Modeling of Pantograph-Catenary dynamic stability

Size: px
Start display at page:

Download "Modeling of Pantograph-Catenary dynamic stability"

Transcription

1 Technical Journal of Engineering and Applied Sciences Available online at TJEAS Journal / ISSN TJEAS Modeling of Pantograph-Catenary dynamic stability Saman Farhangdoust 1, Mohammad Farahbakhsh 2, Majid Shahravi 3 1. M.Sc candidate in Railway Engineering Department, Iran University of Science and Technology, Tehran, Iran 2. M.ScCandidate, Civil Engineering Department, Islamic Azad University, Mashhad Branch Mashhad, Iran 3. Assistant Professor, Railway Engineering Department, Iran University of Science and Technology, Tehran, Iran Corresponding author: Saman Farhangdoust ABSTRACT: The purpose of this paper is to describe the possibilities of investigating the effects of external variables on the stability of dynamic systems dynamics modeled by differential equation systems with periodic stability coefficients. The method used to analyze the influence of external harmonic forces on the stability of the longitudinal line parangalography - the contact wire of the electric locomotive. System parameters are two concentrated loads, bending rigidity, tensile horizontal viscous damping in mass per unit of yarn length, second coefficients of damping in the rigidity of system elements and constant speed specified in the template. With these parameters we study the stability of the system. In this study we analyze an overview based on background studies of pantograph systems. Keywords: modeling, dynamic system, Pantograph-Catenary system, control, stability INTRODUCTION To analyze the stability of the movement of the pantograph couple - contact wire, we consider a mathematical model consisting of two degrees of freedom dynamic model and dimensional model continuously. The mathematical model is reduced to a system of linear differential equations with periodic coefficients, which is studied with the methods of the theory of parametric stability. This analysis is performed by choosing from two main parameters of the model parameters and locates the limits of stable and unstable solutions in terms of these two parameters. In this paper, we study some aspects concerning the stability of our movement following physical and mathematical model. The dynamical model for a Pantograph-Catenary system adopted by us, consists of a vehicle (A) in uniform motion with velocity v, where the vehicle is used to compress with a force constant F, the oscillating system over the pantograph on the (Figure 1).

2 Figure 1. Dynamical Assembly of Pantograph-Catenary system (Teichelmann, 2005) Due to the fact that the railways must adequately capture the electrical power, the strength of Pantograph- Catenary contact should be kept as uniform as possible, avoiding the loss of Contact. The development of a mathematical model to evaluate the mechanical behavior of the system can be useful in order to get optimum mounting in the company known as Pantograph-Catenary. In recent years, several books have been published in the scientific literature on the study of pantograph Pantograph-Catenary dynamic interaction: in (Park, 2000) a study based on coupled systems of partial differential equations algebraic and differential equations are presented (Kim, 1999) presents a simplified method to evaluate the performance of the pantograph, in (Cho, 2008) a procedure based on modal analysis methods and penalty is introduced in (Poetsch, 1997) a method using a multi-body model and co-simulation is proposed, and finally, (Migdalovici, 2003)this hybrid procedure using theoretical and experimental modal analysis. A large part of the studies are based on models where the pantograph interacts with a single Contact wire along a series of spans of the same characteristics, but this is not considered completely true, because the overhead is installed in series 10 or 15 bays, which are not necessarily equal, and wherein the duration of the last of a series and the first bay of the following series are overlap. Overlap in space, the pantograph can interact with multiple contacts of that at the same time, also has a special configuration of the son in order to obtain a smooth transition between sets of spans. Moreover, in an actual set, each bay can have different characteristics terms of geometry, the number of drops, etc., so that the identification and generation of the other elements of the system of differential equations presents a particular difficulty. In this paper, a software tool that allows realistic simulations where several pantographs can interact with the son of contact of two catenaries with overlapping ranges, and wherein each bay may different characteristics is presented. A study of the dynamic pantograph from the real model, using independent coordinates and symbolic expressions is also developed. (Poetsch, 1997-Migdalovici, 2003) 1487

3 Figure 2. Connections between two dimensions of pantographs-catenaries (Kim, 1999) The pantograph essentially consists of a housing with a pedal foot and a mass of the head with a damping in a suspension that can rotate in the foreground plane in the transverse plane of movement with a vertical displacement in the common four degrees of freedom. Some models believe that the intermediate mass with a vertical movement in one degree of freedom represents five degrees of freedom. In the two-dimensional front rotation model, transversal and rotation are not considered to be equivalent to the assumption that the head mass is divided into two point masses located on intermediate mass articulated chassis. For dynamic simulation, because it is difficult to model the frame, this element is often simplified and counts as one mass point with vertical movement, which results in a known pattern of mass, and parameter values are generally provided by the pantograph planner. Figure 3. Pantograph main structure (Migdalovici, 2003) The dynamic analysis of catenaries has been a popular topic in engineering, because theses catenaries are widely used in various applications, e.g., contact wire in high speed rail way, suspension bridge, tethered satellites systems and so on. Recently, many studies about catenaries are focused on the contact wire system used in high speed railway, because the dynamic characteristic of catenaries are important parameters for high speed train such as KTX, Eurostar, Shinkansen and so on. In other words, tensioned Pantograph-Catenary properties such as presag in a static state determine the dynamic behavior and stability between the contact wire and the pantograph. Much research has been reported about the two-dimensional linear models of catenaries in high-speed rail way. Some examples of these studies can be found in Refs. (Kim, 2001 Cho,2008), in which the vibrations and stability, which may be incurred due to the interaction between the catenaries and the pantograph, were analyzed 1488

