Vibrational Spectroscopy & Intramolecular Vibrational Redistribution (IVR)

Size: px
Start display at page:

Download "Vibrational Spectroscopy & Intramolecular Vibrational Redistribution (IVR)"

Transcription

1 Vibrational Spectroscopy & Intramolecular Vibrational Redistribution (IVR) 1

2 The Role of Vibrational Energy in Chemical Reactions Unimolecular reactions: The Rice-Rampsberger-Kassel-Marcus (RRKM) theory of unimolecular reaction rate assumes that vibrational energy is randomized (IVR) quickly compared to the rate of the reaction. k 1 A + M A* k -1 collisional activation / deactivation k 2 A* products reaction of energized molecule - Works well in most but not all cases. - The alternative, Slater Theory, was found was found to be unsatisfactory 2

3 Rabinovitch: Chemical Activation (I) and (II) were detected by photolysis at 280 nm in CO/O 2 In mass spec (I) gives m/e = 95 and (II), m/e = 97. The low-pressure data give a small, collisionally noninterceptable fraction of nonrandomized product. The effective rate of intramolecular energy relaxation is 1.1 x sec J. D. Rynbrandt and B. S. Rabinovitch, J. Chem. Phys. 54, 2275 (1971).

4 The Role of Vibrational Energy in Chemical Reactions Bimolecular reactions: Bond-selective chemistry has be demonstrated for simple reactions Only the excited bond was broken to form products. The distribution of vibrational amplitude in a molecule has a dramatic effect on its chemical reactivity. If the vibrational energy was randomized between the two bonds (IVR), then both products would be observed in comparable amounts. 4 Crim, F. F. Acc. Chem. Res. 1999, 32, 877.

5 5 IVR: Concepts from Classical Mechanics If the 3N-6 mass-weighted Cartesian coordinates are q = { q i } then the potential is V ( q ) = V e + 1 f 2 i, j q i q j + 1 (3) f 6 i, j,k q i q j q k + 1 (4 ) f 24 i, j,k,l q i q j q k q l + i, j In the Wilson GF matrix approach to normal modes, we used the approximation that all vibrational amplitudes were small enough that the 3 rd and higher order terms could be neglected. Now we will allow large amplitudes and examine the effects of the the higher order terms. The kinetic energy is T = 1 2 i, j,k i Using Newton s laws of motion, F = ma, and suitable choices of initial conditions (q i and q i for all atoms at t = 0), the classical equations of motion and be integrated. The result is a set of classical trajectories, one for each set of initial conditions. Equivalently, Hamilton s or Lagrange s formulations of classical mechanics may also be used. q i 2 This can also be done in internal coordinates, where the potential energy is simpler, but the kinetic energy is more complicated (i.e. the Watson Hamiltonian). i, j,k,l

6 Regular Motion in Classical Mechanics H 2 O trajectories for (a) normal modes, and (b) local modes. C. Jaffé & Paul Brumer, J. Chem. Phys. 73, 5646 (1980). Even for just the two OH stretches in water, we need 4 dimensions to represent the coordinates and momenta. Such 4-D trajectories lie on a hypertorus: See also J. Ford, Adv. Chem. Phys. 24, 155, (1973). 6

7 Poincaré Surfaces of Section Put a dot on the page whenever the trajectory crosses through the plane of the page. Examples for OH stretches of water: LEFT: normal modes at low energy. S=symmetric stretch; A=asymmetric RIGHT: local modes at higher energy. S becomes unstable. 7 C. Jaffé & Paul Brumer, J. Chem. Phys. 73, 5646 (1980).

8 Bifurcations in Acetylene Michael Kellman website: Normal Modes at low energy New modes are born at higher energies. Trajectories still trace out invariant tori, but their topology is different. 8

9 Classical chaos Poincaré surfaces of section develop some irregular speckled regions. The distance between neighboring trajectories increases exponentially with time until, there is no correlation between them. 9

10 IVR: Quantum Concepts There is no analogous definition of chaos in quantum mechanics because following trajectories would violate the uncertainty principle. The Gaussian Orthogonal Ensemble (GOE) represents a universal strong coupling limit for quantum problems. Set up a Hamiltonian matrix in which all of the entries are chosen from a Gaussian distribution, but the diagonal elements have twice the variance of the rest. Create an ensemble of such matrices; the statistical properties of the ensemble are invariant to any orthogonal transformation. The GOE eigenstates have certain properties: Levels repel a picket fence-like (Wigner) distribution of level spacings Spectral rigidity a long distance correlation between levels A Porter-Thomas distribution of intensities with a few intense lines and a much larger number of very weak lines. 10

11 IVR and Spectroscopy For a single bright state, 1= s, a coherent excitation of the spectrum yields n Ψ( t) = c 1k φ k exp ie t k P j k=1 ( t) = φ j Ψ t ( ) 2 zeroth order states bright dark j vsj spectrum of eigenstates n ψ k Intensities I k Measures of IVR: φ d = Dilution factor n k=1 n 4 c 1k = I k 2 k=1 n k=1 I k 2 1 φ d = lim t t ( ) P 1 t τ IVR is the time for P 1 (t) to decay to 1/e. t 0 dt s h vij 1 Ps(t) The bright state i=1 or s t / ns 1 11 McDonald, J. D. Annu. Rev. Phys. Chem. 1979, 30, 29.

