Hydrogen atom energies. Friday Honors lecture. Quantum Particle in a box. Classical vs Quantum. Quantum version

Size: px
Start display at page:

Download "Hydrogen atom energies. Friday Honors lecture. Quantum Particle in a box. Classical vs Quantum. Quantum version"

Transcription

1 Friday onors lecture Prof. Clint Sprott takes us on a tour of fractals. ydrogen atom energies Quantized energy levels: Each corresponds to different Orbit radius Velocity Particle wavefunction Energy Each described by a quantum number n E n = " 13.6 n 2 ev n=4 Zero energy E 3 = " ev E 2 = " ev E 1 = " ev Energy Thu. Nov Physics 208, ecture 25 2 Quantum Particle in a box Particle confined to a fixed region of space e.g. ball in a tube- ball moves only along length Classical vs Quantum Classical: particle bounces back and forth. Sometimes velocity is to left, sometimes to right Classically, ball bounces back and forth in tube. This is a classical state of the ball. Identify each state by speed, =(mass)x(speed), or kinetic energy. Classical: any, energy is possible. Quantum: momenta, energy are quantized Quantum mechanics: Particle represented by wave: p = mv = h / λ Different motions: waves traveling left and right Quantum wave function: superposition of both at same time Thu. Nov Physics 208, ecture 25 3 Thu. Nov Physics 208, ecture 25 4 Quantum version Quantum state is both velocities at the same time " = 2 One halfwavelength Ground state is a standing wave, made equally of Wave traveling right ( p = +h/λ ) Wave traveling left ( p = - h/λ ) Determined by standing wave condition =n(λ/2) : p = h " = h 2 Different quantum states p = mv = h / λ Different speeds correspond to different λ subject to standing wave condition integer number of half-wavelengths fit in the tube. " = 2 One halfwavelength "( x) = 2 sin % ' 2# & $ x ( Wavefunction: * ) p = h " = h 2 # p o "( x) = 2 sin % ' 2# & $ x ( * ) Quantum wave function: superposition of both motions. " = Two halfwavelengths p = h " = h = 2p o Thu. Nov Physics 208, ecture 25 5 Thu. Nov Physics 208, ecture

2 Particle in box question Particle in box energy levels A particle in a box has a mass m. Its energy is all kinetic = p 2 /2m. Just saw that in state n is np o. It s energy levels A. are equally spaced everywhere B. get farther apart at higher energy C. get closer together at higher energy. Quantized p = h " = n h 2 = np o Energy = kinetic ( ) 2 E = p2 2m = np o 2m Or Quantized Energy = n 2 E o Energy n=5 n=4 E n = n 2 E o n=quantum number Thu. Nov Physics 208, ecture 25 7 Thu. Nov Physics 208, ecture 25 8 Question A particle is in a particular quantum state in a box of length. The box is now squeezed to a shorter length, /2. The particle remains in the same quantum state. The energy of the particle is now A. 2 times bigger B. 2 times smaller C. 4 times bigger D. 4 times smaller E. unchanged Thu. Nov Physics 208, ecture 25 9 Quantum dot: particle in 3D box Decreasing particle size Energy level spacing increases as particle size decreases. i.e E n +1 " E n = ( n +1)2 h 2 " n 2 h 2 8m 2 8m 2 CdSe quantum dots dispersed in hexane (Bawendi group, MIT) Color from photon absorption Determined by energylevel spacing Thu. Nov Physics 208, ecture Interpreting the wavefunction igher energy wave functions Probabilistic interpretation The square magnitude of the wavefunction Ψ 2 gives the probability of finding the particle at a particular spatial location n p E 3 h h 2 8m 2 Wavefunction Probability Wavefunction Probability = (Wavefunction) 2 2 h h 2 8m 2 h 2 h 2 8m 2 Thu. Nov Physics 208, ecture Thu. Nov Physics 208, ecture

3 Probability of finding electron Quantum Corral Classically, equally likely to find particle anywhere QM - true on average for high n Zeroes in the probability! Purely quantum, interference effect Thu. Nov Physics 208, ecture Iron atoms assembled into a circular ring. The ripples inside the ring reflect the electron quantum states of a circular ring (interference effects). Thu. Nov Physics 208, ecture Scanning Tunneling Microscopy Tip Particle in a box, again Wavefunction Probability = (Wavefunction) 2 Particle contained entirely within closed tube. Sample Over the last 20 yrs, technology developed to controllably position tip and sample 1-2 nm apart. Is a very useful microscope! Open top: particle can escape if we shake hard enough. But at low energies, particle stays entirely within box. ike an electron in metal (remember photoelectric effect) Thu. Nov Physics 208, ecture Thu. Nov Physics 208, ecture Quantum mechanics says something different! ow energy Classical state ow energy Quantum state Quantum Mechanics: some probability of the particle penetrating walls of box! Two neighboring boxes When another box is brought nearby, the electron may disappear from one well, and appear in the other! The reverse then happens, and the electron oscillates back an forth, without traversing the intervening distance. Nonzero probability of being outside the box. Thu. Nov Physics 208, ecture Thu. Nov Physics 208, ecture