4 by the finite element method. In these studies, design parameters such as contact wire tension, stiffness variation and dropper slackness were studied. It was reported that dropper stiffness variation is an important factor for dynamic behavior of Pantograph-Catenary systems. Based on an extensible linear beam model, Kim and Choi (Kim, 1999) studied the wave propagation speed and the mode characteristic according to the tension, flexible rigidity and bending effect in linear Pantograph-Catenary model. Comparing to two-dimensional linear catenaries, only a few studies for non-linear catenaries or threedimensional linear models have been undertaken because the non-linear or three-dimensional models require more complicated formulation and analyses than two-dimensional linear models. The approaches to investigate the dynamics and stability of three-dimensional non-linear catenaries may be classified into two types: the threedimensional linear Pantograph-Catenary system and the two-dimensional non-linear Pantograph-Catenary systems. The two-dimensional non-linear Pantograph-Catenary theory has the assumption that the centerline ofa beam is not stretched and the nonlinearity of droppers is allowed. On the other hand, in the three-dimensional linear Pantograph-Catenary theory, catenaries can possess extension in the axial direction but the non-linearity of droppers cannot. Teichelmann, et.al (Teichelmann, 2005) studied the efficiency algorithm for calculation about the the static deflection of a non-linear complex structure. They assumed that the contact wire is beam and the droppers are bar elements. Yang and Ttsay (Yang, 2007) analyzed the non-linear elements about two dimensional models for high speed rail way, of which elements have three nodes. The slackness of the dropper is an important phenomenon, because the wave propagation and the wave reflection in the Pantograph-Catenary influenced by the slackness. The contact force between Pantograph-Catenary and pantograph are determined by wave propagation and reflection. Finally, the dynamic responses of the system are also investigated when applying a load to the contact line. For confirmation of the wave propagation and the reflection, we model the applied load as the point mass. Then, we calculate the contact force between the Pantograph-Catenary and the point mass when the velocity of the point mass is zero, and compared the theoretical wave speed with the simulation result by observing the variation of the contact force. Static analysis was carried out with respect to the droplet permeability, when the climbing force was used on the Pantograph-Catenary contact line. Since the dropper has the only elongation extension, the stiffness of the droplet does not contribute to the common stiffness matrix when the applied force relates to the dropper. This nonlinear phenomenon in the droplet affects the response of the waves. Therefore, this effect affects the contact characteristic between the Pantograph-Catenary in the pantograph. Figure 4 compares the variation of rigidity between the linear and the consideration of the slope of nonlinear models. In Figure 4, the line represents the rigidity of the linear model without taking into account the permeability, while the dotted line represents the rigidity of the nonlinear model. As shown in Figure 2, the stiffness difference is observed along the ranges by comparing the solid with the dashed line. This difference occurs because of permeability. In this study, these formulations carry out a dynamic analysis involving wave analysis in the Pantograph-Catenary system. (a) (b) Figure 4.Contact forces between the moving mass and the tensioned beam: (a) when the velocity is 0 m/s and (b) when the velocity is 50 m/s (Park, Yang, 2007) Figure 4 represents the contact forces between the moving mass in the tension carrier. Figure 4 (a) shows the contact silos when the mass rate is zero, when the holding time of the pantograph pantograph system in a 1489

5 strong climb is 50 N applied to the beam. As shown in this figure, the contact force is changed due to the expansion of waves in the sections. The wavelengths influenced by various factors, such as moment of inertia, surface, tension and density of the tensile beam. Among these factors, voltage is the most important parameter determining the speed of wave in this beam model. The theoretical speed of this model is calculated as 120 m / s, and the contact force changes with a time of 0.83 s. Since the wavelength is 100 m between 0.83 s, the wave speed as calculated numerically as 120 m / s. As shown in Figure 5 (b), the first change in the contact force occurs at 0.58 seconds. If it means that the distance traveled in the waves is 71 m, and the moving mass fights with a reflecting wave of 0.58 seconds. Since the distance between the waves is 71 m between 0.58 s, the wavelength is 122 m / s. Therefore, we can see that the developed model in the FEM formulation is reasonable. In figure 5, the contact forces between the moving mass in the pantograph-underground vehicle in Figure 5. In Figure 5 (a), the contact power is calculated when the velocity of the particulate mass is 50 m / s in the 50 N force used for the ticket system. Figure 5 (b) is a contact silos when the velocity of the moving mass is 100 m / s. In these two figures we can notice that the contact force changes rapidly. These rapidly varied variations cause the variable droplet rigidity, a permanent hand in geometric constraints. Figure 5. Dynamical Contact forces between the moving mass and the Pantograph-Catenary of Fig. 6: (a) when the moving mass velocity is 50 m/s and (b) when the moving mass velocity is 100 m/s. (Park, Yang, 2007) CONCLUSIONS AND DISCUSSION In this study, it is dynamically analyzed in the static behavior of the Pantograph-Catenary system for highspeed rail using finite elements. Static deviations are calculated according to the weight and voltage used for contact and wire wires. For the static and dynamic analysis, the lightness of the capillary, which has a geometric non-linear effect, is also taken into account. In addition, the dynamic responses of the system studied when the moving mass is applied to the load on Pantograph-Catenary. For the verification of the propagation wave propagation, the forces of the contacts between the moving mass in the tension carrier are calculated. In addition, the contact forces between the moving mass in the pantograph-catenary are calculated when the velocity of the moving mass is 50 m / s at 100 m / s. From the results of the simulations, we confirm that the developed FEM model in time integration is reasonable. REFERENCES Cho YH Numerical simulation of the dynamic responses of railway overhead contact lines to a moving pantograph, considering a nonlinear dropper, Journal of Sound and Vibration, Vol.315, 433~454. CHUNG YI, GENIN J Stability of a vehicle on a multispan simply supported guideway, Trans. of ASME, 100, Kim JS, Choi BD A study on Dynamic Characteristics of a Catenary System, KSNVE, Vol. 9, No. 2, 317~323. Kim JS, Park SH Dynamic Simulation of KTX Catenary System for Changing Design Parameters, KSNVE, Vol. 11, No. 2, 346~353 Kim WM, Kim JT, Kim JS, Lee JW A numerical study on dynamic characteristics of a catenary, KSME International Journal, Vol. 17, 860~869 MIGDALOVICI M, BARAN D About the stability of motion for two sprung superposed masses in contact with a wire, Proceedings ICSV10, , 1490

