# Chapter 1 (Definitions)

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 FINAL EXAM REVIEW Chapter 1 (Defiitios) Qualitative: Nomial: Ordial: Quatitative: Ordial: Iterval: Ratio: Observatioal Study: Desiged Experimet: Samplig: Cluster: Stratified: Systematic: Coveiece: Simple Radom:

2 Chapter 2 & 3 (Descriptive Statistics & Numerically Summarizig Data) 1. A city i the Pacific Northwest recorded its highest temperature at 96 degrees Fahreheit ad its lowest temperature at 28 degrees Fahreheit for a particular year. Use this iformatio to fid the upper ad lower limits of the first class if you wish to costruct a frequecy distributio with 10 classes. 2. Cosider the data set: {31, 35, 30, 32, 29, 52, 38, 27, 28, 30} a. Create a stem ad leaf plot. b. Determie IQR. c. What is the upper ad lower fece for outliers? d. Are there ay outliers? e. Create a box plot.

3 3. Determie the mea, media, mode, Q1, Q3, populatio stadard deviatio, sample stadard deviatio, populatio variatio, sample variatio of the followig data set: 15, 11, 5, 8, 12, 6, 13, 11, 11, 8 Chapter 4 (Relatioship of 2 Variables) 1. Fid the liear regressio lie give the followig data. x y

4 Chapter 5 & 6 (Probability & Discrete Probability Distributios) 1. What are the properties of a discrete probability distributio? 2. What is the missig probability if the oly outcomes are 0, 1, 2, or 3? x P(x) If a card is radomly selected from a complete set of a stadard deck of shuffle cards: A) P(red) = D) P(2) = B) P(face card)= E) P(15) = C) P(black jack)= 4. Use the data from the table of a radom sample of 121 college studets i Georgia to aswer the followig: Nosmoker Smoker TOTAL Male Female TOTAL A) Fid the probability of radomly selectig ay perso from the sample ad the perso beig either a male-smoker or a femaleosmoker. B) Fid the probability of radomly selectig a perso from the group that is a smoker give that the perso is a male? C) P(female smoker)

5 Chapter 7 (Normal Probability Distributios) 1. Fid the area uder the stadard ormal curve betwee z = -1.2 ad z = Fid P(z > 1.8) 3. The average overall score o the SAT last year was a 1500 with a stadard deviatio of 300. The average overall score o the ACT last year was 21 with a stadard deviatio of 5. a. What is the z-score associated with a studet scorig a 1750 o the SAT? b. What is the z-score associated with a studet scorig a 25 o the ACT? c. Which score is better? Chapter 8 (Samplig Distributios) 1. (Cetral Limit Theorem) The mea height of a male i the Uited States is roughly 69 iches (5 feet 9 iches) with a stadard deviatio of approximately 3 iches. a. Give samples of size 16 were radomly take, what would be the mea of the sample meas ( ) ad the stadard deviatio of the sample meas ( )? b. A radom sample of 16 males from the Uited States was take. What is the probability that the average height of the group was greater tha 6 feet (72 iches)?

6 Chapter 9 (Cofidece Itervals) 1. The populatio stadard deviatio of the SAT is kow to be 300 ad the populatio is approximately ormal. If a radom sample of 16 studets had a mea score of 1560, costruct a 99% cofidece iterval for the populatio mea. 2. A radom sample of 16 females from the Uited States was take. The mea height of the females from the sample was 64 iches ad the sample stadard deviatio was 4 iches. Costruct a 95% cofidece iterval for the populatio mea. 3. Give a sample {13, 15, 19, 10, 13, 12, 10, 18, 12, 12} costruct a 90% cofidece iterval for the populatio mea.

7 Chapter 10 (Hypothesis Testig) 1. A evirometal agecy wats to see if the ew govermet policies have helped the auto idustry to icrease fuel efficiecy of compact car models. Five years ago the average fuel efficiecy was 22 mpg. a. State the ull hypothesis. b. State the alterate hypothesis. c. What would a Type I error suggest? d. What would a Type II error suggest? 2. If we wish to support the claim 20 at a level of sigi icace of = Give the sample statistics = 30, =19.2 ad =4, a. What is the ull hypothesis (H0)? b. Compute the value of the test statistic. c. What are the critical t-values? d. What does the test statistic suggest?