12 Low-Order Resonances and Tier Models 12 Divide bath states into tiers according to coupling order relative to the bright state. Density of resonances at 3 rd and 4 th order play a key role in determining the IVR rate. At right, substitution of Si for C increases the total density of states, but decreases the number of 3 rd and 4 th order resonances, and hence the IVR rate following excitation of the acetylenic CH stretch is slower. Useful reviews: Lehmann, K. K.; Scoles, G.; Pate, B. H. Intramolecular dynamics from infrared eigenstate-resolved spectra. Ann. Rev. Phys. Chem.; Annual Reviews, 1994; Vol. 45; pp 241. Nesbitt, D. J.; Field, R. W. J. Phys. Chem. 1996, 100, Stuchebrukhov, A. A.; Marcus, R. A. J. Chem. Phys. 1993, 98, 6044.

13 Eigenstate-Resolved Spectroscopy Often near-resonant clumps of eigenstates are observed at high resolution. Super-resonance is indirect (low-order) coupling via non-resonant doorway states. Propyne 2ν 1 band 13

14 State-Space Models of IVR with Scaling Gruebele, M. Advances in Chemical Physics 2001, 114, 193. Madsen, D.; Pearman, R.; Gruebele, M. J. Chem. Phys. 1997, 106, Pearman, R.; Gruebele, M. Z. Phys. Chem. (Muenchen) 2000, 214, P 1 ( t) t δ σ / 2 SCCl 2 If low-order resonances dominate then small hops in in the vibrational quantum number state space are expected. In rigid molecules, the coupling matrix element declines by 5x to 20x for each additional coupling order. a small number of large matrix elements and a huge number of very small ones. higher order couplings in aggregate make a significant contribution. In the time domain, this means relaxation times on multiple timescales spread over orders of magnitude. Gives the overall form of power law decays extending to rather longer times than simple exponential decays.

15 Rotational Effects in IVR The form of the Coriolis matrix elements and scaling with J and K was established by E. B. Wilson (J. Chem. Phys. 1936, 4, 313). W. D. Lawrance & A. E. Knight (J. Phys. Chem. 1988, 92, 5900): Phase space volume / Number of states acetylene J = 100 J = 30 J = 2 The acetylene vibration-rotation Hamiltonian is known with precision up to 13,000 cm-1, enabling detailed calculation of the rotational effects on the IVR dynamics kinds of coupling: vibrational l-resonance, anharmonic (Darling-Dennison, etc.), rotational l-resonance, and Coriolis t / fs Calculated volume of phase space explored for acetylene as a function of time following a coherent excitation of the bending vibration {v 4, v 5 } = {14, 2} at a total energy near 10,000 cm -1.

16 Role of Large-Amplitude Motion Gruebele found that the large-amplitude motion of an internal rotator causes coupling matrix elements to decline less steeply only half an order of magnitude per coupling order, increasing the relative importance of direct higher-order couplings. This can make the higher IVR faster for modes connected to the large-amplitude coordinate. Large-amplitude coordinates are in general much more anharmonic than the ordinary small amplitude vibrations. Pearman, R.; Gruebele, M. Z. Phys. Chem. (Muenchen) 2000, 214, Perry, D. S.; Bethardy, G. A.; Go, J. Ber. Bunsen-Ges. Phys. Chem. 1995, 99, 530.

17 Rotational Spectroscopy for the Study of Vibrational (Isomerization) Rates k = 5.6 x 10 9 sec -1 Cyclopropane Carboxoaldehyde Dian, B. C.; Brown, G. G.; Douglass, K. O.; Pate, B. H. Science (Washington, DC, U. S.) 2008, 320,

18 18

Intensities and rates in the spectral domain without eigenvectors.

Intensities and rates in the spectral domain without eigenvectors. UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN: DEPARTMENT OF CHEMISTRY Intensities and rates in the spectral domain without eigenvectors. By: Dr. Martin Gruebele Authors: Brian Nguyen and Drishti Guin 12/10/2013

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lectures

More information

Chapter 29. Quantum Chaos

Chapter 29. Quantum Chaos Chapter 29 Quantum Chaos What happens to a Hamiltonian system that for classical mechanics is chaotic when we include a nonzero h? There is no problem in principle to answering this question: given a classical

More information

Foundations of Chemical Kinetics. Lecture 19: Unimolecular reactions in the gas phase: RRKM theory

Foundations of Chemical Kinetics. Lecture 19: Unimolecular reactions in the gas phase: RRKM theory Foundations of Chemical Kinetics Lecture 19: Unimolecular reactions in the gas phase: RRKM theory Marc R. Roussel Department of Chemistry and Biochemistry Canonical and microcanonical ensembles Canonical

More information

1: Fifty-plus years of theory and running. R. A. Marcus. 1: Fifty years of the Marcus central dogma for electron transfer. J.