6 Park SH, Kim JS, Cho YH, Choi KY Vibrational characteristics of KTX catenary System for Changing design Parameters, Spring Conference of The Korean Society for Railway, Vol. 1, No. 1, 265~272. POETSCH G, all Pantograph/ Catenary Dynamics and Control, Vehicle System Dynamics, 28, , Teichelmann G, Schaub M, Simeon B Modelling and simulation of railway cable systems", ZAMM-Zeitschrift fur AngewandteMathematik und Mechanik, Vol. 85, 864~877 Yang YB, Ttsay JY Geometric nonlinear analysis of cable structures with a two-node cable element by generalized displacement control method, International Journal of Structural Stability and Dynamics, Vol. 7, 571~

Overhead catenary system-pantograph coupled system dynamics modelling and analysis

Overhead catenary system-pantograph coupled system dynamics modelling and analysis Acta Technica 62 (2017), No. 6A, 109 118 c 2017 Institute of Thermomechanics CAS, v.v.i. Overhead catenary system-pantograph coupled system dynamics modelling and analysis Luo Jianguo 2, Liu Hang 2, 4,

More information

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES UNIT - I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These

More information

Diagnosis of Overhead Contact Line based on Contact Force. Takahiro FUKUTANI Current Collection Laboratory, Power Supply Division

Diagnosis of Overhead Contact Line based on Contact Force. Takahiro FUKUTANI Current Collection Laboratory, Power Supply Division PAPER Diagnosis of Overhead Contact Line based on Contact Force Shunichi KUSUMI Contact Line Structures Laboratory, Takahiro FUKUTANI Current Collection Laboratory, Power Supply Division Kazuyoshi NEZU

More information

2031. Using new analytical algorithm to study the effect of temperature variations on static shape of contact wire of OCS

2031. Using new analytical algorithm to study the effect of temperature variations on static shape of contact wire of OCS 2031. Using new analytical algorithm to study the effect of temperature variations on static shape of contact wire of OCS Farzad Vesali 1, Habibollah Molatefi 2, Mohammad Ali Rezvani 3 Iran University

More information

Stockbridge-Type Damper Effectiveness Evaluation: Part II The Influence of the Impedance Matrix Terms on the Energy Dissipated

Stockbridge-Type Damper Effectiveness Evaluation: Part II The Influence of the Impedance Matrix Terms on the Energy Dissipated 1470 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 18, NO. 4, OCTOBER 2003 Stockbridge-Type Damper Effectiveness Evaluation: Part II The Influence of the Impedance Matrix Terms on the Energy Dissipated Giorgio

More information

Estimation of the characteristic of contact line uplift and strain in the neighborhood of a tunnel inlet by computer simulation

Estimation of the characteristic of contact line uplift and strain in the neighborhood of a tunnel inlet by computer simulation Computers in Railways XIII 147 Estimation of the characteristic of contact line uplift and strain in the neighborhood of a tunnel inlet by computer simulation Y. Sugama1, K. Shimizu1 & S. Amari 1 Railway

More information

VIBRATION MEASUREMENT OF TSING MA BRIDGE DECK UNITS DURING ERECTION

VIBRATION MEASUREMENT OF TSING MA BRIDGE DECK UNITS DURING ERECTION VIBRATION MEASUREMENT OF TSING MA BRIDGE DECK UNITS DURING ERECTION Tommy CHAN Assistant Professor The Polytechnic University Ching Kwong LAU Deputy Director Highways Dept., Government Jan Ming KO Chair

More information

1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load

1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load 1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load Nader Mohammadi 1, Mehrdad Nasirshoaibi 2 Department of Mechanical

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION October 1-17,, Beijing, China DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION Mohammad M. Ahmadi 1 and Mahdi Ehsani 1 Assistant Professor, Dept. of Civil Engineering, Geotechnical Group,

More information

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14 Table of Contents Chapter 1: Research Objectives and Literature Review..1 1.1 Introduction...1 1.2 Literature Review......3 1.2.1 Describing Vibration......3 1.2.2 Vibration Isolation.....6 1.2.2.1 Overview.