8 3. A cosumer group believes that a particular compay that makes sacks is t givig less tha the amout of chips that is labeled o the bag. The bag suggests the weight of chips to be 24 grams. The group takes a radom sample of 30 bags ad fids the sample mea to be 27 grams with a stadard deviatio of 0.8 grams. a. State H0 ad H1 b. Compute the test statistic. c. Determie the critical t-value. d. Should we reject or fail to reject H0? 4. If we wish to support the claim 20 at a level of sigificace of = Give the sample statistics = 16, =22, =4, ad that the populatio is approximately ormal, determie the P-value. 5. If we wish to support the claim 20 at a level of sigificace of = Give the sample statistics = 25, =18, s = 2, ad it has bee cocluded that the sample appears to come from a populatio that is ormally distributed based o a ormality probability plot. a. Fid the stadardized test statistic t. b. Fid the P-Value usig a t-distributio.

9 Chapter 11 ad 12 (Iferece about 2 meas & Chi Squared) 1. Usig a iferece about two meas of idepedet samples. Attempt to validate the claim 1 2 at a level of sigificace of = The provided statistics: 1 = 16, 1=18, s1 = 2 ad 2 = 16, 2=22, s2 = 3 a. Fid the stadardized test statistic t. b. Fid the P-Value usig a t-distributio. 2. Usig = 0.10 ad a Chi-Square test of goodess of fit determie the followig. Cards are draw oe at a time with replacemet from a stadard deck of shuffled cards ad the frequecy that each suit appears is recorded. Each suit should appear approximately ¼ of the time whe selected. A player suspects that the deck is ot stadard because too may clubs are appearig. The results of the 100 radom draws are show below. Suit Hearts Clubs Diamods Spades Frequecy A) State H0. B) State H1. C) Fid the chi-square test statistic. D) Fid the p-value. E) What is the coclusio?

10 Descriptive Statistics Sample mea: x = x i Sample stadard deviatio: s = (x i x ) 2 Probability 1 Rule of additio: P(A B) = P(A) + P(B) P(A B) Rule of multiplicatio: P(A B) = P(A)P(B A) Iferetial Statistics Mea of the distributio of the sample mea: μ x = μ Stadard deviatio of the distributio of the sample mea: σ x = σ Mea of the distributio of the sample proportio: μ p = p Stadard deviatio of the distributio of the sample proportio: σ p = p(1 p) Commo critical values: z 0.10 = z 0.05 = z = z 0.01 = z = Cofidece iterval: Sample statistic ± critical value * stadard error of the statistic o x ± z /2 σ = ( z /2 σ ) 2 e o x ± t /2,df s o (x 1 ) x 2 ± t /2,df s s Stadardized test statistic: (statistic parameter)/(stadard deviatio of the statistic) o z = x μ 0 σ o t = x μ 0 s o t = (x x 1 ) (μ 2 1 μ 2 ) s s 2 2 2

11 Chapter 7: Formula Sheet for Math 1431 Chapter 9: Z = X μ σ ; X = μ + Zσ (1 ) 100% CI for μ: x ± z σ ; 30 2 Chapter 8: μ x = μ ; p = x σ x = σ (1 ) 100% CI for μ: (1 ) 100% CI for p: x ± t 2 p ± z 2 p (1 p ) 10 ad 0.05N s ; df = 1 p (1 p ) ; μ p = p; p(1 p) σ p = = ( z σ 2 E )2 z = x μ σ or z = p p p(1 p) Commo Critical Values: z 0.10 = z 0.05 = z = z 0.01 = z = Chapter 10: z 0 = x μ 0 σ z 0 = p p 0 p 0 (1 p 0) = p (1 p )( z /2 E )2 = 0. 25( z /2 E )2 if p 0 (1 p 0 ) 10 ad 0.05N Chapter 11: t o = x μ 0, with df=-1 s t 0 = d μ d s d CI for matched-pairs data: d ± t /2,df s d t 0 = (x 1 x ) 2 (μ 1 μ 2 ) s s CI for μ 1 μ 2 : (x 1 ) x 2 ± t /2,df s s z 0 = (p 1 p 2 ) (p 1 p 2 ) CI for p 1 p 2 : p (1 p )( ), where p = x 1 + x (p 1 p 2 ) ± z /2 p 1(1 p 1 ) 1 + p 2(1 p 2 ) 2 = 1 = 2 = [p 1 (1 p 1 ) + p 2 (1 p 2 )]( z /2 E )2 = 1 = 2 = 0. 5( z /2 E )2 Chapter 12: E i = μ i = p i for i = 1, 2,, k χ 2 = (O i E i ) 2 E i for i = 1, 2,, k

### MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.

XI-1 (1074) MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. R. E. D. WOOLSEY AND H. S. SWANSON XI-2 (1075) STATISTICAL DECISION MAKING Advaced

### Statistics 20: Final Exam Solutions Summer Session 2007

1. 20 poits Testig for Diabetes. Statistics 20: Fial Exam Solutios Summer Sessio 2007 (a) 3 poits Give estimates for the sesitivity of Test I ad of Test II. Solutio: 156 patiets out of total 223 patiets

### 7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

### STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:

STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform large-sample ifereces (hypothesis test ad cofidece itervals) to compare two populatio

### Chapter 22: What is a Test of Significance?

Chapter 22: What is a Test of Sigificace? Thought Questio Assume that the statemet If it s Saturday, the it s the weeked is true. followig statemets will also be true? Which of the If it s the weeked,

### Recall the study where we estimated the difference between mean systolic blood pressure levels of users of oral contraceptives and non-users, x - y.

Testig Statistical Hypotheses Recall the study where we estimated the differece betwee mea systolic blood pressure levels of users of oral cotraceptives ad o-users, x - y. Such studies are sometimes viewed

### Statistical inference: example 1. Inferential Statistics

Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

### Sampling Distributions, Z-Tests, Power

Samplig Distributios, Z-Tests, Power We draw ifereces about populatio parameters from sample statistics Sample proportio approximates populatio proportio Sample mea approximates populatio mea Sample variace

### Instructor: Judith Canner Spring 2010 CONFIDENCE INTERVALS How do we make inferences about the population parameters?

CONFIDENCE INTERVALS How do we make ifereces about the populatio parameters? The samplig distributio allows us to quatify the variability i sample statistics icludig how they differ from the parameter

### IE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes.

Closed book ad otes. No calculators. 120 miutes. Cover page, five pages of exam, ad tables for discrete ad cotiuous distributios. Score X i =1 X i / S X 2 i =1 (X i X ) 2 / ( 1) = [i =1 X i 2 X 2 ] / (

### Stat 200 -Testing Summary Page 1

Stat 00 -Testig Summary Page 1 Mathematicias are like Frechme; whatever you say to them, they traslate it ito their ow laguage ad forthwith it is somethig etirely differet Goethe 1 Large Sample Cofidece

### Important Concepts not on the AP Statistics Formula Sheet

Part I: IQR = Q 3 Q 1 Test for a outlier: 1.5(IQR) above Q 3 or below Q 1 The calculator will ru the test for you as log as you choose the boplot with the oulier o it i STATPLOT Importat Cocepts ot o the

### Tables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc.

Table ad Formula for Sulliva, Fudametal of Statitic, e. 008 Pearo Educatio, Ic. CHAPTER Orgaizig ad Summarizig Data Relative frequecy frequecy um of all frequecie Cla midpoit: The um of coecutive lower

### Chapter 13, Part A Analysis of Variance and Experimental Design

Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 Chapter 13, Part A Aalysis of Variace ad Eperimetal Desig Itroductio to Aalysis of Variace Aalysis of Variace: Testig for the Equality of

### Econ 371 Exam #1. Multiple Choice (5 points each): For each of the following, select the single most appropriate option to complete the statement.

