Normalized Exponential Tilting: Pricing and Measuring Multivariate Risks

Size: px
Start display at page:

Download "Normalized Exponential Tilting: Pricing and Measuring Multivariate Risks"

Transcription

1 Normalzed Expoetal Tltg: Prcg ad easurg ultvarate Rsks Shau Wag Departmet o Rsk aagemet ad Isurace Georga State Uversty Abstract: Ths paper dscusses expoetal tltg o the probablty desty ucto o a uderlyg rsk wth respect to some reerece rsk Y By troducg a ormalzato procedure o the reerece rsk Y t shows that ormalzed expoetal tltg s equvalet to applyg Wag trasorm dstorto to the cumulatve dstrbuto o ad s a exteso o CAP to rsks wth geeral-shaped dstrbutos The secod part o the paper deals wth multvarate cases It shows how multvarate ormalzed expoetal tltg s related to multvarate probablty dstortos It provdes ecet routes or computg rsk-adusted multvarate probablty dstrbutos ad gves examples o prcg cotget clams o multple rsks Itroducto: Adustmet o probablty measure s a commo theme prcg ad valuato o rsks The eed or chagg multvarate probablty measures ote arses prcg o cotget clams o multple uderlyg assets or labltes measurg portolo rsks ad whe allocatg total compay rsk captal to varous busess uts Part o the paper revews two methods o adustmet o probablty measure or a gve rsk (radom varable : applyg a expoetal tltg (wth respect to a reerece varable Y to the probablty desty ucto o ; applyg a dstorto drectly to the cumulatve dstrbuto ucto o The paper the troduces a ormalzato procedure va percetle mappg that coverts the reerece Y to a stadard ormal varable It s show that ormalzed expoetal tltg o the probablty desty ucto o s equvalet to applyg the Wag trasorm dstorto to the cumulatve dstrbuto o ad s a exteso o the Captal Asset Prcg odel to rsks wth geeral-shaped dstrbutos Shau Wag 005

2 Part o the paper exteds both the ormalzed expoetal tltg ad probablty dstorto to multvarate cases ad establshes a mportat lk betwee these two parallel approaches the multvarate case It gves ecet routes or computg the rsk-adusted multvarate probablty dstrbuto ad provdes examples prcg cotget clams o multple rsks ad measurg portolo rsks PART NORAIZED EPONENTIA TITING & DISTORTION --- THE UNIVARIATE CASE Normalzed Expoetal Tltg We shall cosder rsks that are radom varables some probablty space (Ω Ρ For ay radom varable we let We let F represet ts cumulatve dstrbuto ucto (CDF represet the probablty desty ucto (pd o ( the dscrete case the pd s also reerred to as the probablty ucto Cosder two rsks ad Y We say that s absolutely cotuous wrt Y Y > 0 or all pots x wth > 0 Deto Assume that s absolutely cotuously wrt Y We dee the expoetal tltg o wth respect to reerece Y as ollows: E[ exp( λ Y x] (eq- E exp( λy [ ] where ad represet the pd or beore ad ater the expoetal tltg respectvely The λ (eq- s a real-valued parameter cotrollg the magtude o rskadustmet Wth the expoetal tltg (eq- the rato E[ exp( λ Y x] RN( x E exp( λy gves the Rado-Nkodym dervatve o wrt [ ] I the cotext o a ecoomc model or optmal rsk exchage Buhlma (980 derved that the Pareto-optmal equlbrum prce or a rsk ca be represeted as the expected value o the rsk-adusted dstrbuto as (eq- whereas the reerece Y represets portolo aggregate rsk Shau Wag 005

3 I the specal case o Y (eq- dees a expoetal tltg o wrt tsel: exp( λx E exp( λ [ ] The relato s also wdely kow as the Esscher trasorm Gerber ad Shu (994 have successully appled the Esscher trasorm prcg optos Wth the expoetal tltg (eq- we do ot have a cosstet terpretato o the λ parameter except or the specal case whe Y s a ormal (Gaussa varable Ideed we keep the value o λ xed the scale ad shape o the reerece varable Y ca make a huge derece the results o expoetal tltg I order to get a cosstet terpretato o λ here we propose a ormalzato procedure to be perormed o the reerece varable Y We dee the verso o the CDF o Y as F ( p { y F ( y p } Y Y Y F Y ( Φ( Z et Z be a stadard ormal varable such that where Φ s the CDF o ormal(0 We shall reer to Z as a ormalzed varable o Y ad ext we shall use Z to replace Y (eq- Deto et Z be a ormalzed varable o the reerece Y We dee a ormalzed expoetal tltg o wth respect to reerece Y (or say wrt reerece Z as ollows: E[ exp( λ Z x] (eq- E exp( λz [ ] To keep the otatos straght we summarze the above as ollows: Beore: Expoetal tltg o wrt Y Normalzato: Trasorm Y to a stadard ormal varable Z: Ater: Normalzed expoetal tltg o wrt Z Note that here Z essetally replaces Y as a ormalzed reerece varable The ratoales ad beets o troducg the above ormalzato procedure wll be gve secto 3 Probablty Dstortos Now t s tme to troduce probablty dstortos as aother approach that parallels to the expoetal tltg method Shau Wag 005 3