4 Question Suppose separation between boxes increases by a factor of two. The tunneling probability A. Increases by 2 B. Decreases by 2 C. Decreases by <2 D. Decreases by >2 E. Stays same high probability Example: Ammonia molecule Ammonia molecule: N 3 Nitrogen (N) has two equivalent stable positions. Quantum-mechanically tunnels 2.4x10 11 times per second (24 Gz) N Known as inversion line Basis of first atomic clock (1949) low probability Thu. Nov Physics 208, ecture Thu. Nov Physics 208, ecture Atomic clock question Suppose we changed the ammonia molecule so that the distance between the two stable positions of the nitrogen atom INCREASED. The clock would Tunneling between conductors Make one well deeper: particle tunnels, then stays in other well. Well made deeper by applying electric field. This is the principle of scanning tunneling microscope. A. slow down. B. speed up. C. stay the same. N Thu. Nov Physics 208, ecture Thu. Nov Physics 208, ecture Scanning Tunneling Microscopy Tip Tip, sample are quantum boxes Potential difference induces tunneling Tunneling extremely sensitive to tip-sample spacing Surface steps on Si Sample Over the last 20 yrs, technology developed to controllably position tip and sample 1-2 nm apart. Is a very useful microscope! Images courtesy M. agally, Univ. Wisconsin Thu. Nov Physics 208, ecture Thu. Nov Physics 208, ecture

5 Manipulation of atoms Take advantage of tip-atom interactions to physically move atoms around on the surface Quantum Corral This shows the assembly of a circular corral by moving individual Iron atoms on the surface of Copper (111). The (111) orientation supports an electron surface state which can be trapped in the corral Thu. Nov Physics 208, ecture Iron atoms assembled into a circular ring. The ripples inside the ring reflect the electron quantum states of a circular ring (interference effects). Thu. Nov Physics 208, ecture The Stadium Corral Some fun! Again Iron on copper. This was assembled to investigate quantum chaos. The electron wavefunction leaked out beyond the stadium too much to to observe expected effects. Thu. Nov Physics 208, ecture Kanji for atom (lit. original child) Iron on copper (111) Carbon Monoxide man Carbon Monoxide on Pt (111) Thu. Nov Physics 208, ecture

Particle in a box. From Last Time. Classical vs quantum. Wavefunction of pendulum. Wavefunctions in two dimensions. Probability density of oscillator

Particle in a box. From Last Time. Classical vs quantum. Wavefunction of pendulum. Wavefunctions in two dimensions. Probability density of oscillator No office hours Tuesday Guest lecturer Wed: Entanglement & Quantum Computing From ast Time Particle can exist in different quantum states, having Different energy Different momentum Different wavelength

More information

From Last time. Exam 3 results. Probability. The wavefunction. Example wavefunction. Discrete vs continuous. De Broglie wavelength

From Last time. Exam 3 results. Probability. The wavefunction. Example wavefunction. Discrete vs continuous. De Broglie wavelength From ast time Eam 3 results De Broglie wavelength Uncertainty principle Eam average ~ 70% Scores posted on learn@uw D C BC B AB A Wavefunction of a particle Course evaluations: Tuesday, Dec. 9 Tue. Dec.

More information

Hydrogen atom energies. From Last Time. Today. Another question. Hydrogen atom question. Compton scattering and Photoelectric effect

Hydrogen atom energies. From Last Time. Today. Another question. Hydrogen atom question. Compton scattering and Photoelectric effect From ast Time Observation of atoms indicated quantized energy states. Atom only emitted certain wavelengths of light Structure of the allowed wavelengths indicated the what the energy structure was Quantum

More information

Back to the particle in a box. From Last Time. Where is the particle? How fast is it moving? Quantum momentum. Uncertainty in Quantum Mechanics

Back to the particle in a box. From Last Time. Where is the particle? How fast is it moving? Quantum momentum. Uncertainty in Quantum Mechanics From ast Time Back to the particle in a box Particle can exist in different quantum states, having Different energy Different momentum Different wavelength Wavefunction Probability = (Wavefunction) 2 The

More information

The wavefunction and quantum jumps

The wavefunction and quantum jumps ydrogen atom in 3D Today From ast Time Electron has a particle and wave nature and is spread out over space Wave nature must interfere constructively to exist Satisfies 3 conditions for constructive interference

More information

From Last Time. Mon. Nov 8 Phy107 Lecture 26

From Last Time. Mon. Nov 8 Phy107 Lecture 26 From Last Time Particle can exist in different quantum states, having Different energy Different momentum Different wavelength The quantum wavefunction describes wave nature of particle. Square of the