Eco 371 Exam #1 Multiple Choice (5 poits each): For each of the followig, select the sigle most appropriate optio to complete the statemet 1) The probability of a outcome a) is the umber of times that

### Central Limit Theorem the Meaning and the Usage

Cetral Limit Theorem the Meaig ad the Usage Covetio about otatio. N, We are usig otatio X is variable with mea ad stadard deviatio. i lieu of sayig that X is a ormal radom Assume a sample of measuremets

### UCLA STAT 110B Applied Statistics for Engineering and the Sciences

UCLA STAT 110B Applied Statistics for Egieerig ad the Scieces Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistats: Bria Ng, UCLA Statistics Uiversity of Califoria, Los Ageles,

### Median and IQR The median is the value which divides the ordered data values in half.

STA 666 Fall 2007 Web-based Course Notes 4: Describig Distributios Numerically Numerical summaries for quatitative variables media ad iterquartile rage (IQR) 5-umber summary mea ad stadard deviatio Media

### Chapter VII Measures of Correlation

Chapter VII Measures of Correlatio A researcher may be iterested i fidig out whether two variables are sigificatly related or ot. For istace, he may be iterested i kowig whether metal ability is sigificatly

### Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

### Confidence Intervals for the Population Proportion p

Cofidece Itervals for the Populatio Proportio p The cocept of cofidece itervals for the populatio proportio p is the same as the oe for, the samplig distributio of the mea, x. The structure is idetical:

### Confidence Level We want to estimate the true mean of a random variable X economically and with confidence.

Cofidece Iterval 700 Samples Sample Mea 03 Cofidece Level 095 Margi of Error 0037 We wat to estimate the true mea of a radom variable X ecoomically ad with cofidece True Mea μ from the Etire Populatio

### Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab

Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet

### CORRELATION AND REGRESSION

the Further Mathematics etwork www.fmetwork.org.uk V 7 1 1 REVISION SHEET STATISTICS 1 (Ed) CORRELATION AND REGRESSION The mai ideas are: Scatter Diagrams ad Lies of Best Fit Pearso s Product Momet Correlatio

### CH19 Confidence Intervals for Proportions. Confidence intervals Construct confidence intervals for population proportions

CH19 Cofidece Itervals for Proportios Cofidece itervals Costruct cofidece itervals for populatio proportios Motivatio Motivatio We are iterested i the populatio proportio who support Mr. Obama. This sample

### KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions

We have previously leared: KLMED8004 Medical statistics Part I, autum 00 How kow probability distributios (e.g. biomial distributio, ormal distributio) with kow populatio parameters (mea, variace) ca give

### Stat 400, section 5.4 supplement: The Central Limit Theorem

Stat, sectio 5. supplemet: The Cetral Limit Theorem otes by Tim Pilachowski Table of Cotets 1. Backgroud 1. Theoretical. Practical. The Cetral Limit Theorem 5. Homework Exercises 7 1. Backgroud Gatherig

### Statisticians use the word population to refer the total number of (potential) observations under consideration

6 Samplig Distributios Statisticias use the word populatio to refer the total umber of (potetial) observatios uder cosideratio The populatio is just the set of all possible outcomes i our sample space

### The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

### Simple Linear Regression

Simple Liear Regressio 1. Model ad Parameter Estimatio (a) Suppose our data cosist of a collectio of pairs (x i, y i ), where x i is a observed value of variable X ad y i is the correspodig observatio

### Parameter, Statistic and Random Samples

Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

### STAT 203 Chapter 18 Sampling Distribution Models

STAT 203 Chapter 18 Samplig Distributio Models Populatio vs. sample, parameter vs. statistic Recall that a populatio cotais the etire collectio of idividuals that oe wats to study, ad a sample is a subset

### Chapter 4 - Summarizing Numerical Data

Chapter 4 - Summarizig Numerical Data 15.075 Cythia Rudi Here are some ways we ca summarize data umerically. Sample Mea: i=1 x i x :=. Note: i this class we will work with both the populatio mea µ ad the