4 Deto 3 et g:[0 ] [0 ] be a deretable ucto wth g(00 ad g( Gve the CDF F(x or a radom varable the trasormed CDF ( F( x F g dees a rsk-adusted probablty measure The probablty dstorto deto 3 mples the ollowg Rado-Nkodym dervatve: o I the dscrete case where takes o values { x } RN g ( x ( x g ( x ( F ( x g( F ( x F ( x F ( x x : o I the cotuous case where has a postve probablty desty at x: ( F ( RN g g' x As show Wag ( the ollowg specc orm o dstorto s reerred to as the Wag trasorm: [ ( F λ] F g( F Φ Φ (eq-3 Whe s a cotuous varable we have ( F exp( λ Φ ( F exp( λ RN g g' A plot o the Rado-Nkodym dervatve s gve Fgure Shau Wag 005 4

5 Fgure Rado-Nkodym Dervatve Impled By The Wag Trasorm Value o RN(x lambda0 lambda Value o F(x Both ormal ad logormal dstrbutos are preserved uder the Wag trasorm (eq- 3: I F has a Normal(μσ dstrbuto F s also a ormal dstrbuto wth μ μ λσ ad σ σ I F has a log-ormal(μσ dstrbuto such that l( ~ Normal(μσ F s aother log-ormal dstrbuto wth μ μ λσ ad σ σ 3 k Betwee Expoetal Tltg ad Dstorto Uvarate Case Theorem : Assume that ad Y have bvarate ormal copula wth a correlato coecet o Y The ormalzed expoetal tltg (eq- s equvalet to applyg the ollowg Wag trasorm dstorto: [ ( F β ] F g( F Φ Φ wth β λ Y A proo ca be oud Wag (003 Theorem establshes a mportat lk betwee ormalzed expoetal tltg ad the Wag trasorm dstorto Ths result s a geeralzato o the Captal Asset Prcg odelg whch reveals the meag o the λ parameter Shau Wag 005 5

6 Cosder a stock dex R (represet the market portolo whose prospectve ed-operod retur has a orma l ( μ σ dstrbuto wth mea μ ad stadard devato σ The dscouted ed-o-perod stock prce S ( R exp( ( S (0 exp r σ has a log-ormal μ r σ dstrbuto ad r s the rsk-ree rate o retur I we apply ormalzed expoetal tltg o R wth the reerece Y beg the stock retur R the rsk-adusted dstrbuto or the stock dex retur has a ormal dstrbuto wth E [ ] μ λ σ R Alteratvely we apply ormalzed expoetal tltg o the stock prce S ( wth the reerece Y S ( beg the stock prce the rsk-adusted dstrbuto or the σ stock prce s log-ormal μ λσ r σ To orce the rsk-adusted expected retur equal the rsk ree rate r we get E[ R ] r μ r λ σ σ To orce the rsk-adusted expected value o the dscouted stock prce the curret stock prce S (0 we get the same result λ E[ R ] r σ : μ r σ S ( to equal For the stock dex the rsk adustmet parameter λ s exactly the market prce o rsk (or the Sharpe rato Ths specal case helps us to assg a dete meag to the parameter λ as a exteso o the market prce o rsk (or Sharpe rato to rsks wth geeralshaped dstrbutos Now we cosder a asset o a oe-perod tme horzo et R be the retur or asset et be the correlato coecet betwee R ad R Applyg ormalzed However or the expoetal tltg (eq- wthout the ormalzato procedure usg the stock prce as reerece Y would ot yeld aother logormal rsk-adusted stock prce dstrbuto Shau Wag 005 6

7 expoetal tltg o R wth the reerece Y beg ether the retur R or the stock dex prce S ( Theorem states that λ λ or equvaletly E[ R ] r E[ R r ] σ σ Ths s exactly the CAP result or the expected retur o stock relato to the market portolo Thus Theorem exteds CAP to the case that {R R } ollow a ormal copula a more geeral case tha the multvarate ormal ramework 4 Valuato o Cotget Clams I h(y be a (mootoe ucto o the varable Y we say that s a (mootoe cotget clam o the uderlyg rsk Y The market prce o rsk or a mootoe cotget clam h(y s the same as that or the uderlyg rsk Y Theorem Whe valug a mootoe cotget clam h(y the ollowg are equvalet: Apply ormalzed expoetal tltg o Y wrt Y ad calculate the expected value o h(y uder the rsk-adusted dstrbuto o the uderlyg rsk Y Apply ormalzed expoetal tltg o wrt Y ad calculate the expected value o uder the rsk-adusted dstrbuto o 3 Apply Wag trasorm to the CDF o Y ad calculate the expected value o h(y uder the rsk-adusted dstrbuto or the uderlyg rsk Y 4 Applyg Wag trasorm to the CDF o ad calculate the expected value o uder the rsk-adusted dstrbuto o Cosder the specal case that max{ 0 Y K} exp( r where Y represets the edo-perod stock prce varable whch has a logormal dstrbuto s the payo o a Europea call opto o Y wth a strke prce K Whe valug ths cotget clam usg the ormalzed expoetal tltg wth λ beg the stock s market prce o rsk we recover the Black-Scholes ormula or Europea call optos (also see Wag 000 I the remag o ths paper we shall exted the ormalzed expoetal tltg to multvarate cases Shau Wag 005 7

