of: Choose three of: MATH Final Exam (Version ) Solutions July 8, 8 S. F. Ellermeyer Name Instructions. Remember to include all important details of your work. You will not get full credit (or perhaps even any partial credit)

More information

MATH240: Linear Algebra Exam #1 solutions 6/12/2015 Page 1

MATH240: Linear Algebra Exam #1 solutions 6/12/2015 Page 1 MATH4: Linear Algebra Exam # solutions 6//5 Page Write legibly and show all work. No partial credit can be given for an unjustified, incorrect answer. Put your name in the top right corner and sign the

More information

irst we need to know that there are many ways to indicate multiplication; for example the product of 5 and 7 can be written in a variety of ways:

irst we need to know that there are many ways to indicate multiplication; for example the product of 5 and 7 can be written in a variety of ways: CH 2 VARIABLES INTRODUCTION F irst we need to know that there are many ways to indicate multiplication; for example the product of 5 and 7 can be written in a variety of ways: 5 7 5 7 5(7) (5)7 (5)(7)

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

MATH Mathematics for Agriculture II

MATH Mathematics for Agriculture II MATH 10240 Mathematics for Agriculture II Academic year 2018 2019 UCD School of Mathematics and Statistics Contents Chapter 1. Linear Algebra 1 1. Introduction to Matrices 1 2. Matrix Multiplication 3

More information

MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix

MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix Definition: Let L : V 1 V 2 be a linear operator. The null space N (L) of L is the subspace of V 1 defined by N (L) = {x

More information

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education MTH 3 Linear Algebra Study Guide Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education June 3, ii Contents Table of Contents iii Matrix Algebra. Real Life

More information

Math 21b. Review for Final Exam

Math 21b. Review for Final Exam Math 21b. Review for Final Exam Thomas W. Judson Spring 2003 General Information The exam is on Thursday, May 15 from 2:15 am to 5:15 pm in Jefferson 250. Please check with the registrar if you have a

More information

Math 123, Week 5: Linear Independence, Basis, and Matrix Spaces. Section 1: Linear Independence

Math 123, Week 5: Linear Independence, Basis, and Matrix Spaces. Section 1: Linear Independence Math 123, Week 5: Linear Independence, Basis, and Matrix Spaces Section 1: Linear Independence Recall that every row on the left-hand side of the coefficient matrix of a linear system A x = b which could

More information

Announcements Monday, October 29

Announcements Monday, October 29 Announcements Monday, October 29 WeBWorK on determinents due on Wednesday at :59pm. The quiz on Friday covers 5., 5.2, 5.3. My office is Skiles 244 and Rabinoffice hours are: Mondays, 2 pm; Wednesdays,

More information

Evaluating Determinants by Row Reduction

Evaluating Determinants by Row Reduction Evaluating Determinants by Row Reduction MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives Reduce a matrix to row echelon form and evaluate its determinant.

More information

MATH 2210Q MIDTERM EXAM I PRACTICE PROBLEMS

MATH 2210Q MIDTERM EXAM I PRACTICE PROBLEMS MATH Q MIDTERM EXAM I PRACTICE PROBLEMS Date and place: Thursday, November, 8, in-class exam Section : : :5pm at MONT Section : 9: :5pm at MONT 5 Material: Sections,, 7 Lecture 9 8, Quiz, Worksheet 9 8,

More information

Announcements Wednesday, September 27

Announcements Wednesday, September 27 Announcements Wednesday, September 27 The midterm will be returned in recitation on Friday. You can pick it up from me in office hours before then. Keep tabs on your grades on Canvas. WeBWorK 1.7 is due

More information

Section 4.5. Matrix Inverses

Section 4.5. Matrix Inverses Section 4.5 Matrix Inverses The Definition of Inverse Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is the number b such that ab = 1. We define the inverse of a matrix in almost

More information

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

BASIC NOTIONS. x + y = 1 3, 3x 5y + z = A + 3B,C + 2D, DC are not defined. A + C =

BASIC NOTIONS. x + y = 1 3, 3x 5y + z = A + 3B,C + 2D, DC are not defined. A + C = CHAPTER I BASIC NOTIONS (a) 8666 and 8833 (b) a =6,a =4 will work in the first case, but there are no possible such weightings to produce the second case, since Student and Student 3 have to end up with