### (all terms are scalars).the minimization is clearer in sum notation:

7 Multiple liear regressio: with predictors) Depedet data set: y i i = 1, oe predictad, predictors x i,k i = 1,, k = 1, ' The forecast equatio is ŷ i = b + Use matrix otatio: k =1 b k x ik Y = y 1 y 1

### Topic 6 Sampling, hypothesis testing, and the central limit theorem

CSE 103: Probability ad statistics Fall 2010 Topic 6 Samplig, hypothesis testig, ad the cetral limit theorem 61 The biomial distributio Let X be the umberofheadswhe acoiofbiaspistossedtimes The distributio

### Solutions to Odd Numbered End of Chapter Exercises: Chapter 4

Itroductio to Ecoometrics (3 rd Updated Editio) by James H. Stock ad Mark W. Watso Solutios to Odd Numbered Ed of Chapter Exercises: Chapter 4 (This versio July 2, 24) Stock/Watso - Itroductio to Ecoometrics

### Correlation and Covariance

Correlatio ad Covariace Tom Ilveto FREC 9 What is Next? Correlatio ad Regressio Regressio We specify a depedet variable as a liear fuctio of oe or more idepedet variables, based o co-variace Regressio

### Chapter 4 Tests of Hypothesis

Dr. Moa Elwakeel [ 5 TAT] Chapter 4 Tests of Hypothesis 4. statistical hypothesis more. A statistical hypothesis is a statemet cocerig oe populatio or 4.. The Null ad The Alterative Hypothesis: The structure

### Elementary Statistics

Elemetary Statistics M. Ghamsary, Ph.D. Sprig 004 Chap 0 Descriptive Statistics Raw Data: Whe data are collected i origial form, they are called raw data. The followig are the scores o the first test of

### Statistical Inference Procedures

Statitical Iferece Procedure Cofidece Iterval Hypothei Tet Statitical iferece produce awer to pecific quetio about the populatio of iteret baed o the iformatio i a ample. Iferece procedure mut iclude a

### Binomial Distribution

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

### CTL.SC0x Supply Chain Analytics

CTL.SC0x Supply Chai Aalytics Key Cocepts Documet V1.1 This documet cotais the Key Cocepts documets for week 6, lessos 1 ad 2 withi the SC0x course. These are meat to complemet, ot replace, the lesso videos

### Section 14. Simple linear regression.

Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

### First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

First Year Quatitative Comp Exam Sprig, 2012 Istructio: There are three parts. Aswer every questio i every part. Questio I-1 Part I - 203A A radom variable X is distributed with the margial desity: >

### 3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N.

3/3/04 CDS M Phil Old Least Squares (OLS) Vijayamohaa Pillai N CDS M Phil Vijayamoha CDS M Phil Vijayamoha Types of Relatioships Oly oe idepedet variable, Relatioship betwee ad is Liear relatioships Curviliear

### f(x)dx = 1 and f(x) 0 for all x.

OCR Statistics 2 Module Revisio Sheet The S2 exam is 1 hour 30 miutes log. You are allowed a graphics calculator. Before you go ito the exam make sureyou are fully aware of the cotets of theformula booklet

### Measures of Spread: Variance and Standard Deviation

Lesso 1-6 Measures of Spread: Variace ad Stadard Deviatio BIG IDEA Variace ad stadard deviatio deped o the mea of a set of umbers. Calculatig these measures of spread depeds o whether the set is a sample

### PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

### Introduction to Econometrics (3 rd Updated Edition) Solutions to Odd- Numbered End- of- Chapter Exercises: Chapter 4

Itroductio to Ecoometrics (3 rd Updated Editio) by James H. Stock ad Mark W. Watso Solutios to Odd- Numbered Ed- of- Chapter Exercises: Chapter 4 (This versio August 7, 204) 205 Pearso Educatio, Ic. Stock/Watso

### Statistics. Chapter 10 Two-Sample Tests. Copyright 2013 Pearson Education, Inc. publishing as Prentice Hall. Chap 10-1

Statistics Chapter 0 Two-Sample Tests Copyright 03 Pearso Educatio, Ic. publishig as Pretice Hall Chap 0- Learig Objectives I this chapter, you lear How to use hypothesis testig for comparig the differece