More information

Energy levels. From Last Time. Emitting and absorbing light. Hydrogen atom. Energy conservation for Bohr atom. Summary of Hydrogen atom

Energy levels. From Last Time. Emitting and absorbing light. Hydrogen atom. Energy conservation for Bohr atom. Summary of Hydrogen atom From Last Time Hydrogen atom: One electron orbiting around one proton (nucleus) Electron can be in different quantum states Quantum states labeled by integer,2,3,4, In each different quantum state, electron

More information

Chapter 28 Quantum Theory Lecture 24

Chapter 28 Quantum Theory Lecture 24 Chapter 28 Quantum Theory Lecture 24 28.1 Particles, Waves, and Particles-Waves 28.2 Photons 28.3 Wavelike Properties Classical Particles 28.4 Electron Spin 28.5 Meaning of the Wave Function 28.6 Tunneling

More information

Hour Exam 3 Review. Quantum Mechanics. Photoelectric effect summary. Photoelectric effect question. Compton scattering. Compton scattering question

Hour Exam 3 Review. Quantum Mechanics. Photoelectric effect summary. Photoelectric effect question. Compton scattering. Compton scattering question Hour Exam 3 Review Hour Exam 3: Wednesday, Apr. 19 In-class (2241 Chamberlin Hall) Twenty multiple-choice questions Will cover: Basic Quantum Mechanics Uses of Quantum Mechanics Addl. Lecture Material

More information

There is light at the end of the tunnel. -- proverb. The light at the end of the tunnel is just the light of an oncoming train. --R.

There is light at the end of the tunnel. -- proverb. The light at the end of the tunnel is just the light of an oncoming train. --R. A vast time bubble has been projected into the future to the precise moment of the end of the universe. This is, of course, impossible. --D. Adams, The Hitchhiker s Guide to the Galaxy There is light at

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 Not all chemicals are bad. Without chemicals such as hydrogen and oxygen, for example, there would be no way to make water, a vital ingredient in beer. -Dave Barry David J. Starling Penn State Hazleton

More information

QUANTUM MECHANICS Intro to Basic Features

QUANTUM MECHANICS Intro to Basic Features PCES 4.21 QUANTUM MECHANICS Intro to Basic Features 1. QUANTUM INTERFERENCE & QUANTUM PATHS Rather than explain the rules of quantum mechanics as they were devised, we first look at a more modern formulation

More information

Lecture 15: Time-Dependent QM & Tunneling Review and Examples, Ammonia Maser

Lecture 15: Time-Dependent QM & Tunneling Review and Examples, Ammonia Maser ecture 15: Time-Dependent QM & Tunneling Review and Examples, Ammonia Maser ψ(x,t=0) 2 U(x) 0 x ψ(x,t 0 ) 2 x U 0 0 E x 0 x ecture 15, p.1 Special (Optional) ecture Quantum Information One of the most

More information

Lecture 10: The Schrödinger Equation. Lecture 10, p 2

Lecture 10: The Schrödinger Equation. Lecture 10, p 2 Quantum mechanics is the description of the behavior of matter and light in all its details and, in particular, of the happenings on an atomic scale. Things on a very small scale behave like nothing that

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

Lecture 10: The Schrödinger Equation. Lecture 10, p 2

Lecture 10: The Schrödinger Equation. Lecture 10, p 2 Quantum mechanics is the description of the behavior of matter and light in all its details and, in particular, of the happenings on an atomic scale. Things on a very small scale behave like nothing that

More information

LECTURE # 17 Modern Optics Matter Waves

LECTURE # 17 Modern Optics Matter Waves PHYS 270-SPRING 2011 LECTURE # 17 Modern Optics Matter Waves April 5, 2011 1 Spectroscopy: Unlocking the Structure of Atoms There are two types of spectra, continuous spectra and discrete spectra: Hot,

More information

Notes on wavefunctions IV: the Schrödinger equation in a potential and energy eigenstates.

Notes on wavefunctions IV: the Schrödinger equation in a potential and energy eigenstates. Notes on wavefunctions IV: the Schrödinger equation in a potential and energy eigenstates. We have now seen that the wavefunction for a free electron changes with time according to the Schrödinger Equation

More information

Lecture 10: The Schrödinger Equation Lecture 10, p 1

Lecture 10: The Schrödinger Equation Lecture 10, p 1 Lecture 10: The Schrödinger Equation Lecture 10, p 1 Overview Probability distributions Schrödinger s Equation Particle in a Bo Matter waves in an infinite square well Quantized energy levels y() U= n=1

More information

Particle in a 3 Dimensional Box just extending our model from 1D to 3D

Particle in a 3 Dimensional Box just extending our model from 1D to 3D CHEM 2060 Lecture 20: Particle in a 3D Box; H atom L20-1 Particle in a 3 Dimensional Box just extending our model from 1D to 3D A 3D model is a step closer to reality than a 1D model. Let s increase the