1: Fifty-plus years of theory and running. R. A. Marcus. 1: Fifty years of the Marcus central dogma for electron transfer. J. Monday afternoon Ideas of Electron Transfer in Physical Chemistry S. J. Klippenstein and R. J. Cave, Organizers A. A. Stuchebrukhov, Organizer, Presiding 1:20 Introductory Remarks. 1:25 162. Fifty-plus

More information

Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water

Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water N. Huse 1, J. Dreyer 1, E.T.J.Nibbering 1, T. Elsaesser 1 B.D. Bruner 2, M.L. Cowan 2, J.R. Dwyer 2, B. Chugh 2, R.J.D. Miller 2

More information

ARTICLES. Normal-mode analysis without the Hessian: A driven molecular-dynamics approach

ARTICLES. Normal-mode analysis without the Hessian: A driven molecular-dynamics approach JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 2 8 JULY 2003 ARTICLES Normal-mode analysis without the Hessian: A driven molecular-dynamics approach Joel M. Bowman, a) Xiubin Zhang, and Alex Brown Cherry

More information

Quantum Chaos as a Practical Tool in Many-Body Physics

Quantum Chaos as a Practical Tool in Many-Body Physics Quantum Chaos as a Practical Tool in Many-Body Physics Vladimir Zelevinsky NSCL/ Michigan State University Supported by NSF Statistical Nuclear Physics SNP2008 Athens, Ohio July 8, 2008 THANKS B. Alex

More information

Quantum Chaos as a Practical Tool in Many-Body Physics ESQGP Shuryak fest

Quantum Chaos as a Practical Tool in Many-Body Physics ESQGP Shuryak fest Quantum Chaos as a Practical Tool in Many-Body Physics ESQGP Shuryak fest Vladimir Zelevinsky NSCL/ Michigan State University Stony Brook October 3, 2008 Budker Institute of Nuclear Physics, Novosibirsk

More information

Insights on Interfacial Structure, Dynamics and. Proton Transfer from Ultrafast Vibrational Sum. Frequency Generation Spectroscopy of the

Insights on Interfacial Structure, Dynamics and. Proton Transfer from Ultrafast Vibrational Sum. Frequency Generation Spectroscopy of the Insights on Interfacial Structure, Dynamics and Proton Transfer from Ultrafast Vibrational Sum Frequency Generation Spectroscopy of the Alumina(0001)/Water Interface Aashish Tuladhar, Stefan M. Piontek,

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

TSTC Dynamics Lectures July Ned Sibert University of Wisconsin

TSTC Dynamics Lectures July Ned Sibert University of Wisconsin TSTC Dynamics Lectures July 10-15 Ned Sibert University of Wisconsin Transition State Theory and Beyond Collective reaction coordinate for proton transfer. It is generally accepted that the anomalous diffusion

More information

Spectral patterns and ultrafast dynamics in planar acetylene

Spectral patterns and ultrafast dynamics in planar acetylene Eur. Phys. J. D 14, 225 230 (2001) THE EUROPEAN PHYSICAL JOURNAL D c EDP Sciences Società Italiana di Fisica Springer-Verlag 2001 Spectral patterns and ultrafast dynamics in planar acetylene M.E. Kellman

More information

Study of the intramolecular vibrational relaxation by the continued fraction Green function method

Study of the intramolecular vibrational relaxation by the continued fraction Green function method Study of the intramolecular vibrational relaxation by the continued fraction Green function method Alessio Del Monte April 11, 2003 advisors: L. Molinari, N. Manini, G.P. Brivio http://www.mi.infm.it/manini/theses/del

More information

On dynamical tunneling and classical resonances

On dynamical tunneling and classical resonances THE JOURNAL OF CHEMICAL PHYSICS 122, 114109 2005 On dynamical tunneling and classical resonances Srihari Keshavamurthy a Max-Planck-Instiut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187

More information

Charge and Energy Transfer Dynamits in Molecular Systems

Charge and Energy Transfer Dynamits in Molecular Systems Volkhard May, Oliver Kühn Charge and Energy Transfer Dynamits in Molecular Systems Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents 1 Introduction 19 2 Electronic

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.76 Lecture

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Quantum Mechanics II Spring, 2004 Professor Robert W. Field. Problem Sets #8 and #9

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Quantum Mechanics II Spring, 2004 Professor Robert W. Field. Problem Sets #8 and #9 MIT Department of Chemistry 5.74 Spring 2004: Introductory Quantum Mechanics II Course Instructors: Professor Robert Field and Professor Andrei Tokmakoff MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.74 Quantum

More information

Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA)

Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA) Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA) http://dare.uva.nl/document/351205 File ID 351205 Filename 5: Vibrational dynamics of the bending mode of water