8 PART NORAIZED EPONENTIA TITING & DISTORTION --- THE UTIVARIATE CASE Normalzed ultvarate Expoetal Tltg Frst we exted the expoetal tltg cocept to the multvarate case Deto 4 Cosder varables { } ad k reereces {Y Y Y k } The expoetal tltg o { } wth respect to reereces {Y Y Y k } s deed by the ollowg pd: k [ exp( Y x x x ] ( x x x c ( x x x E λ (eq-4 where {λ λ λ k } are real-valued parameters that cotrol the magtude o rskadustmet ad c s a ormalzg coecet I ths deto we leave much lexblty the choce o the reereces {Y Y Y k } For stace oe ca choose the reereces {Y Y Y k } to be the rsks { } themselves the compay aggregate or the dustry aggregate Sometmes we ca choose {Y Y Y k } as the uderlyg rsks or the cotget clams { } I order to get a meagul terpretato (as well as cross-cotract comparso o the parameters {λ λ λ k } we eed to apply the ormalzato procedure to all reereces {Y Y Y k } Deto 5 Assume that there exst stadard ormal varables {Z Z Z k } such that ( Φ( Z Y F ( Φ( Z Y F ( ( Z Y F Φ k Y Y k Y k We dee the ormalzed expoetal tltg o { } wth respect to reereces {Y Y Y k } by the ollowg: k [ exp( Z x x x ] ( x x x c ( x x x E λ (eq-5 Shau Wag 005 8

9 ultvarate Dstortos Now we exted the dstorto method to multvarate cases Cosder multvarate rsks { } that have margal CDFs { F x F ( x F ( x } ( respectvely Assume that { } have a ot CDF speced by F ( F ( x F ( x F ( x ( x x x C where C( s a multvarate uorm dstrbuto (or a copula ucto eg Embrechts et al 00 Deto 6 We dee separate dstortos { g g } dstrbuto has the ollowg margal dstrbutos: F ( x g g such that the resultg multvarate [ F ( x ad the same correlato structure term o copula: F ] ( F ( x F ( x F ( x ( x x x C Deto 7 We dee ot dstortos { g g g } terms o the ot pd: ( x x x RN g g g ( x x x ( x x x where the Rado-Nkodym dervatve s gve by: o I the dscrete case or the pot k ( x x x we have RN ( x x g g g ; ; x ; ; ; x ; c g ( F ( x g ( F ( x F ; ( x F ; ; o I the cotuous case or the pot ( x x x we have RN x ( F ( x g g g ( x x x c g ' Theorem 3 Whe { } have ucorrelated margal dstrbutos both the separate dstortos ad the ot dstortos yeld the same adusted multvarate probablty dstrbuto wth ucorrelated margal dstrbutos ( x ; Shau Wag 005 9

10 ( x x x ( x F ( x g [ F ( x ] wth Remark: Ths result may have mplcatos the aggregato o rsks For stace surace rsks ad market rsks are assumed to be ucorrelated the we ca apply separate adustmets Whe { } are correlated the separate dstortos ad the ot dstortos ca yeld deret results Jot dstortos relect the ter-relato betwee ad the probablty adustmet whle separate dstortos do ot Cosder the specal case that ad g g beg the Wag trasorm wth parameter λ The ot dstortos {g g } s equvalet to applyg a sgle Wag trasorm to wth parameter λ whle the separate dstortos {g g } s equvalet to applyg Wag trasorm to wth parameter λ Whe g u Φ[ Φ u + λ ] ( ( or we shall reer to the separate dstortos deto 6 as the separate Wag trasorms wth parameters {λ λ λ }; ad we shall reer to the ot dstortos deto 7 as the ot Wag trasorms wth parameters {λ λ λ } 3 k betwee Expoetal Tltg ad Dstorto ultvarate Case Theorem 4 Assume that the varables ad the k reereces { ; Y Y } Y k ollow a ormal copula The multvarate ormalzed expoetal tltg (eq-5 s equvalet to applyg separate dstortos to wth: g ( u Φ Φ [ ( u + β ] k ad β Y λ (or The correlato matrx betwee { } expoetal tltg: Σ Σ s uchaged ater the ormalzed Shau Wag 005 0