More information

Piezoelectric Control of Multi-functional Composite Shells Subjected to an Electromagnetic Field

Piezoelectric Control of Multi-functional Composite Shells Subjected to an Electromagnetic Field Piezoelectric Control of Multi-functional Composite Shells Subjected to an Electromagnetic Field *Sang-Yun Park 1) and Ohseop Song 2) 1), 2) Department of Mechanical Engineering, Chungnam National University,

More information

Pantograph-catenary Dynamic Interaction for a Overhead Line Supported by Noise Barrier

Pantograph-catenary Dynamic Interaction for a Overhead Line Supported by Noise Barrier IJR International Journal of Railway Vol. 5, No. 2 / June 2012, pp. 55-64 The Korean Society for Railway Pantograph-catenary Dynamic Interaction for a Overhead Line Supported by Noise Barrier Marco Belloli*,

More information

Theory of structure I 2006/2013. Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES

Theory of structure I 2006/2013. Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES Introduction A structure refers to a system of connected parts used to support a load. Important examples related to civil engineering include buildings,

More information

NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS

NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS Clemens A.J. Beijers and André de Boer University of Twente P.O. Box 7, 75 AE Enschede, The Netherlands email: c.a.j.beijers@utwente.nl Abstract An important

More information

M.S Comprehensive Examination Analysis

M.S Comprehensive Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... M.S Comprehensive

More information

Table of Contents. Preface... 13

Table of Contents. Preface... 13 Table of Contents Preface... 13 Chapter 1. Vibrations of Continuous Elastic Solid Media... 17 1.1. Objective of the chapter... 17 1.2. Equations of motion and boundary conditions of continuous media...

More information

Special edition paper

Special edition paper Development of New Aseismatic Structure Using Escalators Kazunori Sasaki* Atsushi Hayashi* Hajime Yoshida** Toru Masuda* Aseismatic reinforcement work is often carried out in parallel with improvement

More information

VIBRATION PROBLEMS IN ENGINEERING

VIBRATION PROBLEMS IN ENGINEERING VIBRATION PROBLEMS IN ENGINEERING FIFTH EDITION W. WEAVER, JR. Professor Emeritus of Structural Engineering The Late S. P. TIMOSHENKO Professor Emeritus of Engineering Mechanics The Late D. H. YOUNG Professor

More information

Methods of Analysis. Force or Flexibility Method

Methods of Analysis. Force or Flexibility Method INTRODUCTION: The structural analysis is a mathematical process by which the response of a structure to specified loads is determined. This response is measured by determining the internal forces or stresses

More information

Simulation of the Stick-Slip Friction between Steering Shafts Using ADAMS/PRE

Simulation of the Stick-Slip Friction between Steering Shafts Using ADAMS/PRE Simulation of the Stick-Slip Friction between Steering Shafts Using ADAMS/PRE Dexin Wang and Yuting Rui Research & Vehicle Technology Ford Motor Company ABSTRACT Cyclic stick-slip friction is a well-known

More information

An innovative OHL diagnosis procedure based on the pantograph dynamics measurements

An innovative OHL diagnosis procedure based on the pantograph dynamics measurements An innovative OHL diagnosis procedure based on the pantograph dynamics measurements A. Collina*, F. Fossati**, F. Resta* * Dipartimento di Meccanica-Politecnico di Milano, Milano (Italy) **Dipartimento

More information

CWR track vibration characteristics varying with the change of supporting condition

CWR track vibration characteristics varying with the change of supporting condition Computers in Railways XIII 745 CWR track vibration characteristics varying with the change of supporting condition L. Li & Y. Luo Railway and Urban Mass Transit Research Institute, Tongji University, China

More information

Investigation on dynamic behavior of railway track in transition zone

Investigation on dynamic behavior of railway track in transition zone Journal of Mechanical Science and Technology 25 (2) (2) 287~292 wwwspringerlinkcom/content/738494x DOI 7/s22622x Investigation on dynamic behavior of railway track in transition zone JabbarAli Zakeri *

More information

NUMERICAL INVESTIGATION OF CABLE PARAMETRIC VIBRATIONS

NUMERICAL INVESTIGATION OF CABLE PARAMETRIC VIBRATIONS 11 th International Conference on Vibration Problems Z. Dimitrovová et al. (eds.) Lisbon, Portugal, 9-1 September 013 NUMERICAL INVESTIGATION OF CABLE PARAMETRIC VIBRATIONS Marija Nikolić* 1, Verica Raduka

More information

2766. Differential quadrature method (DQM) for studying initial imperfection effects and pre- and post-buckling vibration of plates

2766. Differential quadrature method (DQM) for studying initial imperfection effects and pre- and post-buckling vibration of plates 2766. Differential quadrature method (DQM) for studying initial imperfection effects and pre- and post-buckling vibration of plates Hesam Makvandi 1, Shapour Moradi 2, Davood Poorveis 3, Kourosh Heidari

More information

Dynamic Stability of Laminated Composite Plates with an External Smart Damper

Dynamic Stability of Laminated Composite Plates with an External Smart Damper Journal of Solid Mechanics Vol. 8, No. 1 (2016) pp. 45-57 Dynamic Stability of Laminated Composite Plates with an External Smart Damper M. Hoseinzadeh, J. Rezaeepazhand * Department of Mechanical Engineering,

More information

Modelling and Finite Element Analysis of Double Wishbone Suspension

Modelling and Finite Element Analysis of Double Wishbone Suspension Modelling and Finite Element Analysis of Double Wishbone Suspension Amol Patil, Varsha Patil, Prashant Uhle P.G. Student, Dept. of Mechanical Engineering, S S B T S College of Engineering, Jalgaon, Maharastra,

More information

UNIT IV FLEXIBILTY AND STIFFNESS METHOD

UNIT IV FLEXIBILTY AND STIFFNESS METHOD SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

2018. Nonlinear free vibration analysis of nanobeams under magnetic field based on nonlocal elasticity theory

2018. Nonlinear free vibration analysis of nanobeams under magnetic field based on nonlocal elasticity theory 2018. Nonlinear free vibration analysis of nanobeams under magnetic field based on nonlocal elasticity theory Tai-Ping Chang National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan