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

S.K. Saikin May 22, Lecture 13

S.K. Saikin May 22, Lecture 13 S.K. Saikin May, 007 13 Decoherence I Lecture 13 A physical qubit is never isolated from its environment completely. As a trivial example, as in the case of a solid state qubit implementation, the physical

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Water Dynamics in Cytoplasm-like Crowded Environment Correlates with the Conformational Transition of the Macromolecular Crowder Pramod Kumar Verma,, Achintya Kundu,, Jeong-Hyon

More information

Intramolecular Dynamics

Intramolecular Dynamics Laser Chem. 1983, Vol. 2, pp. 203-217 0278-6273/83/0206-0203512.00/0 (C) harwood academic publishers gmbh Printed in Great Britain Statistical Theory of Unimolecular Reactions and Intramolecular Dynamics

More information

Molecular Vibrations

Molecular Vibrations Molecular Vibrations K. Srihari Department of Chemistry IIT Kanpur 6th March 2007 Chemical Reactions Make/break chemical bonds Rates: How fast? Calculate? Mechanism: Why specific bond(s) break? Control?

More information

Supplementary Figures

Supplementary Figures Supplementary Figures iso ( =2900 cm -1 ) 1.0 0.8 0.6 0.4 0.2 0.0-0.2-0.4 pump cm -1 3450 cm -1 cm -1 cm -1-0.5 0.0 0.5 1.0 1.5 2.0 2.5 delay [ps] Supplementary Figure 1: Raw infrared pump-probe traces.

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

Molecular energy levels and spectroscopy

Molecular energy levels and spectroscopy Molecular energy levels and spectroscopy 1. Translational energy levels The translational energy levels of a molecule are usually taken to be those of a particle in a three-dimensional box: n x E(n x,n

More information

Foundations of Chemical Kinetics. Lecture 18: Unimolecular reactions in the gas phase: RRK theory

Foundations of Chemical Kinetics. Lecture 18: Unimolecular reactions in the gas phase: RRK theory Foundations of Chemical Kinetics Lecture 18: Unimolecular reactions in the gas phase: RRK theory Marc R. Roussel Department of Chemistry and Biochemistry Frequentist interpretation of probability and chemical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2210 Femtosecond torsional relaxation Theoretical methodology: J. Clark, S. Tretiak, T. Nelson, G. Cirmi & G. Lanzani To model non-adiabatic excited state dynamics

More information

Anderson Localization Looking Forward

Anderson Localization Looking Forward Anderson Localization Looking Forward Boris Altshuler Physics Department, Columbia University Collaborations: Also Igor Aleiner Denis Basko, Gora Shlyapnikov, Vincent Michal, Vladimir Kravtsov, Lecture2

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

Theoretical Photochemistry WiSe 2016/17

Theoretical Photochemistry WiSe 2016/17 Theoretical Photochemistry WiSe 2016/17 Lecture 8 Irene Burghardt burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ Theoretical Photochemistry 1 Topics 1. Photophysical

More information

single-molecule fluorescence resonance energy transfer

single-molecule fluorescence resonance energy transfer single-molecule fluorescence resonance energy transfer (2) determing the Förster radius: quantum yield, donor lifetime, spectral overlap, anisotropy michael börsch 26/05/2004 1 fluorescence (1) absorbance

More information

Mike Towrie Central Laser Facility Rutherford Appleton Laboratory. Diamond DIAMOND. Tony Parker, Pavel Matousek

Mike Towrie Central Laser Facility Rutherford Appleton Laboratory. Diamond DIAMOND. Tony Parker, Pavel Matousek Ultrafast deactivation of the electronic excited states of DNA bases and polynucleotides following 267 nm laser excitation explored using picosecond time-resolved infrared spectroscopy 1 Mike Towrie (m.towrie@rl.ac.uk)

More information

PHOTO-DISSOCIATION OF CO 2 GAS BY USING TWO LASERS

PHOTO-DISSOCIATION OF CO 2 GAS BY USING TWO LASERS Proceedings of the 3rd Annual ISC Research Symposium ISCRS 9 April 14, 9, Rolla, Missouri PHOTO-DISSOCIATION OF CO GAS BY USING TWO LASERS Zhi Liang MAE department/zlch5@mst.edu Dr. Hai-Lung Tsai MAE department/tsai@mst.edu

More information

Chemistry 2. Assumed knowledge

Chemistry 2. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

Photoelectron Spectroscopy of the Hydroxymethoxide Anion, H 2 C(OH)O

Photoelectron Spectroscopy of the Hydroxymethoxide Anion, H 2 C(OH)O Supplementary Material for: Photoelectron Spectroscopy of the Hydroxymethoxide Anion, H 2 C(OH)O Allan M. Oliveira, Julia H. Lehman, Anne B. McCoy 2 and W. Carl Lineberger JILA and Department of Chemistry