11 Example Assume that the rsks { } have a bvarate ormal(0 wth correlato coecets: Σ Accordg to Theorem 4 uder bvarate ormalzed expoetal tltg (eq-5 wth reereces ad Y Y the adusted ot dstrbuto or { } s also bvarate ormal wth correlato coecets: Σ Σ For llustrato we choose 3 0 λ ad 0 λ The adusted margal dstrbutos are equvalet to applyg separate Wag trasorms [ ] ( ( ( x F x F β Φ Φ or wth λ λ λ λ λ λ β β Shau Wag 005

12 Fgure Scatter plot bvarate varables { } RN( x x ad Rado-Nkodym dervatves < > Scatter Plot RN(x x Fgure shows a scatter plot o { } ad ther correspodg Rado- Nkodym dervatves The rght-most blue damod s a scatter plot o (x 395 x 505 The rght-most red square gves ts value o Rado-Nkodym dervatve RN( Oe ca see that the Rado-Nkodym dervatves crease expoetally whe the pot (x x moves rom the lower let quadrat to the upper rght quadrat 4 Valug Cotget Clams o ultple Uderlyg Rsks Cosder cotget clams o multple uderlyg varables: h Y Y Y ( k Whe valug the cotget clam h Y Y Y the market prce o rsk should ( k be speced through the uderlyg rsks { Y Y } Y k Theoretcally we should rst adust the multvarate probablty measure or the uderlyg rsks ad the valug cotget clams as expected payo uder the rskadusted probablty measure Accordgly we should rst apply ormalzed expoetal tltg o { Y Y Y k } wrt themselves ad calculate the expected value o h Y Y Y uder the rsk-adusted dstrbuto o the uderlyg rsks ( k Y Y k { Y } Shau Wag 005

13 Theorem 5 I we let Y be the uderlyg rsks themselves or k The multvarate ormalzed expoetal tltg (eq-5 o { Y Y } equvalet to ot Wag trasorms wth parameters {λ λ λ k } Y k wrt themselves s Ths result has mplcatos prcg cotget clams o multple uderlyg rsks { Y Y } Y k Example Applcatos Prcg Cotget Clams Suppose that the uderlyg rsks (Y Y have the ollowg bvarate emprcal dstrbuto Note that (Y Y are correlated wth a lear correlato coecet o 038 However ther correlato structure does ot ollow a ormal copula Shau Wag 005 3

14 Scearo Y Y o Cotract # has a cotget payo the amout o Y excess o That s the payo { Y } max o Cotract # has a cotget payo o 50% o the amout o Y That s 05Y o Cotract #3 has a cotget payo the amout o Y excess o plus 50% o the amout o Y Techcally Cotract 3 s smply the combato o Cotract # ad Cotract #: 3 + Shau Wag 005 4

15 Wthout rsk-adustmet the expected payos or Cotract # # #3 are $3357 $7399 $50656 respectvely Suppose that the market prce o rsk or the uderlyg rsks Y ad Y are λ 03 ad λ 0 respectvely We derve a rsk-adusted dstrbuto by applyg ormalzed expoetal tltg o Y ad Y wth respect to themselves usg λ 03 ad λ 0 Theorem 5 acltates a umercal method or calculatg the rsk adusted probabltes or each o the 34 scearos Based o the adusted probabltes or each scearo we calculated the prces or Cotract # # #3 beg $6840 $4847 ad $93087 respectvely Expected Payo o Cotract # Expected Payo o Cotract # Expected Payo o Cotract #3 No Rsk Adustmet $ 3357 $ 7399 $ Wth Rsk Adustmet $ 6840 $ 4847 $ oadg 05% 43% 84% Note that the obtaed prces are addtve Ideed the oly way to esure prce addtvty s by a chage o bvarate probablty measure Example 3 Numercal Techques Ivolvg Dscrete Dstrbutos Cosder the ollowg bvarate dstrbuto (that does ot ollow a ormal copula Shau Wag 005 5

16 We wat to compute the adusted ot dstrbuto or the multvarate ormalzed expoetal tltg o ( wth reerece to themselves ad wth λ 03 ad λ 0 We rst apply the Wag trasorm to wth λ 03 x (x F(x F(x (x We the apply the Wag trasorm to wth λ 0 x (x F(x F(x (x Accordg to Theorem 4 the bvarate Rado-Nkodym dervatves are: RN g ( x x ( x x ( x ( x c ( x x ( x ( x The al rsk-adusted ot probablty (desty ucto s: Shau Wag 005 6

17 Fgure 3 The Bvarate Rado-Nkodym Dervatves Rado-Nkodym Dervatves As show Fgure 3 the Rado-Nkodym dervatve creases to ts hghest value at { 5 5} dcatg the largest relatve rsk adustmet at the ot tal o the bvarate varables 5 Portolo Rsk easures Here we meto brely that multvarate dstortos ca be employed to dee portolo rsk measures Cosder a portolo o rsks { } wth CDFs { F x F ( x F ( x } ( respectvely Assume that { } have a ot CDF speced by F ( F ( x F ( x F ( x ( x x x C where C( s a multvarate uorm dstrbuto (or a copula ucto et { } have a multvarate dstrbuto produced by separate dstortos g g g o { } as deto 6 That s { } F ( g [ F ( x ] g [ F ( x ] g [ F ( x ] ( x x x C wth margal dstrbutos: F ( x g [ F ( x ] Shau Wag 005 7