More information

The Effect of Distribution for a Moving Force

The Effect of Distribution for a Moving Force Paper Number 66, Proceedings of ACOUSTICS 2011 2-4 November 2011, Gold Coast, Australia The Effect of Distribution for a Moving Force Ahmed M. Reda (1,2), Gareth L. Forbes (2) (1) Atkins, Perth, Australia

More information

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate. 1 of 6 EQUILIBRIUM OF A RIGID BODY AND ANALYSIS OF ETRUCTURAS II 9.1 reactions in supports and joints of a two-dimensional structure and statically indeterminate reactions: Statically indeterminate structures

More information

1 Introduction. Abstract

1 Introduction. Abstract Abstract This paper reports results from a numerical model to calculate subgrade settlement in railway tracks due to repeated dynamic loading. The trains are modelled as rigid body 2-axle carriages on

More information

Due Tuesday, September 21 st, 12:00 midnight

Due Tuesday, September 21 st, 12:00 midnight Due Tuesday, September 21 st, 12:00 midnight The first problem discusses a plane truss with inclined supports. You will need to modify the MatLab software from homework 1. The next 4 problems consider

More information

MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I

MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I Engineering Mechanics Branch of science which deals with the behavior of a body with the state of rest or motion, subjected to the action of forces.

More information

General elastic beam with an elastic foundation

General elastic beam with an elastic foundation General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

More information

Movement assessment of a cable-stayed bridge tower based on integrated GPS and accelerometer observations

Movement assessment of a cable-stayed bridge tower based on integrated GPS and accelerometer observations Movement assessment of a cable-stayed bridge tower based on integrated and accelerometer observations *Mosbeh R. Kaloop 1), Mohamed A. Sayed 2) and Dookie Kim 3) 1), 2), 3) Department of Civil and Environmental

More information

STUDY OF EFFECTS OF VIBRATIONS CAUSED BY RAILWAY TRAFFIC TO BUILDINGS

STUDY OF EFFECTS OF VIBRATIONS CAUSED BY RAILWAY TRAFFIC TO BUILDINGS Bulletin of the Transilvania University of Braşov CIBv 2014 Vol. 7 (56) Special Issue No. 1-2014 STUDY OF EFFECTS OF VIBRATIONS CAUSED BY RAILWAY TRAFFIC TO BUILDINGS R. NERIŞANU 1 D. DRĂGAN 1 M. SUCIU

More information

The sensitivity analysis of the translation and the rotation angle of the first-order mode shape of the joints in frame structures

The sensitivity analysis of the translation and the rotation angle of the first-order mode shape of the joints in frame structures The sensitivity analysis of the translation and the rotation angle of the first-order mode shape of the joints in frame structures Yi Chen Yuan 1, Lin Li 2, Hongping Zhu 3 School of Civil Engineering and

More information

EDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d

EDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d Institute of Industrial Science, University of Tokyo Bulletin of ERS, No. 48 (5) A TWO-PHASE SIMPLIFIED COLLAPSE ANALYSIS OF RC BUILDINGS PHASE : SPRING NETWORK PHASE Shanthanu RAJASEKHARAN, Muneyoshi

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index Index A Admissible function, 163 Amplification factor, 36 Amplitude, 1, 22 Amplitude-modulated carrier, 630 Amplitude ratio, 36 Antinodes, 612 Approximate analytical methods, 647 Assumed modes method,

More information

ANALYTICAL MODELING OF PLANETARY GEAR AND SENSITIVITY OF NATURAL FREQUENCIES

ANALYTICAL MODELING OF PLANETARY GEAR AND SENSITIVITY OF NATURAL FREQUENCIES ANALYTICAL MODELING OF PLANETARY GEAR AND SENSITIVITY OF NATURAL FREQUENCIES MAJID MEHRABI 1, DR. V.P.SINGH 2 1 Research Scholar, Department of Mechanical Engg. Department-PEC University of Technology

More information

Author(s) Malekjafarian, Abdollah; O'Brien, Eugene J.

Author(s) Malekjafarian, Abdollah; O'Brien, Eugene J. Provided by the author(s) and University College Dublin Library in accordance with publisher policies. Please cite the published version when available. Title Application of Laser Measurement to the Drive-by

More information

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

More information

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

More information

Suggestion of Impact Factor for Fatigue Safety Assessment of Railway Steel Plate Girder Bridges

Suggestion of Impact Factor for Fatigue Safety Assessment of Railway Steel Plate Girder Bridges Suggestion of Impact Factor for Fatigue Safety Assessment of Railway Steel Plate Girder Bridges 1 S.U. Lee, 2 J.C. Jeon, 3 K.S. Kyung Korea Railroad, Daejeon, Korea 1 ; CTC Co., Ltd., Gunpo, Kyunggi, Korea

More information

Modal analysis of the Jalon Viaduct using FE updating

Modal analysis of the Jalon Viaduct using FE updating Porto, Portugal, 30 June - 2 July 2014 A. Cunha, E. Caetano, P. Ribeiro, G. Müller (eds.) ISSN: 2311-9020; ISBN: 978-972-752-165-4 Modal analysis of the Jalon Viaduct using FE updating Chaoyi Xia 1,2,

More information

Class XI Physics Syllabus One Paper Three Hours Max Marks: 70

Class XI Physics Syllabus One Paper Three Hours Max Marks: 70 Class XI Physics Syllabus 2013 One Paper Three Hours Max Marks: 70 Class XI Weightage Unit I Physical World & Measurement 03 Unit II Kinematics 10 Unit III Laws of Motion 10 Unit IV Work, Energy & Power