More information

SIMPLE QUANTUM SYSTEMS

SIMPLE QUANTUM SYSTEMS SIMPLE QUANTUM SYSTEMS Chapters 14, 18 "ceiiinosssttuu" (anagram in Latin which Hooke published in 1676 in his "Description of Helioscopes") and deciphered as "ut tensio sic vis" (elongation of any spring

More information

Quantum control of dissipative systems. 1 Density operators and mixed quantum states

Quantum control of dissipative systems. 1 Density operators and mixed quantum states Quantum control of dissipative systems S. G. Schirmer and A. I. Solomon Quantum Processes Group, The Open University Milton Keynes, MK7 6AA, United Kingdom S.G.Schirmer@open.ac.uk, A.I.Solomon@open.ac.uk

More information

Excitation Dynamics in Quantum Dots. Oleg Prezhdo U. Washington, Seattle

Excitation Dynamics in Quantum Dots. Oleg Prezhdo U. Washington, Seattle Excitation Dynamics in Quantum Dots Oleg Prezhdo U. Washington, Seattle Warwick August 27, 2009 Outline Time-Domain Density Functional Theory & Nonadiabatic Molecular Dynamics Quantum backreaction, surface

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

Molecular beam infrared spectroscopy of the HCCCN HCCH and HCN HCCCCH van der Waals complexes

Molecular beam infrared spectroscopy of the HCCCN HCCH and HCN HCCCCH van der Waals complexes Molecular beam infrared spectroscopy of the HCCCN HCCH and HCN HCCCCH van der Waals complexes X. Yang, a) R. Z. Pearson, K. K. Lehmann, and G. Scoles Department of Chemistry, Princeton University, Princeton,

More information

Analysis of the ultrafast dynamics of the silver trimer upon photodetachment

Analysis of the ultrafast dynamics of the silver trimer upon photodetachment J. Phys. B: At. Mol. Opt. Phys. 29 (1996) L545 L549. Printed in the UK LETTER TO THE EDITOR Analysis of the ultrafast dynamics of the silver trimer upon photodetachment H O Jeschke, M E Garcia and K H

More information

On the Nature of Random System Matrices in Structural Dynamics

On the Nature of Random System Matrices in Structural Dynamics On the Nature of Random System Matrices in Structural Dynamics S. ADHIKARI AND R. S. LANGLEY Cambridge University Engineering Department Cambridge, U.K. Nature of Random System Matrices p.1/20 Outline

More information

k n (ω 01 ) k 2 (ω 01 ) k 3 (ω 01 ) k 1 (ω 01 )

k n (ω 01 ) k 2 (ω 01 ) k 3 (ω 01 ) k 1 (ω 01 ) e (ω 01 ) n (ω 01 ) 3 (ω 01 ) 01 (ω 01 ) 1 (ω 01 ) (ω 01 ) 3 (ω 01 ) 1 (ω 01 ) 1 0 t 3 T w τ Rephasing R 1 R e = 1 + + 3 Nonrephasing n = 1 + 3 e (ω 1-1+1 ) n (ω 1-1+1 ) 3 (ω 1-1+1 ) (ω 01 ) t 1+1 1 3

More information

Coherence Vibrations and Electronic Excitation Dynamics in Molecular Aggregates and Photosynthetic Pigment-Proteins

Coherence Vibrations and Electronic Excitation Dynamics in Molecular Aggregates and Photosynthetic Pigment-Proteins VILNIUS UNIVERSITY Coherence Vibrations and Electronic Excitation Dynamics in Molecular Aggregates and Photosynthetic Pigment-Proteins L. Valkunas Department of Theoretical Physics, Faculty of Physics,

More information

12.2 MARCUS THEORY 1 (12.22)

12.2 MARCUS THEORY 1 (12.22) Andrei Tokmakoff, MIT Department of Chemistry, 3/5/8 1-6 1. MARCUS THEORY 1 The displaced harmonic oscillator (DHO) formalism and the Energy Gap Hamiltonian have been used extensively in describing charge

More information

Regular & Chaotic. collective modes in nuclei. Pavel Cejnar. ipnp.troja.mff.cuni.cz

Regular & Chaotic. collective modes in nuclei. Pavel Cejnar. ipnp.troja.mff.cuni.cz Pavel Cejnar Regular & Chaotic collective modes in nuclei Institute of Particle and Nuclear Physics Faculty of Mathematics and Physics Charles University, Prague, Czech Republic cejnar @ ipnp.troja.mff.cuni.cz

More information

Lecture 8. Assumed knowledge

Lecture 8. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

Control and Characterization of Intramolecular Dynamics with Chirped Femtosecond Three-Pulse Four-Wave Mixing

Control and Characterization of Intramolecular Dynamics with Chirped Femtosecond Three-Pulse Four-Wave Mixing 106 J. Phys. Chem. A 1999, 103, 106-1036 Control and Characterization of Intramolecular Dynamics with Chirped Femtosecond Three-Pulse Four-Wave Mixing Igor Pastirk, Vadim V. Lozovoy, Bruna I. Grimberg,

More information

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R)

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R) Spectroscopy: Engel Chapter 18 XIV 67 Vibrational Spectroscopy (Typically IR and Raman) Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate, full wave fct. ψ (r,r) =

More information

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a.