18 et W represet the sum o radom varables{ } Ay rsk measure o the aggregate varable W dees a portolo rsk measure or { } We ca eve apply aother dstorto ucto h o the CDF o W ad dee the portolo rsk measure o rsk-adusted dstrbuto: PR 0 { } as the expected value o W uder the ( h F dx + W h( FW 0 ( dx Such a portolo rsk measure has applcatos measurg portolo rsks portolo optmzato ad allocatg rsk captals That s a mportat subect ad deserves a separate dscusso Cocluso: We have troduced the cocept o ormalzed expoetal tltg ad establshed a mportat lk wth probablty dstortos rst or the uvarate case the or the multvarate case Normalzed expoetal ttlg provdes a geeral ramework or prcg rsks wth respect to some reerece rsks or or valug cotget clams o some uderlyg rsks The paper also provdes ecet umercal routes or adustg multvarate probablty dstrbutos I a sequel paper we shall explore urther ormalzed expoetal tltg o multvarate rsks wth practcal cosderatos such as adustmet or parameter ucertaty ad teractos amog reerece rsks Shau Wag 005 8

19 Reereces: Buhlma H (980 A ecoomc premum prcple ASTIN Bullet 5-60 Embrechts P cnel A ad Strauma D (00 Correlato ad Depedece Rsk aagemet: Propertes ad Ptalls Rsk aagemet: Value at Rsk ad Beyod Dempster (Ed Cambrdge Uversty Press 00 pp 76-3 Gerber HU ad Shu ESW (994 Opto prcg by Esscher trasorms Trasactos o the Socety o Actuares vol VI Wag S (000 A Class o Dstorto Operators or Prcg Facal ad Isurace Rsks Joural o Rsk ad Isurace 67 (000 arch: 5-36 Wag S (00 A Uversal Framework or Prcg Facal ad Isurace Rsks ASTIN Bullet 3 (00 November: 3-34 Wag S (003 Equlbrum Prcg Trasorms: New Results Usg Buhlma s 980 Ecoomc odel ASTIN Bullet 33 (003 ay: Shau Wag 005 9

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

A NEW LOG-NORMAL DISTRIBUTION

A NEW LOG-NORMAL DISTRIBUTION Joural of Statstcs: Advaces Theory ad Applcatos Volume 6, Number, 06, Pages 93-04 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/0.864/jsata_700705 A NEW LOG-NORMAL DISTRIBUTION Departmet of

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information Malaysa Joural of Mathematcal Sceces (): 97- (9) Bayes Estmator for Expoetal Dstrbuto wth Exteso of Jeffery Pror Iformato Hadeel Salm Al-Kutub ad Noor Akma Ibrahm Isttute for Mathematcal Research, Uverst

More information

A Class of Deformed Hyperbolic Secant Distributions Using Two Parametric Functions. S. A. El-Shehawy

A Class of Deformed Hyperbolic Secant Distributions Using Two Parametric Functions. S. A. El-Shehawy A Class o Deormed Hyperbolc Secat Dstrbutos Usg Two Parametrc Fuctos S. A. El-Shehawy Departmet o Mathematcs Faculty o Scece Meoua Uversty Sheb El-om Egypt shshehawy6@yahoo.com Abstract: Ths paper presets

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Chapter 5. Curve fitting

Chapter 5. Curve fitting Chapter 5 Curve ttg Assgmet please use ecell Gve the data elow use least squares regresso to t a a straght le a power equato c a saturato-growthrate equato ad d a paraola. Fd the r value ad justy whch

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Module 7: Probability and Statistics

Module 7: Probability and Statistics Lecture 4: Goodess of ft tests. Itroducto Module 7: Probablty ad Statstcs I the prevous two lectures, the cocepts, steps ad applcatos of Hypotheses testg were dscussed. Hypotheses testg may be used to

More information

The Mathematics of Portfolio Theory

The Mathematics of Portfolio Theory The Matheatcs of Portfolo Theory The rates of retur of stocks, ad are as follows Market odtos state / scearo) earsh Neutral ullsh Probablty 0. 0.5 0.3 % 5% 9% -3% 3% % 5% % -% Notato: R The retur of stock

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

Basics of Information Theory: Markku Juntti. Basic concepts and tools 1 Introduction 2 Entropy, relative entropy and mutual information

Basics of Information Theory: Markku Juntti. Basic concepts and tools 1 Introduction 2 Entropy, relative entropy and mutual information : Markku Jutt Overvew Te basc cocepts o ormato teory lke etropy mutual ormato ad EP are eeralzed or cotuous-valued radom varables by troduc deretal etropy ource Te materal s maly based o Capter 9 o te

More information

ECON 5360 Class Notes GMM

ECON 5360 Class Notes GMM ECON 560 Class Notes GMM Geeralzed Method of Momets (GMM) I beg by outlg the classcal method of momets techque (Fsher, 95) ad the proceed to geeralzed method of momets (Hase, 98).. radtoal Method of Momets