More information

1 Last time: multiplying vectors matrices

1 Last time: multiplying vectors matrices MATH Linear algebra (Fall 7) Lecture Last time: multiplying vectors matrices Given a matrix A = a a a n a a a n and a vector v = a m a m a mn Av = v a a + v a a v v + + Rn we define a n a n a m a m a mn

More information

1 Review of the dot product

1 Review of the dot product Any typographical or other corrections about these notes are welcome. Review of the dot product The dot product on R n is an operation that takes two vectors and returns a number. It is defined by n u

More information

MTH 362: Advanced Engineering Mathematics

MTH 362: Advanced Engineering Mathematics MTH 362: Advanced Engineering Mathematics Lecture 5 Jonathan A. Chávez Casillas 1 1 University of Rhode Island Department of Mathematics September 26, 2017 1 Linear Independence and Dependence of Vectors

More information

Math 24 Spring 2012 Questions (mostly) from the Textbook

Math 24 Spring 2012 Questions (mostly) from the Textbook Math 24 Spring 2012 Questions (mostly) from the Textbook 1. TRUE OR FALSE? (a) The zero vector space has no basis. (F) (b) Every vector space that is generated by a finite set has a basis. (c) Every vector

More information

Matrix-Vector Products and the Matrix Equation Ax = b

Matrix-Vector Products and the Matrix Equation Ax = b Matrix-Vector Products and the Matrix Equation Ax = b A. Havens Department of Mathematics University of Massachusetts, Amherst January 31, 2018 Outline 1 Matrices Acting on Vectors Linear Combinations

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1)

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1) EXERCISE SET 5. 6. The pair (, 2) is in the set but the pair ( )(, 2) = (, 2) is not because the first component is negative; hence Axiom 6 fails. Axiom 5 also fails. 8. Axioms, 2, 3, 6, 9, and are easily

More information

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work. Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has

More information

MAT 2037 LINEAR ALGEBRA I web:

MAT 2037 LINEAR ALGEBRA I web: MAT 237 LINEAR ALGEBRA I 2625 Dokuz Eylül University, Faculty of Science, Department of Mathematics web: Instructor: Engin Mermut http://kisideuedutr/enginmermut/ HOMEWORK 2 MATRIX ALGEBRA Textbook: Linear

More information

Announcements Wednesday, September 05

Announcements Wednesday, September 05 Announcements Wednesday, September 05 WeBWorK 2.2, 2.3 due today at 11:59pm. The quiz on Friday coers through 2.3 (last week s material). My office is Skiles 244 and Rabinoffice hours are: Mondays, 12

More information

22A-2 SUMMER 2014 LECTURE 5

22A-2 SUMMER 2014 LECTURE 5 A- SUMMER 0 LECTURE 5 NATHANIEL GALLUP Agenda Elimination to the identity matrix Inverse matrices LU factorization Elimination to the identity matrix Previously, we have used elimination to get a system

More information

Tues Feb Vector spaces and subspaces. Announcements: Warm-up Exercise:

Tues Feb Vector spaces and subspaces. Announcements: Warm-up Exercise: Math 2270-004 Week 7 notes We will not necessarily finish the material from a given day's notes on that day. We may also add or subtract some material as the week progresses, but these notes represent

More information

Matrix Arithmetic. a 11 a. A + B = + a m1 a mn. + b. a 11 + b 11 a 1n + b 1n = a m1. b m1 b mn. and scalar multiplication for matrices via.

Matrix Arithmetic. a 11 a. A + B = + a m1 a mn. + b. a 11 + b 11 a 1n + b 1n = a m1. b m1 b mn. and scalar multiplication for matrices via. Matrix Arithmetic There is an arithmetic for matrices that can be viewed as extending the arithmetic we have developed for vectors to the more general setting of rectangular arrays: if A and B are m n

More information

Announcements Wednesday, October 25

Announcements Wednesday, October 25 Announcements Wednesday, October 25 The midterm will be returned in recitation on Friday. The grade breakdown is posted on Piazza. You can pick it up from me in office hours before then. Keep tabs on your

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

Chapter 2 Subspaces of R n and Their Dimensions

Chapter 2 Subspaces of R n and Their Dimensions Chapter 2 Subspaces of R n and Their Dimensions Vector Space R n. R n Definition.. The vector space R n is a set of all n-tuples (called vectors) x x 2 x =., where x, x 2,, x n are real numbers, together