### Testing Statistical Hypotheses for Compare. Means with Vague Data

Iteratioal Mathematical Forum 5 o. 3 65-6 Testig Statistical Hypotheses for Compare Meas with Vague Data E. Baloui Jamkhaeh ad A. adi Ghara Departmet of Statistics Islamic Azad iversity Ghaemshahr Brach

### ORF 245 Fundamentals of Engineering Statistics. Midterm Exam 2

Priceto Uiversit Departmet of Operatios Research ad Fiacial Egieerig ORF 45 Fudametals of Egieerig Statistics Midterm Eam April 17, 009 :00am-:50am PLEASE DO NOT TURN THIS PAGE AND START THE EXAM UNTIL

### STATISTICAL INFERENCE

STATISTICAL INFERENCE POPULATION AND SAMPLE Populatio = all elemets of iterest Characterized by a distributio F with some parameter θ Sample = the data X 1,..., X, selected subset of the populatio = sample

### UCLA STAT 110B Applied Statistics for Engineering and the Sciences

UCLA SA 0B Applied Statistics for Egieerig ad the Scieces Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology eachig Assistats: Bria Ng, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig

### STA 4032 Final Exam Formula Sheet

Chapter 2. Probability STA 4032 Fial Eam Formula Sheet Some Baic Probability Formula: (1) P (A B) = P (A) + P (B) P (A B). (2) P (A ) = 1 P (A) ( A i the complemet of A). (3) If S i a fiite ample pace

### y ij = µ + α i + ɛ ij,

STAT 4 ANOVA -Cotrasts ad Multiple Comparisos /3/04 Plaed comparisos vs uplaed comparisos Cotrasts Cofidece Itervals Multiple Comparisos: HSD Remark Alterate form of Model I y ij = µ + α i + ɛ ij, a i

### Probability and statistics: basic terms

Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample

### CHAPTER III RESEARCH METHODOLOGY

CHAPTER III RESEARCH METHODOLOGY A. Method of the Research I this research the writer used the experimetal method. The experimetal research was aimed to kow if there were effect or ot for the populatio

### EDGEWORTH SIZE CORRECTED W, LR AND LM TESTS IN THE FORMATION OF THE PRELIMINARY TEST ESTIMATOR

Joural of Statistical Research 26, Vol. 37, No. 2, pp. 43-55 Bagladesh ISSN 256-422 X EDGEORTH SIZE CORRECTED, AND TESTS IN THE FORMATION OF THE PRELIMINARY TEST ESTIMATOR Zahirul Hoque Departmet of Statistics

### Introduction to Probability and Statistics Twelfth Edition

Itroductio to Probability ad Statistics Twelfth Editio Robert J. Beaver Barbara M. Beaver William Medehall Presetatio desiged ad writte by: Barbara M. Beaver Itroductio to Probability ad Statistics Twelfth

### Chapter 6 Principles of Data Reduction

Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

### Activity 3: Length Measurements with the Four-Sided Meter Stick

Activity 3: Legth Measuremets with the Four-Sided Meter Stick OBJECTIVE: The purpose of this experimet is to study errors ad the propagatio of errors whe experimetal data derived usig a four-sided meter

### The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

Iteratioal Mathematical Forum, Vol. 8, 2013, o. 26, 1263-1277 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/imf.2013.3475 The Samplig Distributio of the Maimum Likelihood Estimators for the Parameters

### Element sampling: Part 2

Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

### Introducing Sample Proportions

Itroducig Sample Proportios Probability ad statistics Aswers & Notes TI-Nspire Ivestigatio Studet 60 mi 7 8 9 0 Itroductio A 00 survey of attitudes to climate chage, coducted i Australia by the CSIRO,

### Distribution of Sample Proportions

Distributio of Samle Proortios Probability ad statistics Aswers & Teacher Notes TI-Nsire Ivestigatio Studet 90 mi 7 8 9 10 11 12 Itroductio From revious activity: This activity assumes kowledge of the