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for Chapter 4-5 Notes: Although all deftos ad theorems troduced our lectures ad ths ote are mportat ad you should be famlar wth, but I put those

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

Prof. YoginderVerma. Prof. Pankaj Madan Dean- FMS Gurukul Kangri Vishwavidyalaya, Haridwar

Prof. YoginderVerma. Prof. Pankaj Madan Dean- FMS Gurukul Kangri Vishwavidyalaya, Haridwar Paper:5, Quattatve Techques or aagemet Decsos odule:5 easures o Cetral Tedecy: athematcal Averages (A, G, H) Prcpal Ivestgator Co-Prcpal Ivestgator Paper Coordator Cotet Wrter Pro. S P Basal Vce Chacellor

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Continuous Random Variables: Conditioning, Expectation and Independence

Continuous Random Variables: Conditioning, Expectation and Independence Cotuous Radom Varables: Codtog, xectato ad Ideedece Berl Che Deartmet o Comuter cece & Iormato geerg atoal Tawa ormal Uverst Reerece: - D.. Bertsekas, J.. Tstskls, Itroducto to robablt, ectos 3.4-3.5 Codtog

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Generating Multivariate Nonnormal Distribution Random Numbers Based on Copula Function

Generating Multivariate Nonnormal Distribution Random Numbers Based on Copula Function 7659, Eglad, UK Joural of Iformato ad Computg Scece Vol. 2, No. 3, 2007, pp. 9-96 Geeratg Multvarate Noormal Dstrbuto Radom Numbers Based o Copula Fucto Xaopg Hu +, Jam He ad Hogsheg Ly School of Ecoomcs

More information

COMPROMISE HYPERSPHERE FOR STOCHASTIC DOMINANCE MODEL

COMPROMISE HYPERSPHERE FOR STOCHASTIC DOMINANCE MODEL Sebasta Starz COMPROMISE HYPERSPHERE FOR STOCHASTIC DOMINANCE MODEL Abstract The am of the work s to preset a method of rakg a fte set of dscrete radom varables. The proposed method s based o two approaches:

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

Lecture 2 - What are component and system reliability and how it can be improved?

Lecture 2 - What are component and system reliability and how it can be improved? Lecture 2 - What are compoet ad system relablty ad how t ca be mproved? Relablty s a measure of the qualty of the product over the log ru. The cocept of relablty s a exteded tme perod over whch the expected

More information

Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates

Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates Joural of Moder Appled Statstcal Methods Volume Issue Artcle 8 --03 Comparso of Parameters of Logormal Dstrbuto Based O the Classcal ad Posteror Estmates Raja Sulta Uversty of Kashmr, Sragar, Ida, hamzasulta8@yahoo.com

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

2SLS Estimates ECON In this case, begin with the assumption that E[ i

2SLS Estimates ECON In this case, begin with the assumption that E[ i SLS Estmates ECON 3033 Bll Evas Fall 05 Two-Stage Least Squares (SLS Cosder a stadard lear bvarate regresso model y 0 x. I ths case, beg wth the assumto that E[ x] 0 whch meas that OLS estmates of wll

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

22 Nonparametric Methods.

22 Nonparametric Methods. 22 oparametrc Methods. I parametrc models oe assumes apror that the dstrbutos have a specfc form wth oe or more ukow parameters ad oe tres to fd the best or atleast reasoably effcet procedures that aswer

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

Random Variate Generation ENM 307 SIMULATION. Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü. Yrd. Doç. Dr. Gürkan ÖZTÜRK.

Random Variate Generation ENM 307 SIMULATION. Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü. Yrd. Doç. Dr. Gürkan ÖZTÜRK. adom Varate Geerato ENM 307 SIMULATION Aadolu Üverstes, Edüstr Mühedslğ Bölümü Yrd. Doç. Dr. Gürka ÖZTÜK 0 adom Varate Geerato adom varate geerato s about procedures for samplg from a varety of wdely-used

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Long Tailed functions

Long Tailed functions Log Taled fuctos Log tal fuctos are desrable for fttg may physologcal data sets A geeral example s fttg the respose of a system to a mpulse put Most passve systems have u modal rght skewed respose fuctos

More information

CHAPTER 3 POSTERIOR DISTRIBUTIONS

CHAPTER 3 POSTERIOR DISTRIBUTIONS CHAPTER 3 POSTERIOR DISTRIBUTIONS If scece caot measure the degree of probablt volved, so much the worse for scece. The practcal ma wll stck to hs apprecatve methods utl t does, or wll accept the results

More information

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR amplg Theory MODULE II LECTURE - 4 IMPLE RADOM AMPLIG DR. HALABH DEPARTMET OF MATHEMATIC AD TATITIC IDIA ITITUTE OF TECHOLOGY KAPUR Estmato of populato mea ad populato varace Oe of the ma objectves after