More information

L13 Structural Engineering Laboratory

L13 Structural Engineering Laboratory LABORATORY PLANNING GUIDE L13 Structural Engineering Laboratory Content Covered subjects according to the curriculum of Structural Engineering... 2 Main concept... 4 Initial training provided for laboratory

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

Fatigue Crack Analysis on the Bracket of Sanding Nozzle of CRH5 EMU Bogie

Fatigue Crack Analysis on the Bracket of Sanding Nozzle of CRH5 EMU Bogie Journal of Applied Mathematics and Physics, 2015, 3, 577-583 Published Online May 2015 in SciRes. http://www.scirp.org/journal/jamp http://dx.doi.org/10.4236/jamp.2015.35071 Fatigue Crack Analysis on the

More information

Dynamic (Vibrational) and Static Structural Analysis of Ladder Frame

Dynamic (Vibrational) and Static Structural Analysis of Ladder Frame Dynamic (Vibrational) and Static Structural Analysis of Ladder Frame Ketan Gajanan Nalawade 1, Ashish Sabu 2, Baskar P 3 School of Mechanical and building science, VIT University, Vellore-632014, Tamil

More information

Vibration Characteristics of the Platform in highspeed Railway Elevated Station

Vibration Characteristics of the Platform in highspeed Railway Elevated Station TELKOMNIKA, Vol.11, No.3, March 2013, pp. 1383 ~ 1392 e-issn: 2087-278X 1383 Vibration Characteristics of the Platform in highspeed Railway Elevated Station Wang Tie*, Wei Qingchao School of Civil Engineering,

More information

Dynamic and buckling analysis of FRP portal frames using a locking-free finite element

Dynamic and buckling analysis of FRP portal frames using a locking-free finite element Fourth International Conference on FRP Composites in Civil Engineering (CICE8) 22-24July 8, Zurich, Switzerland Dynamic and buckling analysis of FRP portal frames using a locking-free finite element F.

More information

EXPERIMENTAL MODAL ANALYSIS OF A SCALED CAR BODY FOR METRO VEHICLES

EXPERIMENTAL MODAL ANALYSIS OF A SCALED CAR BODY FOR METRO VEHICLES EXPERIMENTAL MODAL ANALYSIS OF A SCALED CAR BODY FOR METRO VEHICLES S. Popprath 1, C. Benatzky 2, C. Bilik 2, M. Kozek 2, A. Stribersky 3 and J. Wassermann 1 1 Institute of Mechanics and Mechatronics,

More information

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods

More information

Efficient simulation of railway pantograph/ catenary interaction using pantograph-fixed coordinates

Efficient simulation of railway pantograph/ catenary interaction using pantograph-fixed coordinates Efficient simulation of railway pantograph/ catenary interaction using pantograph-fixed coordinates Daniel Ritzberger Emir Talic Alexander Schirrer Vienna University of Technology, Austria, (e-mail: daniel.ritzberger@gmail.com).

More information

29. Define Stiffness matrix method. 30. What is the compatibility condition used in the flexibility method?

29. Define Stiffness matrix method. 30. What is the compatibility condition used in the flexibility method? CLASS: III YEAR / VI SEMESTER CIVIL SUBJECTCODE AND NAME: CE 2351 - STRUCTURAL ANALYSIS-II UNIT1 FLEXIBILITY MATRIX METHOD. PART A 1. What is meant by indeterminate structures? 2. What are the conditions

More information

Prediction of Contact Wire Wear in High-speed Railways

Prediction of Contact Wire Wear in High-speed Railways Prediction of Contact Wire Wear in High-speed Railways 1 T. USUDA M. IKEDA Y. YAMASHITA 1 Railway Technical Research Institute, Tokyo, JAPAN Abstract Although wear of contact wire has been one of the most

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Glossary Innovative Measurement Solutions

Glossary Innovative Measurement Solutions Glossary GLOSSARY OF TERMS FOR TRANSDUCERS, LOAD CELLS AND WEIGH MODULES This purpose of this document is to provide a comprehensive, alphabetical list of terms and definitions commonly employed in the

More information

Dynamic Green Function Solution of Beams Under a Moving Load with Dierent Boundary Conditions

Dynamic Green Function Solution of Beams Under a Moving Load with Dierent Boundary Conditions Transaction B: Mechanical Engineering Vol. 16, No. 3, pp. 273{279 c Sharif University of Technology, June 2009 Research Note Dynamic Green Function Solution of Beams Under a Moving Load with Dierent Boundary

More information

Deflection profile analysis of beams on two-parameter elastic subgrade

Deflection profile analysis of beams on two-parameter elastic subgrade 1(213) 263 282 Deflection profile analysis of beams on two-parameter elastic subgrade Abstract A procedure involving spectral Galerkin and integral transformation methods has been developed and applied

More information

Analytical Solution for a Fluid-Structure Interaction Problem in Comparison with Finite Element Solution

Analytical Solution for a Fluid-Structure Interaction Problem in Comparison with Finite Element Solution Analytical Solution for a Fluid-Structure Interaction Problem in Comparison with Finite Element Solution Amirhossein Keivani & Ahmad Shooshtari Ferdowsi University of Mashhad, Mashhad, Iran. Ahmad Aftabi

More information

RESPONSE OF STEEL BURIED PIPELINES TO THREE-DIMENSIONAL FAULT MOVEMENTS BY CONSIDERING MATERIAL AND GEOMETRICAL NON-LINEARITIES