More information

From Last Time. Electron diffraction. Making a particle out of waves. Planetary model of atom. Using quantum mechanics ev 1/ 2 nm E kinetic

From Last Time. Electron diffraction. Making a particle out of waves. Planetary model of atom. Using quantum mechanics ev 1/ 2 nm E kinetic From Last Time All objects show both wave-like properties and particle-like properties. Electromagnetic radiation (e.g. light) shows interference effects (wave-like properties), but also comes in discrete

More information

INTRODUCTION TO QUANTUM MECHANICS

INTRODUCTION TO QUANTUM MECHANICS 4 CHAPTER INTRODUCTION TO QUANTUM MECHANICS 4.1 Preliminaries: Wave Motion and Light 4.2 Evidence for Energy Quantization in Atoms 4.3 The Bohr Model: Predicting Discrete Energy Levels in Atoms 4.4 Evidence

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time.

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time. Electron in a Box A wave packet in a square well (an electron in a box) changing with time. Last Time: Light Wave model: Interference pattern is in terms of wave intensity Photon model: Interference in

More information

Lecture 13: Barrier Penetration and Tunneling

Lecture 13: Barrier Penetration and Tunneling Lecture 13: Barrier Penetration and Tunneling nucleus x U(x) U(x) U 0 E A B C B A 0 L x 0 x Lecture 13, p 1 Today Tunneling of quantum particles Scanning Tunneling Microscope (STM) Nuclear Decay Solar

More information

Modern physics. 4. Barriers and wells. Lectures in Physics, summer

Modern physics. 4. Barriers and wells. Lectures in Physics, summer Modern physics 4. Barriers and wells Lectures in Physics, summer 016 1 Outline 4.1. Particle motion in the presence of a potential barrier 4.. Wave functions in the presence of a potential barrier 4.3.

More information

* = 2 = Probability distribution function. probability of finding a particle near a given point x,y,z at a time t

* = 2 = Probability distribution function. probability of finding a particle near a given point x,y,z at a time t Quantum Mechanics Wave functions and the Schrodinger equation Particles behave like waves, so they can be described with a wave function (x,y,z,t) A stationary state has a definite energy, and can be written

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 1-1B: THE INTERACTION OF MATTER WITH RADIATION Introductory Video Quantum Mechanics Essential Idea: The microscopic quantum world offers

More information

Quantum Mechanics (made fun and easy)

Quantum Mechanics (made fun and easy) Lecture 7 Quantum Mechanics (made fun and easy) Why the world needs quantum mechanics Why the world needs quantum mechanics Why the world needs quantum mechanics Why the world needs quantum mechanics Why

More information

PHYS 172: Modern Mechanics Fall 2009

PHYS 172: Modern Mechanics Fall 2009 PHYS 172: Modern Mechanics Fall 2009 Lecture 14 Energy Quantization Read 7.1 7.9 Reading Question: Ch. 7, Secs 1-5 A simple model for the hydrogen atom treats the electron as a particle in circular orbit

More information

Complementi di Fisica Lectures 10-11

Complementi di Fisica Lectures 10-11 Complementi di Fisica - Lectures 1-11 15/16-1-1 Complementi di Fisica Lectures 1-11 Livio Lanceri Università di Trieste Trieste, 15/16-1-1 Course Outline - Reminder Quantum Mechanics: an introduction Reminder

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Final Exam: Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall.

Final Exam: Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Final Exam: Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Chapter 38 Quantum Mechanics Units of Chapter 38 38-1 Quantum Mechanics A New Theory 37-2 The Wave Function and Its Interpretation; the

More information

Today: Finite box wavefunctions

Today: Finite box wavefunctions Toay: Finite bo wavefunctions 1.Think outsie the bo!.solving the S.E. 3.Unerstaning the results. HWK1 ue We. 1AM. Reaing for Monay.: TZ&D Chap. 8 Reaing Quiz Classically forbien regions are where A. a

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

Explanations of quantum animations Sohrab Ismail-Beigi April 22, 2009

Explanations of quantum animations Sohrab Ismail-Beigi April 22, 2009 Explanations of quantum animations Sohrab Ismail-Beigi April 22, 2009 I ve produced a set of animations showing the time evolution of various wave functions in various potentials according to the Schrödinger

More information

Title / paragraph example Topic: Quantum Computers. Course essay. Photoelectric effect summary. From Last Time. Photon interference?