### Lecture 9: Independent Groups & Repeated Measures t-test

Brittay s ote 4/6/207 Lecture 9: Idepedet s & Repeated Measures t-test Review: Sigle Sample z-test Populatio (o-treatmet) Sample (treatmet) Need to kow mea ad stadard deviatio Problem with this? Sigle

### Grant MacEwan University STAT 151 Formula Sheet Final Exam Dr. Karen Buro

Grat MacEwa Uiverity STAT 151 Formula Sheet Fial Exam Dr. Kare Buro Decriptive Statitic Sample Variace: = i=1 (x i x) 1 = Σ i=1x i (Σ i=1 x i) 1 Sample Stadard Deviatio: = Sample Variace = Media: Order

### The standard deviation of the mean

Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

### College of Science Department of Statistics & OR

Biostatistics - STAT 45 Departmet of Statistics Summer Semester 43/43 Kig Saud Uiversity College of Sciece Departmet of Statistics & OR STAT 45 BIOSTATISTICS Summer Semester 43/43 Lectures' Notes Prof.

### Assessment and Modeling of Forests. FR 4218 Spring Assignment 1 Solutions

Assessmet ad Modelig of Forests FR 48 Sprig Assigmet Solutios. The first part of the questio asked that you calculate the average, stadard deviatio, coefficiet of variatio, ad 9% cofidece iterval of the

### 7: Sampling Distributions

7: Samplig Distributios 7.1 You ca select a simple radom sample of size = 2 usig Table 1 i Appedix I. First choose a startig poit ad cosider the first three digits i each umber. Sice the experimetal uits

### Probability, Expectation Value and Uncertainty

Chapter 1 Probability, Expectatio Value ad Ucertaity We have see that the physically observable properties of a quatum system are represeted by Hermitea operators (also referred to as observables ) such

### NCSS Statistical Software. Tolerance Intervals

Chapter 585 Itroductio This procedure calculates oe-, ad two-, sided tolerace itervals based o either a distributio-free (oparametric) method or a method based o a ormality assumptio (parametric). A two-sided

### 106 Stat 1434 / 1435 H. Chapter 1: Organizing and Displaying Data

106 Stat Refereces -Biostatistics : A foudatio i Aalysis i the Health Sciece -By : Waye W. Daiel -Elemetary Biostatistics with Applicatios from Saudi Arabia By : Nacy Hasabelaby 1434 / 1435 H Chapter 1:

### Discrete probability distributions

Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop

### It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.

Chapter 10 Variace Estimatio 10.1 Itroductio Variace estimatio is a importat practical problem i survey samplig. Variace estimates are used i two purposes. Oe is the aalytic purpose such as costructig

### A LARGER SAMPLE SIZE IS NOT ALWAYS BETTER!!!

A LARGER SAMLE SIZE IS NOT ALWAYS BETTER!!! Nagaraj K. Neerchal Departmet of Mathematics ad Statistics Uiversity of Marylad Baltimore Couty, Baltimore, MD 2250 Herbert Lacayo ad Barry D. Nussbaum Uited

### SALES AND MARKETING Department MATHEMATICS. 2nd Semester. Bivariate statistics LESSONS

SALES AND MARKETING Departmet MATHEMATICS d Semester Bivariate statistics LESSONS Olie documet: http://jff-dut-tc.weebly.com sectio DUT Maths S. IUT de Sait-Etiee Départemet TC J.F.Ferraris Math S StatVar

### REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION I liear regreio, we coider the frequecy ditributio of oe variable (Y) at each of everal level of a ecod variable (X). Y i kow a the depedet variable.