RESPONSE OF STEEL BURIED PIPELINES TO THREE-DIMENSIONAL FAULT MOVEMENTS BY CONSIDERING MATERIAL AND GEOMETRICAL NON-LINEARITIES 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 694 RESPONSE OF STEEL BURIED PIPELINES TO THREE-DIMENSIONAL FAULT MOVEMENTS BY CONSIDERING MATERIAL AND GEOMETRICAL

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

Assessment of Analytical Techniques of Flexible Pavements by Final Element Method and Theory of Multi-Layer System

Assessment of Analytical Techniques of Flexible Pavements by Final Element Method and Theory of Multi-Layer System J. Basic. Appl. Sci. Res., 2(11)11743-11748, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com Assessment of Analytical Techniques of Flexible

More information

Effects of Damping Ratio of Restoring force Device on Response of a Structure Resting on Sliding Supports with Restoring Force Device

Effects of Damping Ratio of Restoring force Device on Response of a Structure Resting on Sliding Supports with Restoring Force Device Effects of Damping Ratio of Restoring force Device on Response of a Structure Resting on Sliding Supports with Restoring Force Device A. Krishnamoorthy Professor, Department of Civil Engineering Manipal

More information

A NEW ANALYSIS APPROACH FOR MOTORCYCLE BRAKE SQUEAL NOISE AND ITS ADAPTATION

A NEW ANALYSIS APPROACH FOR MOTORCYCLE BRAKE SQUEAL NOISE AND ITS ADAPTATION SETC001 01 1850 A NEW ANALYSIS APPROACH FOR MOTORCYCLE BRAKE SQUEAL NOISE AND ITS ADAPTATION Hiroyuki Nakata, Kiyoshi Kobayashi, Masashi Kajita - Honda R&D Co., Ltd. - JAPAN C.H.Jerry CHUNG - MTS Systems

More information

Ph.D. Preliminary Examination Analysis

Ph.D. Preliminary Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2017 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... Ph.D.

More information

Finite Element Nonlinear Analysis for Catenary Structure Considering Elastic Deformation

Finite Element Nonlinear Analysis for Catenary Structure Considering Elastic Deformation Copyright 21 Tech Science Press CMES, vol.63, no.1, pp.29-45, 21 Finite Element Nonlinear Analysis for Catenary Structure Considering Elastic Deformation B.W. Kim 1, H.G. Sung 1, S.Y. Hong 1 and H.J. Jung

More information

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau Final Exam Solution Dynamics 2 191157140 31-01-2013 8:45 12:15 Problem 1 Bateau Bateau is a trapeze act by Cirque du Soleil in which artists perform aerial maneuvers on a boat shaped structure. The boat

More information

Hull loads and response, hydroelasticity

Hull loads and response, hydroelasticity Transactions on the Built Environment vol 1, 1993 WIT Press, www.witpress.com, ISSN 1743-3509 Hull loads and response, hydroelasticity effects on fast monohulls E. Jullumstr0 & J.V. Aarsnes Division of

More information

on the figure. Someone has suggested that, in terms of the degrees of freedom x1 and M. Note that if you think the given 1.2

on the figure. Someone has suggested that, in terms of the degrees of freedom x1 and M. Note that if you think the given 1.2 1) A two-story building frame is shown below. The mass of the frame is assumed to be lumped at the floor levels and the floor slabs are considered rigid. The floor masses and the story stiffnesses are

More information

NUMERICAL SIMULATION OF THE INELASTIC SEISMIC RESPONSE OF RC STRUCTURES WITH ENERGY DISSIPATORS

NUMERICAL SIMULATION OF THE INELASTIC SEISMIC RESPONSE OF RC STRUCTURES WITH ENERGY DISSIPATORS NUMERICAL SIMULATION OF THE INELASTIC SEISMIC RESPONSE OF RC STRUCTURES WITH ENERGY DISSIPATORS ABSTRACT : P Mata1, AH Barbat1, S Oller1, R Boroschek2 1 Technical University of Catalonia, Civil Engineering

More information

Monitoring the Condition of a Bridge using a Traffic Speed Deflectometer Vehicle Travelling at Highway Speed

Monitoring the Condition of a Bridge using a Traffic Speed Deflectometer Vehicle Travelling at Highway Speed Monitoring the Condition of a Bridge using a Traffic Speed Deflectometer Vehicle Travelling at Highway Speed Eugene J. OBrien 1, 2, Enrique Sevillano 1, Daniel Martinez 1 1 School of Civil Engineering,

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

Numerical simulation of the coil spring and investigation the impact of tension and compression to the spring natural frequencies

Numerical simulation of the coil spring and investigation the impact of tension and compression to the spring natural frequencies Numerical simulation of the coil spring and investigation the impact of tension and compression to the spring natural frequencies F. D. Sorokin 1, Zhou Su 2 Bauman Moscow State Technical University, Moscow,

More information

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass CIV 8/77 Chapter - /75 Introduction To discuss the dynamics of a single-degree-of freedom springmass system. To derive the finite element equations for the time-dependent stress analysis of the one-dimensional

More information

Structural Dynamics A Graduate Course in Aerospace Engineering

Structural Dynamics A Graduate Course in Aerospace Engineering Structural Dynamics A Graduate Course in Aerospace Engineering By: H. Ahmadian ahmadian@iust.ac.ir The Science and Art of Structural Dynamics What do all the followings have in common? > A sport-utility

More information

DEFLECTION CALCULATIONS (from Nilson and Nawy)

DEFLECTION CALCULATIONS (from Nilson and Nawy) DEFLECTION CALCULATIONS (from Nilson and Nawy) The deflection of a uniformly loaded flat plate, flat slab, or two-way slab supported by beams on column lines can be calculated by an equivalent method that