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a. SPECTROSCOPY Readings in Atkins: Justification 13.1, Figure 16.1, Chapter 16: Sections 16.4 (diatomics only), 16.5 (omit a, b, d, e), 16.6, 16.9, 16.10, 16.11 (omit b), 16.14 (omit c). Exercises 16.3a,

More information

two slits and 5 slits

two slits and 5 slits Electronic Spectroscopy 2015January19 1 1. UV-vis spectrometer 1.1. Grating spectrometer 1.2. Single slit: 1.2.1. I diffracted intensity at relative to un-diffracted beam 1.2.2. I - intensity of light

More information

Energy Barriers and Rates - Transition State Theory for Physicists

Energy Barriers and Rates - Transition State Theory for Physicists Energy Barriers and Rates - Transition State Theory for Physicists Daniel C. Elton October 12, 2013 Useful relations 1 cal = 4.184 J 1 kcal mole 1 = 0.0434 ev per particle 1 kj mole 1 = 0.0104 ev per particle

More information

Introduction to Vibrational Spectroscopy

Introduction to Vibrational Spectroscopy Introduction to Vibrational Spectroscopy Harmonic oscillators The classical harmonic oscillator The uantum mechanical harmonic oscillator Harmonic approximations in molecular vibrations Vibrational spectroscopy

More information

Accidental vibrational degeneracy in vibrational excited states observed with ultrafast two-dimensional IR vibrational echo spectroscopy

Accidental vibrational degeneracy in vibrational excited states observed with ultrafast two-dimensional IR vibrational echo spectroscopy THE JOURNAL OF CHEMICAL PHYSICS 13, 164301 005 Accidental vibrational degeneracy in vibrational excited states observed with ultrafast two-dimensional IR vibrational echo spectroscopy Junrong Zheng, Kyungwon

More information

Collisionally Excited Spectral Lines (Cont d) Diffuse Universe -- C. L. Martin

Collisionally Excited Spectral Lines (Cont d) Diffuse Universe -- C. L. Martin Collisionally Excited Spectral Lines (Cont d) Please Note: Contrast the collisionally excited lines with the H and He lines in the Orion Nebula spectrum. Preview: Pure Recombination Lines Recombination

More information

Matthias Lütgens, Frank Friedriszik, and Stefan Lochbrunner* 1 Concentration dependent CARS and Raman spectra of acetic acid in carbon tetrachloride

Matthias Lütgens, Frank Friedriszik, and Stefan Lochbrunner* 1 Concentration dependent CARS and Raman spectra of acetic acid in carbon tetrachloride Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 SUPPORTING INFORMATION Direct observation of the cyclic dimer in liquid acetic

More information

Likewise, any operator, including the most generic Hamiltonian, can be written in this basis as H11 H

Likewise, any operator, including the most generic Hamiltonian, can be written in this basis as H11 H Finite Dimensional systems/ilbert space Finite dimensional systems form an important sub-class of degrees of freedom in the physical world To begin with, they describe angular momenta with fixed modulus

More information

Lecture 4: Polyatomic Spectra

Lecture 4: Polyatomic Spectra Lecture 4: Polyatomic Spectra 1. From diatomic to polyatomic Ammonia molecule A-axis. Classification of polyatomic molecules 3. Rotational spectra of polyatomic molecules N 4. Vibrational bands, vibrational

More information

11.1. FÖRSTER RESONANCE ENERGY TRANSFER

11.1. FÖRSTER RESONANCE ENERGY TRANSFER 11-1 11.1. FÖRSTER RESONANCE ENERGY TRANSFER Förster resonance energy transfer (FRET) refers to the nonradiative transfer of an electronic excitation from a donor molecule to an acceptor molecule: D *

More information

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei : An introduction to Solid State NMR spectroscopy Dr. Susanne Causemann (Solid State NMR specialist/ researcher) Interaction between nuclear spins and applied magnetic fields B 0 application of a static

More information

RRK theory. Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge. April 3, 2009

RRK theory. Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge. April 3, 2009 RRK theory Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge April 3, 2009 Isomerization reactions as a test of theories of unimolecular reactions Gas-phase unimolecular

More information

Theoretical and computational study of internal motions in some small molecules

Theoretical and computational study of internal motions in some small molecules Theoretical and computational study of internal motions in some small molecules Vesa Hänninen University of Helsinki Department of Chemistry Laboratory of Physical Chemistry P.O. BOX 55 (A.I. Virtasen