Title / paragraph example Topic: Quantum Computers. Course essay. Photoelectric effect summary. From Last Time. Photon interference? Course essay Friday, Nov 3: Due in class essay topic(review article, operating experiment, noble prize) short description - one paragraph http://www.hep.wisc.edu/~herndon/107-0609/essay.htm Friday, Nov

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

ECE 487 Lecture 5 : Foundations of Quantum Mechanics IV Class Outline:

ECE 487 Lecture 5 : Foundations of Quantum Mechanics IV Class Outline: ECE 487 Lecture 5 : Foundations of Quantum Mechanics IV Class Outline: Linearly Varying Potential Triangular Potential Well Time-Dependent Schrödinger Equation Things you should know when you leave Key

More information

From Atoms to Solids. Outline. - Atomic and Molecular Wavefunctions - Molecular Hydrogen - Benzene

From Atoms to Solids. Outline. - Atomic and Molecular Wavefunctions - Molecular Hydrogen - Benzene From Atoms to Solids Outline - Atomic and Molecular Wavefunctions - Molecular Hydrogen - Benzene 1 A Simple Approximation for an Atom Let s represent the atom in space by its Coulomb potential centered

More information

Probability and Normalization

Probability and Normalization Probability and Normalization Although we don t know exactly where the particle might be inside the box, we know that it has to be in the box. This means that, ψ ( x) dx = 1 (normalization condition) L

More information

Modern Physics notes Paul Fendley Lecture 6

Modern Physics notes Paul Fendley Lecture 6 Modern Physics notes Paul Fendley fendley@virginia.edu Lecture 6 Size of the atom A digression on hand-waving arguments Spectral lines Feynman, 2.4-5 Fowler, Spectra, The Bohr atom The size of the atom

More information

atoms and light. Chapter Goal: To understand the structure and properties of atoms.

atoms and light. Chapter Goal: To understand the structure and properties of atoms. Quantum mechanics provides us with an understanding of atomic structure and atomic properties. Lasers are one of the most important applications of the quantummechanical properties of atoms and light.

More information

Modern Physics Part 3: Bohr Model & Matter Waves

Modern Physics Part 3: Bohr Model & Matter Waves Modern Physics Part 3: Bohr Model & Matter Waves Last modified: 28/08/2018 Links Atomic Spectra Introduction Atomic Emission Spectra Atomic Absorption Spectra Bohr Model of the Hydrogen Atom Emission Spectrum

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Lecture 21: Lasers, Schrödinger s Cat, Atoms, Molecules, Solids, etc. Review and Examples. Lecture 21, p 1

Lecture 21: Lasers, Schrödinger s Cat, Atoms, Molecules, Solids, etc. Review and Examples. Lecture 21, p 1 Lecture 21: Lasers, Schrödinger s Cat, Atoms, Molecules, Solids, etc. Review and Examples Lecture 21, p 1 Act 1 The Pauli exclusion principle applies to all fermions in all situations (not just to electrons

More information

Lecture 12: Particle in 1D boxes & Simple Harmonic Oscillator

Lecture 12: Particle in 1D boxes & Simple Harmonic Oscillator Lecture 12: Particle in 1D boxes & Simple Harmonic Oscillator U(x) E Dx y(x) x Dx Lecture 12, p 1 Properties of Bound States Several trends exhibited by the particle-in-box states are generic to bound

More information

When I hear of Schrödinger s cat, I reach for my gun. --Stephen W. Hawking. Lecture 21, p 1

When I hear of Schrödinger s cat, I reach for my gun. --Stephen W. Hawking. Lecture 21, p 1 When I hear of Schrödinger s cat, I reach for my gun. --Stephen W. Hawking Lecture 21, p 1 Lecture 21: Lasers, Schrödinger s Cat, Atoms, Molecules, Solids, etc. Review and Examples Lecture 21, p 2 Act

More information

Chapter 37. Lasers, a Model Atom and Zero Point Energy

Chapter 37. Lasers, a Model Atom and Zero Point Energy Chapter 37 Lasers, a Model Atom and Zero Point Energy CHAPTER 37 LASERS, A MOEL ATOM AN ZERO POINT ENERGY Once at the end of a colloquium I heard ebye saying something like: Schrödinger, you are not working

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 All the fifty years of conscious brooding have brought me no closer to answer the question, What are light quanta? Of course today every rascal thinks he knows the answer, but he is deluding himself. -Albert

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles? 5.6 Uncertainty Principle 5.7 Probability,

More information

PHYS 3313 Section 001 Lecture #16

PHYS 3313 Section 001 Lecture #16 PHYS 3313 Section 001 Lecture #16 Monday, Mar. 24, 2014 De Broglie Waves Bohr s Quantization Conditions Electron Scattering Wave Packets and Packet Envelops Superposition of Waves Electron Double Slit

More information

5.111 Lecture Summary #4 Wednesday, September 10, 2014

5.111 Lecture Summary #4 Wednesday, September 10, 2014 5.111 Lecture Summary #4 Wednesday, September 10, 2014 Reading for today: Section 1.5 and Section 1.6. (Same sections in 5 th and 4 th editions) Read for Lecture #5: Section 1.3 Atomic Spectra, Section