More information

Lecture 1 Systems of Linear Equations and Matrices

Lecture 1 Systems of Linear Equations and Matrices Lecture 1 Systems of Linear Equations and Matrices Math 19620 Outline of Course Linear Equations and Matrices Linear Transformations, Inverses Bases, Linear Independence, Subspaces Abstract Vector Spaces

More information

22A-2 SUMMER 2014 LECTURE Agenda

22A-2 SUMMER 2014 LECTURE Agenda 22A-2 SUMMER 204 LECTURE 2 NATHANIEL GALLUP The Dot Product Continued Matrices Group Work Vectors and Linear Equations Agenda 2 Dot Product Continued Angles between vectors Given two 2-dimensional vectors

More information

Math 320, spring 2011 before the first midterm

Math 320, spring 2011 before the first midterm Math 320, spring 2011 before the first midterm Typical Exam Problems 1 Consider the linear system of equations 2x 1 + 3x 2 2x 3 + x 4 = y 1 x 1 + 3x 2 2x 3 + 2x 4 = y 2 x 1 + 2x 3 x 4 = y 3 where x 1,,

More information

Lecture Summaries for Linear Algebra M51A

Lecture Summaries for Linear Algebra M51A These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

MATH 15a: Linear Algebra Practice Exam 2

MATH 15a: Linear Algebra Practice Exam 2 MATH 5a: Linear Algebra Practice Exam 2 Write all answers in your exam booklet. Remember that you must show all work and justify your answers for credit. No calculators are allowed. Good luck!. Compute

More information

Problem 1: (3 points) Recall that the dot product of two vectors in R 3 is

Problem 1: (3 points) Recall that the dot product of two vectors in R 3 is Linear Algebra, Spring 206 Homework 3 Name: Problem : (3 points) Recall that the dot product of two vectors in R 3 is a x b y = ax + by + cz, c z and this is essentially the same as the matrix multiplication

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

Spring 2014 Midterm 1 02/26/14 Lecturer: Jesus Martinez Garcia

Spring 2014 Midterm 1 02/26/14 Lecturer: Jesus Martinez Garcia Math 0 Spring 04 Midterm 0/6/4 Lecturer: Jesus Martinez Garcia Time Limit: 50 minutes Name (Print: Teaching Assistant This exam contains 9 pages (including this cover page and 4 problems Check to see if

More information

Math 1B03/1ZC3 - Tutorial 2. Jan. 21st/24th, 2014

Math 1B03/1ZC3 - Tutorial 2. Jan. 21st/24th, 2014 Math 1B03/1ZC3 - Tutorial 2 Jan. 21st/24th, 2014 Tutorial Info: Website: http://ms.mcmaster.ca/ dedieula. Math Help Centre: Wednesdays 2:30-5:30pm. Email: dedieula@math.mcmaster.ca. Does the Commutative

More information

Linear Algebra Highlights

Linear Algebra Highlights Linear Algebra Highlights Chapter 1 A linear equation in n variables is of the form a 1 x 1 + a 2 x 2 + + a n x n. We can have m equations in n variables, a system of linear equations, which we want to

More information

Announcements Monday, November 13

Announcements Monday, November 13 Announcements Monday, November 13 The third midterm is on this Friday, November 17. The exam covers 3.1, 3.2, 5.1, 5.2, 5.3, and 5.5. About half the problems will be conceptual, and the other half computational.

More information

OHSx XM511 Linear Algebra: Solutions to Online True/False Exercises

OHSx XM511 Linear Algebra: Solutions to Online True/False Exercises This document gives the solutions to all of the online exercises for OHSx XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Answers are in square brackets [. Lecture 02 ( 1.1)

More information

I = i 0,

I = i 0, Special Types of Matrices Certain matrices, such as the identity matrix 0 0 0 0 0 0 I = 0 0 0, 0 0 0 have a special shape, which endows the matrix with helpful properties The identity matrix is an example

More information

Math 103, Summer 2006 Determinants July 25, 2006 DETERMINANTS. 1. Some Motivation

Math 103, Summer 2006 Determinants July 25, 2006 DETERMINANTS. 1. Some Motivation DETERMINANTS 1. Some Motivation Today we re going to be talking about erminants. We ll see the definition in a minute, but before we get into ails I just want to give you an idea of why we care about erminants.