More information

Ruin Probability-Based Initial Capital of the Discrete-Time Surplus Process

Ruin Probability-Based Initial Capital of the Discrete-Time Surplus Process Ru Probablty-Based Ital Captal of the Dsrete-Tme Surplus Proess by Parote Sattayatham, Kat Sagaroo, ad Wathar Klogdee AbSTRACT Ths paper studes a surae model uder the regulato that the surae ompay has

More information

A Study of the Reproducibility of Measurements with HUR Leg Extension/Curl Research Line

A Study of the Reproducibility of Measurements with HUR Leg Extension/Curl Research Line HUR Techcal Report 000--9 verso.05 / Frak Borg (borgbros@ett.f) A Study of the Reproducblty of Measuremets wth HUR Leg Eteso/Curl Research Le A mportat property of measuremets s that the results should

More information

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution Global Joural of Pure ad Appled Mathematcs. ISSN 0973-768 Volume 3, Number 9 (207), pp. 55-528 Research Ida Publcatos http://www.rpublcato.com Comparg Dfferet Estmators of three Parameters for Trasmuted

More information

Descriptive Statistics

Descriptive Statistics Page Techcal Math II Descrptve Statstcs Descrptve Statstcs Descrptve statstcs s the body of methods used to represet ad summarze sets of data. A descrpto of how a set of measuremets (for eample, people

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen. .5 x 54.5 a. x 7. 786 7 b. The raked observatos are: 7.4, 7.5, 7.7, 7.8, 7.9, 8.0, 8.. Sce the sample sze 7 s odd, the meda s the (+)/ 4 th raked observato, or meda 7.8 c. The cosumer would more lkely

More information

Statistical modelling and latent variables (2)

Statistical modelling and latent variables (2) Statstcal modellg ad latet varables (2 Mxg latet varables ad parameters statstcal erece Trod Reta (Dvso o statstcs ad surace mathematcs, Departmet o Mathematcs, Uversty o Oslo State spaces We typcally

More information

On Signed Product Cordial Labeling

On Signed Product Cordial Labeling Appled Mathematcs 55-53 do:.436/am..6 Publshed Ole December (http://www.scrp.or/joural/am) O Sed Product Cordal Label Abstract Jayapal Baskar Babujee Shobaa Loaatha Departmet o Mathematcs Aa Uversty Chea

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean Research Joural of Mathematcal ad Statstcal Sceces ISS 30 6047 Vol. 1(), 5-1, ovember (013) Res. J. Mathematcal ad Statstcal Sc. Comparso of Dual to Rato-Cum-Product Estmators of Populato Mea Abstract

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

The expected value of a sum of random variables,, is the sum of the expected values:

The expected value of a sum of random variables,, is the sum of the expected values: Sums of Radom Varables xpected Values ad Varaces of Sums ad Averages of Radom Varables The expected value of a sum of radom varables, say S, s the sum of the expected values: ( ) ( ) S Ths s always true

More information

Lecture Note to Rice Chapter 8

Lecture Note to Rice Chapter 8 ECON 430 HG revsed Nov 06 Lecture Note to Rce Chapter 8 Radom matrces Let Y, =,,, m, =,,, be radom varables (r.v. s). The matrx Y Y Y Y Y Y Y Y Y Y = m m m s called a radom matrx ( wth a ot m-dmesoal dstrbuto,

More information

On Fuzzy Arithmetic, Possibility Theory and Theory of Evidence

On Fuzzy Arithmetic, Possibility Theory and Theory of Evidence O Fuzzy rthmetc, Possblty Theory ad Theory of Evdece suco P. Cucala, Jose Vllar Isttute of Research Techology Uversdad Potfca Comllas C/ Sata Cruz de Marceado 6 8 Madrd. Spa bstract Ths paper explores

More information

Chapter 3 Sampling For Proportions and Percentages

Chapter 3 Sampling For Proportions and Percentages Chapter 3 Samplg For Proportos ad Percetages I may stuatos, the characterstc uder study o whch the observatos are collected are qualtatve ature For example, the resposes of customers may marketg surveys

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

D. VQ WITH 1ST-ORDER LOSSLESS CODING

D. VQ WITH 1ST-ORDER LOSSLESS CODING VARIABLE-RATE VQ (AKA VQ WITH ENTROPY CODING) Varable-Rate VQ = Quatzato + Lossless Varable-Legth Bary Codg A rage of optos -- from smple to complex A. Uform scalar quatzato wth varable-legth codg, oe

More information

3. Basic Concepts: Consequences and Properties

3. Basic Concepts: Consequences and Properties : 3. Basc Cocepts: Cosequeces ad Propertes Markku Jutt Overvew More advaced cosequeces ad propertes of the basc cocepts troduced the prevous lecture are derved. Source The materal s maly based o Sectos.6.8

More information

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uversty Mchael Bar Sprg 5 Mdterm am, secto Soluto Thursday, February 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes eam.. No calculators of ay kd are allowed..