More information

Chapter 8 Chapter 8 Quantum Theory: Techniques and Applications (Part II)

Chapter 8 Chapter 8 Quantum Theory: Techniques and Applications (Part II) Chapter 8 Chapter 8 Quantum Theory: Techniques and Applications (Part II) The Particle in the Box and the Real World, Phys. Chem. nd Ed. T. Engel, P. Reid (Ch.16) Objectives Importance of the concept for

More information

Chapter 28 Quantum Mechanics of Atoms

Chapter 28 Quantum Mechanics of Atoms Chapter 28 Quantum Mechanics of Atoms 28.1 Quantum Mechanics The Theory Quantum mechanics incorporates wave-particle duality, and successfully explains energy states in complex atoms and molecules, the

More information

Lecture 9: Introduction to QM: Review and Examples

Lecture 9: Introduction to QM: Review and Examples Lecture 9: Introduction to QM: Review and Examples S 1 S 2 Lecture 9, p 1 Photoelectric Effect V stop (v) KE e V hf F max stop Binding energy F The work function: F is the minimum energy needed to strip

More information

LECTURE # 19 Dennis Papadopoulos End of Classical Physics Quantization Bohr Atom Chapters 38 39

LECTURE # 19 Dennis Papadopoulos End of Classical Physics Quantization Bohr Atom Chapters 38 39 PHYS 270-SPRING 2011 LECTURE # 19 Dennis Papadopoulos End of Classical Physics Quantization Bohr Atom Chapters 38 39 April 14, 2011 1 HOW TO MEASURE SPECTRA Spectroscopy: Unlocking the Structure of Atoms

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

Lecture 16 Quantum Physics Chapter 28

Lecture 16 Quantum Physics Chapter 28 Lecture 16 Quantum Physics Chapter 28 Particles vs. Waves Physics of particles p = mv K = ½ mv2 Particles collide and do not pass through each other Conservation of: Momentum Energy Electric Charge Physics

More information

The Schrödinger Equation in One Dimension

The Schrödinger Equation in One Dimension The Schrödinger Equation in One Dimension Introduction We have defined a comple wave function Ψ(, t) for a particle and interpreted it such that Ψ ( r, t d gives the probability that the particle is at

More information

RED. BLUE Light. Light-Matter

RED. BLUE Light.   Light-Matter 1 Light-Matter This experiment demonstrated that light behaves as a wave. Essentially Thomas Young passed a light of a single frequency ( colour) through a pair of closely spaced narrow slits and on the

More information

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29 Physics 1C Lecture 29A Finish off Ch. 28 Start Ch. 29 Particle in a Box Let s consider a particle confined to a one-dimensional region in space. Following the quantum mechanics approach, we need to find

More information

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects Exam 3 Hour Exam 3: Wednesday, November 29th In-class, Quantum Physics and Nuclear Physics Twenty multiple-choice questions Will cover:chapters 13, 14, 15 and 16 Lecture material You should bring 1 page

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r ψ even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

Atomic Spectra. if you pass white light through a gas dark narrow lines on a bright continuum "Absorption spectrum"

Atomic Spectra. if you pass white light through a gas dark narrow lines on a bright continuum Absorption spectrum By the end of the 1800 s, classical physics had many successes. One prominent physicist even had suggested that all that remained was to further increase the significant digits for measurements. However,

More information

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline:

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline: ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline: Time-Dependent Schrödinger Equation Solutions to thetime-dependent Schrödinger Equation Expansion of Energy Eigenstates Things you

More information

CHAPTER 2: POSTULATES OF QUANTUM MECHANICS

CHAPTER 2: POSTULATES OF QUANTUM MECHANICS CHAPTER 2: POSTULATES OF QUANTUM MECHANICS Basics of Quantum Mechanics - Why Quantum Physics? - Classical mechanics (Newton's mechanics) and Maxwell's equations (electromagnetics theory) can explain MACROSCOPIC

More information

Larbert High School. Quanta and Waves. Homework Exercises ADVANCED HIGHER PHYSICS

Larbert High School. Quanta and Waves. Homework Exercises ADVANCED HIGHER PHYSICS Larbert High School ADVANCED HIGHER PHYSICS Quanta and Waves Homework Exercises 3.1 3.6 3.1 Intro to Quantum Theory HW 1. (a) Explain what is meant by term black body. (1) (b) State two observations that

More information

General Physics (PHY 2140) Lecture 15

General Physics (PHY 2140) Lecture 15 General Physics (PHY 2140) Lecture 15 Modern Physics Chapter 27 1. Quantum Physics The Compton Effect Photons and EM Waves Wave Properties of Particles Wave Functions The Uncertainty Principle http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

Single Slit Diffraction and Resolving Power. Quantum Mechanics: Blackbody Radiation & Photoelectric Effect. Physics 102: Lecture 22