More information

EXPERIMENTAL STUDIES OF RESONANCES IN UNIMOLECULAR DECOMPOSITION

EXPERIMENTAL STUDIES OF RESONANCES IN UNIMOLECULAR DECOMPOSITION Annu. Rev. Phys. Chem. 1996. 47:495 525 Copyright c 1996 by Annual Reviews Inc. All rights reserved EXPERIMENTAL STUDIES OF RESONANCES IN UNIMOLECULAR DECOMPOSITION Scott A. Reid Department of Chemistry,

More information

Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics

Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics c Hans C. Andersen October 1, 2009 While we know that in principle

More information

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS PRACTICAL ASPECTS OF MR RELAXATIO STUDIES OF BIOMOLECULAR DYAMICS Further reading: Can be downloaded from my web page Korzhnev D.E., Billeter M., Arseniev A.S., and Orekhov V. Y., MR Studies of Brownian

More information

Rotations and vibrations of polyatomic molecules

Rotations and vibrations of polyatomic molecules Rotations and vibrations of polyatomic molecules When the potential energy surface V( R 1, R 2,..., R N ) is known we can compute the energy levels of the molecule. These levels can be an effect of: Rotation

More information

Is Quantum Mechanics Chaotic? Steven Anlage

Is Quantum Mechanics Chaotic? Steven Anlage Is Quantum Mechanics Chaotic? Steven Anlage Physics 40 0.5 Simple Chaos 1-Dimensional Iterated Maps The Logistic Map: x = 4 x (1 x ) n+ 1 μ n n Parameter: μ Initial condition: 0 = 0.5 μ 0.8 x 0 = 0.100

More information

M. M. Law, J. M. Hutson (eds.) Rovibrational Bound States in Polyatomic Molecules c 1999, CCP6, Daresbury

M. M. Law, J. M. Hutson (eds.) Rovibrational Bound States in Polyatomic Molecules c 1999, CCP6, Daresbury 1 M. M. Law, J. M. Hutson (eds.) Rovibrational Bound States in Polyatomic Molecules c 1999, CCP6, Daresbury From Intermolecular Forces to Condensed Phase Spectroscopy: Ro-vibrational Spectroscopy Inside

More information

(2 pts) a. What is the time-dependent Schrödinger Equation for a one-dimensional particle in the potential, V (x)?

(2 pts) a. What is the time-dependent Schrödinger Equation for a one-dimensional particle in the potential, V (x)? Part I: Quantum Mechanics: Principles & Models 1. General Concepts: (2 pts) a. What is the time-dependent Schrödinger Equation for a one-dimensional particle in the potential, V (x)? (4 pts) b. How does

More information

CY T. Pradeep. Lectures 11 Theories of Reaction Rates

CY T. Pradeep. Lectures 11 Theories of Reaction Rates CY1001 2015 T. Pradeep Lectures 11 Theories of Reaction Rates There are two basic theories: Collision theory and activated complex theory (transition state theory). Simplest is the collision theory accounts

More information

SRIHARI KESHAVAMURTHY

SRIHARI KESHAVAMURTHY SRIHARI 4067 Type IV Indian Institute of Technology Kanpur Uttar Pradesh 208 016 INDIA +91-512-2598721 srihari.keshava@gmail.com Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

Supplementary Figure 1 Change of the Tunnelling Transmission Coefficient from the Bulk to the Surface as a result of dopant ionization Colour-map of

Supplementary Figure 1 Change of the Tunnelling Transmission Coefficient from the Bulk to the Surface as a result of dopant ionization Colour-map of Supplementary Figure 1 Change of the Tunnelling Transmission Coefficient from the Bulk to the Surface as a result of dopant ionization Colour-map of change of the tunnelling transmission coefficient through

More information

Boson-Realization Model for the Vibrational Spectra of Tetrahedral Molecules

Boson-Realization Model for the Vibrational Spectra of Tetrahedral Molecules Boson-Realization Model for the Vibrational Spectra of Tetrahedral Molecules arxiv:chem-ph/9604002v1 4 Apr 1996 Zhong-Qi Ma CCAST (World Laboratory), PO Box 8730, Beijing 100080, and Institute of High

More information

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 Vibrational Spectra (IR and Raman)- 2010 update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate, full wave

More information

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9)

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) XIV 67 Vibrational Spectroscopy (Typical for IR and Raman) Born-Oppenheimer separate electron-nuclear motion ψ (rr) = χ υ (R) φ el (r,r) -- product

More information

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep Problem set 1 Due Sep 15 2005 1. Let V be the set of all complex valued functions of a real variable θ, that are periodic with period 2π. That is u(θ + 2π) = u(θ), for all u V. (1) (i) Show that this V

More information

Correlation spectroscopy

Correlation spectroscopy 1 TWO-DIMENSIONAL SPECTROSCOPY Correlation spectroscopy What is two-dimensional spectroscopy? This is a method that will describe the underlying correlations between two spectral features. Our examination