More information

1330. Comparative study of model updating methods using frequency response function data

1330. Comparative study of model updating methods using frequency response function data 1330. Comparative study of model updating methods using frequency response function data Dong Jiang 1, Peng Zhang 2, Qingguo Fei 3, Shaoqing Wu 4 Jiangsu Key Laboratory of Engineering Mechanics, Nanjing,

More information

Title. Author(s)T. MIZUTANI; Y. NARAZAKI; Y. FUJINO. Issue Date Doc URL. Type. Note. File Information

Title. Author(s)T. MIZUTANI; Y. NARAZAKI; Y. FUJINO. Issue Date Doc URL. Type. Note. File Information Title ANALYSIS OF DAMAGE ON SHINAKANSEN VIADUCT CAUSED BY EARTHQUAKE BASED ON NONLINEAR DYNAMIC ANALYSIS Author(s)T. MIZUTANI; Y. NARAZAKI; Y. FUJINO Issue Date 2013-09-11 Doc URL http://hdl.handle.net/2115/54271

More information

MODELING INITIAL VELOCITY PROFILES FOR CONTINUOUS FREE-VIBRATING BEAMS USING DISTRIBUTED IMPULSE LOADING

MODELING INITIAL VELOCITY PROFILES FOR CONTINUOUS FREE-VIBRATING BEAMS USING DISTRIBUTED IMPULSE LOADING VOL. 1, NO. 9, MAY 17 ISSN 1819-668 6-17 Asian Research Publishing Network (ARPN). All rights reserved. MODELING INITIAL VELOCITY PROFILES FOR CONTINUOUS FREE-VIBRATING BEAMS USING DISTRIBUTED IMPULSE

More information

Members Subjected to Torsional Loads

Members Subjected to Torsional Loads Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular

More information

Theoretical Manual Theoretical background to the Strand7 finite element analysis system

Theoretical Manual Theoretical background to the Strand7 finite element analysis system Theoretical Manual Theoretical background to the Strand7 finite element analysis system Edition 1 January 2005 Strand7 Release 2.3 2004-2005 Strand7 Pty Limited All rights reserved Contents Preface Chapter

More information

Ph.D. Preliminary Examination Analysis

Ph.D. Preliminary Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... Ph.D.

More information

DYNAMIC ANALYSIS OF CANTILEVER BEAM

DYNAMIC ANALYSIS OF CANTILEVER BEAM International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 5, May 2017, pp. 1167 1173, Article ID: IJMET_08_05_122 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=5

More information

NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES

NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES 8 th GRACM International Congress on Computational Mechanics Volos, 12 July 15 July 2015 NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES Savvas Akritidis, Daphne

More information

Contents. Dynamics and control of mechanical systems. Focus on

Contents. Dynamics and control of mechanical systems. Focus on Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies

More information

Analysis of Tensioner Induced Coupling in Serpentine Belt Drive Systems

Analysis of Tensioner Induced Coupling in Serpentine Belt Drive Systems 2008-01-1371 of Tensioner Induced Coupling in Serpentine Belt Drive Systems Copyright 2007 SAE International R. P. Neward and S. Boedo Department of Mechanical Engineering, Rochester Institute of Technology

More information

Matrix Method of Structural Analysis Prof. Amit Shaw Department of Civil Engineering Indian Institute of Technology, Kharagpur

Matrix Method of Structural Analysis Prof. Amit Shaw Department of Civil Engineering Indian Institute of Technology, Kharagpur Matrix Method of Structural Analysis Prof. Amit Shaw Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture 01 Introduction Hello everyone, welcome to the online course on Matrix

More information

Dynamic Stress Analysis of a Bus Systems

Dynamic Stress Analysis of a Bus Systems Dynamic Stress Analysis of a Bus Systems *H. S. Kim, # Y. S. Hwang, # H. S. Yoon Commercial Vehicle Engineering & Research Center Hyundai Motor Company 772-1, Changduk, Namyang, Whasung, Kyunggi-Do, Korea

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 11, November -2017 Parametric Study on Response of Railway Tracks

More information

On the Dynamic Behaviors of Large Vessels Propulsion System with Hull Excitations

On the Dynamic Behaviors of Large Vessels Propulsion System with Hull Excitations On the Dynamic Behaviors of Large Vessels Propulsion System with Hull Excitations Zhe Tian 1,2, Cong Zhang 1, Xinping Yan 1, Yeping Xiong 2 1. School of Energy and Power Engineering Wuhan University of

More information

VIBRATION ANALYSIS OF TIE-ROD/TIE-BOLT ROTORS USING FEM

VIBRATION ANALYSIS OF TIE-ROD/TIE-BOLT ROTORS USING FEM VIBRATION ANALYSIS OF TIE-ROD/TIE-BOLT ROTORS USING FEM J. E. Jam, F. Meisami Composite Materials and Technology Center Tehran, IRAN jejaam@gmail.com N. G. Nia Iran Polymer & Petrochemical Institute, Tehran,

More information

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

More information

Stability for Bridge Cable and Cable-Deck Interaction. Dr. Maria Rosaria Marsico D.J. Wagg

Stability for Bridge Cable and Cable-Deck Interaction. Dr. Maria Rosaria Marsico D.J. Wagg Stability for Bridge Cable and Cable-Deck Interaction Dr. Maria Rosaria Marsico D.J. Wagg S.A. Neild Introduction The interaction between cables and structure can lead to complex vibration response Cables

More information