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

( ) ( ) ( ) f ( ) ( )

( ) ( ) ( ) f ( ) ( ) Idepedet Mote Carlo Iterested Approxmate E X = x dν x = µ µ wth = = x where x, x s sampled rom the probablty, measure ν ( X ). Uder certa regularty codtos, I x,, x x E X = are a d sample rom ν ( X ) x

More information

Can we take the Mysticism Out of the Pearson Coefficient of Linear Correlation?

Can we take the Mysticism Out of the Pearson Coefficient of Linear Correlation? Ca we tae the Mstcsm Out of the Pearso Coeffcet of Lear Correlato? Itroducto As the ttle of ths tutoral dcates, our purpose s to egeder a clear uderstadg of the Pearso coeffcet of lear correlato studets

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i.

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i. CS 94- Desty Matrces, vo Neuma Etropy 3/7/07 Sprg 007 Lecture 3 I ths lecture, we wll dscuss the bascs of quatum formato theory I partcular, we wll dscuss mxed quatum states, desty matrces, vo Neuma etropy

More information

Construction and Evaluation of Actuarial Models. Rajapaksha Premarathna

Construction and Evaluation of Actuarial Models. Rajapaksha Premarathna Costructo ad Evaluato of Actuaral Models Raapaksha Premaratha Table of Cotets Modelg Some deftos ad Notatos...4 Case : Polcy Lmtu...4 Case : Wth a Ordary deductble....5 Case 3: Maxmum Covered loss u wth

More information

Study of Correlation using Bayes Approach under bivariate Distributions

Study of Correlation using Bayes Approach under bivariate Distributions Iteratoal Joural of Scece Egeerg ad Techolog Research IJSETR Volume Issue Februar 4 Stud of Correlato usg Baes Approach uder bvarate Dstrbutos N.S.Padharkar* ad. M.N.Deshpade** *Govt.Vdarbha Isttute of

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix Assgmet 7/MATH 47/Wter, 00 Due: Frday, March 9 Powers o a square matrx Gve a square matrx A, ts powers A or large, or eve arbtrary, teger expoets ca be calculated by dagoalzg A -- that s possble (!) Namely,

More information

Simple Linear Regression

Simple Linear Regression Correlato ad Smple Lear Regresso Berl Che Departmet of Computer Scece & Iformato Egeerg Natoal Tawa Normal Uversty Referece:. W. Navd. Statstcs for Egeerg ad Scetsts. Chapter 7 (7.-7.3) & Teachg Materal

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

The equation is sometimes presented in form Y = a + b x. This is reasonable, but it s not the notation we use.

The equation is sometimes presented in form Y = a + b x. This is reasonable, but it s not the notation we use. INTRODUCTORY NOTE ON LINEAR REGREION We have data of the form (x y ) (x y ) (x y ) These wll most ofte be preseted to us as two colum of a spreadsheet As the topc develops we wll see both upper case ad

More information

Credit Portfolio Modelling, Marginal Risk Contributions, and Granularity Adjustment

Credit Portfolio Modelling, Marginal Risk Contributions, and Granularity Adjustment Credt ortolo Modellg, Margal Rsk Cotrbutos, ad Graularty djustmet Revsed: Jue 4, 00 Has Rau-Bredow rv.-doz. Dr. oec. publ. Has Rau-Bredow Leo Wesmatel Str. 4 D-97074 Würzburg phoe.: 49(093-859 moble: 49(078-88853

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming ppled Matheatcal Sceces Vol 008 o 50 7-80 New Method for Solvg Fuzzy Lear Prograg by Solvg Lear Prograg S H Nasser a Departet of Matheatcs Faculty of Basc Sceces Mazadara Uversty Babolsar Ira b The Research

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

Median as a Weighted Arithmetic Mean of All Sample Observations

Median as a Weighted Arithmetic Mean of All Sample Observations Meda as a Weghted Arthmetc Mea of All Sample Observatos SK Mshra Dept. of Ecoomcs NEHU, Shllog (Ida). Itroducto: Iumerably may textbooks Statstcs explctly meto that oe of the weakesses (or propertes) of

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

A New Measure of Probabilistic Entropy. and its Properties

A New Measure of Probabilistic Entropy. and its Properties Appled Mathematcal Sceces, Vol. 4, 200, o. 28, 387-394 A New Measure of Probablstc Etropy ad ts Propertes Rajeesh Kumar Departmet of Mathematcs Kurukshetra Uversty Kurukshetra, Ida rajeesh_kuk@redffmal.com

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

sets), (iii) differentiable - Nash equilibrium in gifts (i.e., contributions to public good) from consumer i is g i + G = amount of public good

sets), (iii) differentiable - Nash equilibrium in gifts (i.e., contributions to public good) from consumer i is g i + G = amount of public good Prvate Provso o Publc oods Bergstrom, Blume, & Vara. "O the Prvate Provso o Publc oods." Joural o Publc Ecoomcs. Vol. 9, 986, 5-49. BBV - most mportat paper o ths subect; also apples to gvg to ay charty,

More information