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.4 The Projection Matrix 1 Chapter 6. Orthogonality 6.4 The Projection Matrix Note. In Section 6.1 (Projections), we projected a vector b R n onto a subspace W of R n. We did so by finding a basis for

More information

Math 3C Lecture 20. John Douglas Moore

Math 3C Lecture 20. John Douglas Moore Math 3C Lecture 20 John Douglas Moore May 18, 2009 TENTATIVE FORMULA I Midterm I: 20% Midterm II: 20% Homework: 10% Quizzes: 10% Final: 40% TENTATIVE FORMULA II Higher of two midterms: 30% Homework: 10%

More information

Math 360 Linear Algebra Fall Class Notes. a a a a a a. a a a

Math 360 Linear Algebra Fall Class Notes. a a a a a a. a a a Math 360 Linear Algebra Fall 2008 9-10-08 Class Notes Matrices As we have already seen, a matrix is a rectangular array of numbers. If a matrix A has m columns and n rows, we say that its dimensions are

More information

Math 416, Spring 2010 The algebra of determinants March 16, 2010 THE ALGEBRA OF DETERMINANTS. 1. Determinants

Math 416, Spring 2010 The algebra of determinants March 16, 2010 THE ALGEBRA OF DETERMINANTS. 1. Determinants THE ALGEBRA OF DETERMINANTS 1. Determinants We have already defined the determinant of a 2 2 matrix: det = ad bc. We ve also seen that it s handy for determining when a matrix is invertible, and when it

More information

Inverses of Square Matrices

Inverses of Square Matrices Inverses of Square Matrices A. Havens Department of Mathematics University of Massachusetts, Amherst February 23-26, 2018 Outline 1 Defining Inverses Inverses for Products and Functions Defining Inverse

More information

Math 313 Chapter 5 Review

Math 313 Chapter 5 Review Math 313 Chapter 5 Review Howard Anton, 9th Edition May 2010 Do NOT write on me! Contents 1 5.1 Real Vector Spaces 2 2 5.2 Subspaces 3 3 5.3 Linear Independence 4 4 5.4 Basis and Dimension 5 5 5.5 Row

More information

Announcements September 19

Announcements September 19 Announcements September 19 Please complete the mid-semester CIOS survey this week The first midterm will take place during recitation a week from Friday, September 3 It covers Chapter 1, sections 1 5 and

More information

Activity: Derive a matrix from input-output pairs

Activity: Derive a matrix from input-output pairs Activity: Derive a matrix from input-output pairs [ ] a b The 2 2 matrix A = satisfies the following equations: c d Calculate the entries of the matrix. [ ] [ ] a b 5 c d 10 [ ] [ ] a b 2 c d 1 = = [ ]

More information

Vector Spaces, Orthogonality, and Linear Least Squares

Vector Spaces, Orthogonality, and Linear Least Squares Week Vector Spaces, Orthogonality, and Linear Least Squares. Opening Remarks.. Visualizing Planes, Lines, and Solutions Consider the following system of linear equations from the opener for Week 9: χ χ

More information

Examples True or false: 3. Let A be a 3 3 matrix. Then there is a pattern in A with precisely 4 inversions.

Examples True or false: 3. Let A be a 3 3 matrix. Then there is a pattern in A with precisely 4 inversions. The exam will cover Sections 6.-6.2 and 7.-7.4: True/False 30% Definitions 0% Computational 60% Skip Minors and Laplace Expansion in Section 6.2 and p. 304 (trajectories and phase portraits) in Section

More information

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N.

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N. Math 410 Homework Problems In the following pages you will find all of the homework problems for the semester. Homework should be written out neatly and stapled and turned in at the beginning of class

More information

Math 308 Discussion Problems #4 Chapter 4 (after 4.3)

Math 308 Discussion Problems #4 Chapter 4 (after 4.3) Math 38 Discussion Problems #4 Chapter 4 (after 4.3) () (after 4.) Let S be a plane in R 3 passing through the origin, so that S is a two-dimensional subspace of R 3. Say that a linear transformation T

More information

EXAM 2 REVIEW DAVID SEAL

EXAM 2 REVIEW DAVID SEAL EXAM 2 REVIEW DAVID SEAL 3. Linear Systems and Matrices 3.2. Matrices and Gaussian Elimination. At this point in the course, you all have had plenty of practice with Gaussian Elimination. Be able to row

More information

Chapter 2 Notes, Linear Algebra 5e Lay

Chapter 2 Notes, Linear Algebra 5e Lay Contents.1 Operations with Matrices..................................1.1 Addition and Subtraction.............................1. Multiplication by a scalar............................ 3.1.3 Multiplication

More information