Single Slit Diffraction and Resolving Power. Quantum Mechanics: Blackbody Radiation & Photoelectric Effect. Physics 102: Lecture 22 Physics 102: Lecture 22 Single Slit Diffraction and Resolving Power Quantum Mechanics: Blackbody Radiation & Photoelectric Effect Physics 102: Lecture 22, Slide 1 Diffraction/Huygens principle Huygens:

More information

Physics 1C. Lecture 28D

Physics 1C. Lecture 28D Physics 1C Lecture 28D "I ask you to look both ways. For the road to a knowledge of the stars leads through the atom; and important knowledge of the atom has been reached through the stars." --Sir Arthur

More information

Lecture 12: Particle in 1D boxes, Simple Harmonic Oscillators

Lecture 12: Particle in 1D boxes, Simple Harmonic Oscillators Lecture 1: Particle in 1D boes, Simple Harmonic Oscillators U U() ψ() U n= n=0 n=1 n=3 Lecture 1, p 1 This week and last week are critical for the course: Week 3, Lectures 7-9: Week 4, Lectures 10-1: Light

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

28-2 Models of the Atom

28-2 Models of the Atom Answer to Essential Question 28.1: (a) In general, four energy levels give six photon energies. One way to count these is to start with the highest level, 12 ev. An electron starting in the 12 ev level

More information

Quantum Mechanics. The Schrödinger equation. Erwin Schrödinger

Quantum Mechanics. The Schrödinger equation. Erwin Schrödinger Quantum Mechanics The Schrödinger equation Erwin Schrödinger The Nobel Prize in Physics 1933 "for the discovery of new productive forms of atomic theory" The Schrödinger Equation in One Dimension Time-Independent

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Wave nature of particles

Wave nature of particles Wave nature of particles We have thus far developed a model of atomic structure based on the particle nature of matter: Atoms have a dense nucleus of positive charge with electrons orbiting the nucleus

More information

Quantum Mechanics & Atomic Structure (Chapter 11)

Quantum Mechanics & Atomic Structure (Chapter 11) Quantum Mechanics & Atomic Structure (Chapter 11) Quantum mechanics: Microscopic theory of light & matter at molecular scale and smaller. Atoms and radiation (light) have both wave-like and particlelike

More information

The Schrodinger Equation

The Schrodinger Equation The Schrodinger quation Dae Yong JONG Inha University nd week Review lectron device (electrical energy traducing) Understand the electron properties energy point of view To know the energy of electron

More information

Revision Guide. Chapter 7 Quantum Behaviour

Revision Guide. Chapter 7 Quantum Behaviour Revision Guide Chapter 7 Quantum Behaviour Contents CONTENTS... 2 REVISION CHECKLIST... 3 REVISION NOTES... 4 QUANTUM BEHAVIOUR... 4 Random arrival of photons... 4 Photoelectric effect... 5 PHASE AN PHASORS...

More information

Quantum Mechanical Tunneling

Quantum Mechanical Tunneling The square barrier: Quantum Mechanical Tunneling Behaviour of a classical ball rolling towards a hill (potential barrier): If the ball has energy E less than the potential energy barrier (U=mgy), then

More information

Barrier Penetration, Radioactivity, and the Scanning Tunneling Microscope

Barrier Penetration, Radioactivity, and the Scanning Tunneling Microscope Physics 5K Lecture Friday April 20, 2012 Barrier Penetration, Radioactivity, and the Scanning Tunneling Microscope Joel Primack Physics Department UCSC Topics to be covered in Physics 5K include the following:

More information

( ) # velocity. Wavelengths of massive objects. From Last Time. Wavelength of electron. Wavelength of 1 ev electron. A little complicated ( ) " = h mv

( ) # velocity. Wavelengths of massive objects. From Last Time. Wavelength of electron. Wavelength of 1 ev electron. A little complicated ( )  = h mv From Last Time Wavelengths of massive objects Light shows both particle and wavelike properties Matter shows both particle and wavelike properties. How can we make sense of this? debroglie wavelength =

More information

Lecture Outline Chapter 30. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 30. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 30 Physics, 4 th Edition James S. Walker Chapter 30 Quantum Physics Units of Chapter 30 Blackbody Radiation and Planck s Hypothesis of Quantized Energy Photons and the Photoelectric

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

Title / paragraph example Topic: Quantum Computers. Course Essay. Photoelectric effect summary. From Last Time. Compton scattering

Title / paragraph example Topic: Quantum Computers. Course Essay. Photoelectric effect summary. From Last Time. Compton scattering Course Essay 500-750 word typed essay due Wed. Apr. 26 First deadline: Fri. this week (Mar. 24) turn in Topic and Paragraph Description Topic ideas: Nobel prize winner: work & importance Big science project:

More information

Explanations of animations

Explanations of animations Explanations of animations This directory has a number of animations in MPEG4 format showing the time evolutions of various starting wave functions for the particle-in-a-box, the free particle, and the

More information

In chapter 3, when we discussed metallic bonding, the primary attribute was that electrons are delocalized.