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

Equivalence between Symmetric and Antisymmetric Stretching Modes of NH 3 in

Equivalence between Symmetric and Antisymmetric Stretching Modes of NH 3 in Submitted to JCP, 9/8/2016 Equivalence between Symmetric and Antisymmetric Stretching Modes of NH 3 in Promoting H + NH 3 H 2 + NH 2 Reaction Hongwei Song, 1,* Minghui Yang, 1 and Hua Guo 2 1 Key Laboratory

More information

Semiclassical molecular dynamics simulations of intramolecular proton transfer in photoexcited 2-2 -hydroxyphenyl oxazole

Semiclassical molecular dynamics simulations of intramolecular proton transfer in photoexcited 2-2 -hydroxyphenyl oxazole JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 21 1 DECEMBER 2000 Semiclassical molecular dynamics simulations of intramolecular proton transfer in photoexcited 2-2 -hydroxyphenyl oxazole Victor Guallar,

More information

Ab initio molecular dynamics and nuclear quantum effects

Ab initio molecular dynamics and nuclear quantum effects Ab initio molecular dynamics and nuclear quantum effects Luca M. Ghiringhelli Fritz Haber Institute Hands on workshop density functional theory and beyond: First principles simulations of molecules and

More information

Vibronic quantum dynamics of exciton relaxation/trapping in molecular aggregates

Vibronic quantum dynamics of exciton relaxation/trapping in molecular aggregates Symposium, Bordeaux Vibronic quantum dynamics of exciton relaxation/trapping in molecular aggregates Alexander Schubert Institute of Physical and Theoretical Chemistry, University of Würzburg November

More information

Highly Excited Motion in Molecules: Saddle-Node Bifurcations and Their Fingerprints in Vibrational Spectra

Highly Excited Motion in Molecules: Saddle-Node Bifurcations and Their Fingerprints in Vibrational Spectra J. Phys. Chem. A 2002, 106, 5407-5421 5407 FEATURE ARTICLE Highly Excited Motion in Molecules: Saddle-Node Bifurcations and Their Fingerprints in Vibrational Spectra M. Joyeux Laboratoire de Spectrométrie

More information

Simulations of spectra and spin relaxation

Simulations of spectra and spin relaxation 43 Chapter 6 Simulations of spectra and spin relaxation Simulations of two-spin spectra We have simulated the noisy spectra of two-spin systems in order to characterize the sensitivity of the example resonator

More information

The Study of Dynamical Potentials of Highly Excited Vibrational States of HOBr

The Study of Dynamical Potentials of Highly Excited Vibrational States of HOBr Int. J. Mol. Sci. 2013, 14, 5250-5263; doi:10.3390/ijms14035250 Article OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms The Study of Dynamical Potentials

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. LECTURE

More information

Probing correlated spectral motion: Two-color photon echo study of Nile blue

Probing correlated spectral motion: Two-color photon echo study of Nile blue Probing correlated spectral motion: Two-color photon echo study of Nile blue Bradley S. Prall, Dilworth Y. Parkinson, and Graham R. Fleming Citation: The Journal of Chemical Physics 123, 054515 (2005);

More information

Molecular spectroscopy

Molecular spectroscopy Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering

More information

Degrees of Freedom and Vibrational Modes

Degrees of Freedom and Vibrational Modes Degrees of Freedom and Vibrational Modes 1. Every atom in a molecule can move in three possible directions relative to a Cartesian coordinate, so for a molecule of n atoms there are 3n degrees of freedom.

More information

Vibrationally induced rotational axis switching: A novel mechanism for vibrational mode coupling

Vibrationally induced rotational axis switching: A novel mechanism for vibrational mode coupling Vibrationally induced rotational axis switching: A novel mechanism for vibrational mode coupling H. Li, Gregory S. Ezra, and Laura A. Philips Department of Chemistty, CorneN University, Ithaca, New York

More information

Asymmetry of Peaks in the XPS of Polymers

Asymmetry of Peaks in the XPS of Polymers Asymmetry of Peaks in the XPS of Polymers When a photon is absorbed by a material, the energy transferred may cause the excitation of both the electronic and atomic structure of the compounds on the surface.

More information

Introduction to DFTB. Marcus Elstner. July 28, 2006

Introduction to DFTB. Marcus Elstner. July 28, 2006 Introduction to DFTB Marcus Elstner July 28, 2006 I. Non-selfconsistent solution of the KS equations DFT can treat up to 100 atoms in routine applications, sometimes even more and about several ps in MD

More information

Vibrational Autoionization in Polyatomic molecules

Vibrational Autoionization in Polyatomic molecules Vibrational Autoionization in Polyatomic molecules S.T. Pratt Annu. Rev. Phys. Chem. 2005. 56:281-308 2006. 12. 4. Choi, Sunyoung 1 Schedule 12/4 (Mon) - Introduction - Theoretical background 12/6 (Wed)

More information

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt Spin Dynamics Basics of Nuclear Magnetic Resonance Second edition Malcolm H. Levitt The University of Southampton, UK John Wiley &. Sons, Ltd Preface xxi Preface to the First Edition xxiii Introduction

More information