### A goodness-of-fit test based on the empirical characteristic function and a comparison of tests for normality

A goodess-of-fit test based o the empirical characteristic fuctio ad a compariso of tests for ormality J. Marti va Zyl Departmet of Mathematical Statistics ad Actuarial Sciece, Uiversity of the Free State,

### Paired Data and Linear Correlation

Paired Data ad Liear Correlatio Example. A group of calculus studets has take two quizzes. These are their scores: Studet st Quiz Score ( data) d Quiz Score ( data) 7 5 5 0 3 0 3 4 0 5 5 5 5 6 0 8 7 0

### Asymptotic Results for the Linear Regression Model

Asymptotic Results for the Liear Regressio Model C. Fli November 29, 2000 1. Asymptotic Results uder Classical Assumptios The followig results apply to the liear regressio model y = Xβ + ε, where X is

### Formulas FROM LECTURE 01 TO 22 W X. d n. fx f. Arslan Latif (mt ) & Mohsin Ali (mc ) Mean: Weighted Mean: Mean Deviation: Ungroup Data

1 Formulas FROM LECTURE 01 TO Mea: fx f Weighted Mea: X w W X i i Wi Mea Deviatio: Ugroup Data d M. D Group Data fi di M. D f d ( X X ) Coefficiet of Mea Deviatio: M. D Co-efficiet of M. D(for mea) Mea

### Estimating Confidence Interval of Mean Using. Classical, Bayesian, and Bootstrap Approaches

Iteratioal Joural of Mathematical Aalysis Vol. 8, 2014, o. 48, 2375-2383 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.49287 Estimatig Cofidece Iterval of Mea Usig Classical, Bayesia,

### SIMPLE LINEAR REGRESSION AND CORRELATION ANALYSIS

SIMPLE LINEAR REGRESSION AND CORRELATION ANALSIS INTRODUCTION There are lot of statistical ivestigatio to kow whether there is a relatioship amog variables Two aalyses: (1) regressio aalysis; () correlatio

### DISTRIBUTION LAW Okunev I.V.

1 DISTRIBUTION LAW Okuev I.V. Distributio law belogs to a umber of the most complicated theoretical laws of mathematics. But it is also a very importat practical law. Nothig ca help uderstad complicated

### V. Nollau Institute of Mathematical Stochastics, Technical University of Dresden, Germany

PROBABILITY AND STATISTICS Vol. III - Correlatio Aalysis - V. Nollau CORRELATION ANALYSIS V. Nollau Istitute of Mathematical Stochastics, Techical Uiversity of Dresde, Germay Keywords: Radom vector, multivariate

### Lecture 1 Probability and Statistics

Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

### 18. Two-sample problems for population means (σ unknown)

8. Two-samle roblems for oulatio meas (σ ukow) The Practice of Statistics i the Life Scieces Third Editio 04 W.H. Freema ad Comay Objectives (PSLS Chater 8) Comarig two meas (σ ukow) Two-samle situatios

### 4.1 Sigma Notation and Riemann Sums

0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

### Asymptotic distribution of the first-stage F-statistic under weak IVs

November 6 Eco 59A WEAK INSTRUMENTS III Testig for Weak Istrumets From the results discussed i Weak Istrumets II we kow that at least i the case of a sigle edogeous regressor there are weak-idetificatio-robust

### BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13

BHW # /5 ENGR Probabilistic Aalysis Beautiful Homework # Three differet roads feed ito a particular freeway etrace. Suppose that durig a fixed time period, the umber of cars comig from each road oto the

### Advanced Engineering Mathematics Exercises on Module 4: Probability and Statistics

Advaced Egieerig Mathematics Eercises o Module 4: Probability ad Statistics. A survey of people i give regio showed that 5% drak regularly. The probability of death due to liver disease, give that a perso

Academic Grade 9 Assessmet of Mathematics 2014 Released assessmet Questios Record your aswers to the multiple-choice questios o the Studet Aswer Sheet (2014, Academic). Please ote: The format of this booklet

### Section 11.8: Power Series

Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

### Hypothesis tests and confidence intervals

Hypothesis tests ad cofidece itervals The 95% cofidece iterval for µ is the set of values, µ 0, such that the ull hypothesis H 0 : µ = µ 0 would ot be rejected by a two-sided test with α = 5%. The 95%

### What is a Hypothesis? Hypothesis is a statement about a population parameter developed for the purpose of testing.

What is a ypothesis? ypothesis is a statemet about a populatio parameter developed for the purpose of testig. What is ypothesis Testig? ypothesis testig is a proedure, based o sample evidee ad probability