In chapter 3, when we discussed metallic bonding, the primary attribute was that electrons are delocalized. Lecture 15: free electron gas Up to this point we have not discussed electrons explicitly, but electrons are the first offenders for most useful phenomena in materials. When we distinguish between metals,

More information

LECTURE 6 QUANTUM PHYSICS II. Instructor: Shih-Chieh Hsu

LECTURE 6 QUANTUM PHYSICS II. Instructor: Shih-Chieh Hsu LECTURE 6 QUANTUM PHYSICS II Instructor: Shih-Chieh Hsu Development of Quantum Mechanics 2 In 1862, Kirchhoff coined black body radiation or known as cavity radiation The experiments raised the question

More information

A fluorescent tube is filled with mercury vapour at low pressure. After mercury atoms have been excited they emit photons.

A fluorescent tube is filled with mercury vapour at low pressure. After mercury atoms have been excited they emit photons. Q1.(a) A fluorescent tube is filled with mercury vapour at low pressure. After mercury atoms have been excited they emit photons. In which part of the electromagnetic spectrum are these photons? What is

More information

Chap. 3. Elementary Quantum Physics

Chap. 3. Elementary Quantum Physics Chap. 3. Elementary Quantum Physics 3.1 Photons - Light: e.m "waves" - interference, diffraction, refraction, reflection with y E y Velocity = c Direction of Propagation z B z Fig. 3.1: The classical view

More information

If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle.

If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle. CHEM 2060 Lecture 18: Particle in a Box L18-1 Atomic Orbitals If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle. We can only talk

More information

CLASSICAL OR QUANTUM?

CLASSICAL OR QUANTUM? 3.012 Fund of Mat Sci: Bonding Lecture 1 CLASSICAL OR QUANTUM? Reading Material (Bonding) Textbook: Engel and Reid, Physical Chemistry, Pearson (2006) Further readings for the first half of the course

More information

It illustrates quantum mechanical principals. It illustrates the use of differential eqns. & boundary conditions to solve for ψ

It illustrates quantum mechanical principals. It illustrates the use of differential eqns. & boundary conditions to solve for ψ MODEL SYSTEM: PARTICLE IN A BOX Important because: It illustrates quantum mechanical principals It illustrates the use of differential eqns. & boundary conditions to solve for ψ It shows how discrete energy

More information

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

2) Atom manipulation. Xe / Ni(110) Model: Experiment: 2) Atom manipulation D. Eigler & E. Schweizer, Nature 344, 524 (1990) Xe / Ni(110) Model: Experiment: G.Meyer, et al. Applied Physics A 68, 125 (1999) First the tip is approached close to the adsorbate

More information

Complementi di Fisica Lectures 5, 6

Complementi di Fisica Lectures 5, 6 Complementi di Fisica - Lectures 5, 6 9/3-9-15 Complementi di Fisica Lectures 5, 6 Livio Lanceri Università di Trieste Trieste, 9/3-9-15 Course Outline - Reminder Quantum Mechanics: an introduction Reminder

More information

Lecture 21 Matter acts like waves!

Lecture 21 Matter acts like waves! Particles Act Like Waves! De Broglie s Matter Waves λ = h / p Schrodinger s Equation Announcements Schedule: Today: de Broglie and matter waves, Schrodinger s Equation March Ch. 16, Lightman Ch. 4 Net

More information

Atoms and Spectroscopy

Atoms and Spectroscopy Atoms and Spectroscopy Lecture 3 1 ONE SMALL STEP FOR MAN ONE GIANT LEAP FOR MANKIND 2 FROM ATOMS TO STARS AND GALAXIES HOW DO WE KNOW? Observations The Scientific Method Hypothesis Verifications LAW 3

More information

Chapter 4 (Lecture 6-7) Schrodinger equation for some simple systems Table: List of various one dimensional potentials System Physical correspondence

Chapter 4 (Lecture 6-7) Schrodinger equation for some simple systems Table: List of various one dimensional potentials System Physical correspondence V, E, Chapter (Lecture 6-7) Schrodinger equation for some simple systems Table: List of various one dimensional potentials System Physical correspondence Potential Total Energies and Probability density

More information

Lecture 3 Review of Quantum Physics & Basic AMO Physics

Lecture 3 Review of Quantum Physics & Basic AMO Physics Lecture 3 Review of Quantum Physics & Basic AMO Physics How to do quantum mechanics QO tries to understand it (partly) Purdue University Spring 2016 Prof. Yong P. Chen (yongchen@purdue.edu) Lecture 3 (1/19/2016)

More information