φ (x,y,z) in the direction of a is given by

Size: px
Start display at page:

Download "φ (x,y,z) in the direction of a is given by"

Transcription

1 UNIT-II VECTOR CALCULUS Dectoal devatve The devatve o a pot ucto (scala o vecto) a patcula decto s called ts dectoal devatve alo the decto. The dectoal devatve o a scala pot ucto a ve decto s the ate o chae o the decto. It s ve b the compoet o ad that decto. The dectoal devatve o a scala pot ucto (,,) the decto o a s ve b.a. a Dectoal devatve o s mamum the decto o Hece the mamum dectoal devatve s oad. Ut omal vecto to the suace I (,, ) be a scala ucto, the (,, ) c epesets A suace ad the ut omal vecto to the suace s ve b Equato o the taet plae ad omal to the suace Suppose a s the posto vecto o the pot,, ) O the suace (,, ) c. I ( s the posto vecto o a pot (,,) o the taet plae to the suace at a, the the equato o the taet plae to the suace at a ve pot a o t s ve b a. ad I s the posto vecto o a pot o the omal to the suace at the pot a o t. The vecto equato o the omal at a ve pot a o the suace s a ad The Catesa om o the omal at,, ) o the suace ( (,,) c s o Dveece o a vecto I (,, ) s a cotuousl deetable vecto pot ucto a ve eo o space, the the dveeces o s deed b. dv

2 I,the ).( dv.e., dv Soleodal Vecto A vecto s sad to be soleodal dv (e). Cul o vecto ucto I ),, ( s a deetable vecto pot ucto deed at each pot (,, ), the the cul o s deed b cul I,the ) ( cul cul Cul s also sad to be otato Iotatoal Vecto A vecto s called otatoal Cul (e) Scala Potetal I s a otatoal vecto, the thee ests a scala ucto Such that. Such a scala ucto s called scala potetal o Popetes o Gadet. I ad ae two scala pot ucto that ( ) ± ± (o) ( ) ad ad ad ± ± Soluto: ( ) ( ) ± ±

3 ( ) ( ) ( ) ± ± ± ± ± ± ± ±. I ad ae two scala pot uctos the ( ) (o) ad ad ad ) ( Soluto: ( ) ( ) ( ) ( ) ( ). I ad ae two scala pot ucto the whee Soluto: [ ]. I such that,pove that Soluto:

4 5. d a ut omal to the suace at (,-, ) Soluto: Gve that ) ( ( ) ( ) ( ) At (,-, ) ( ) ) ( () Ut omal to the ve suace at (,-,) 6 6. d the dectoal devatve o at (,,) the decto o Soluto: Gve ) ( ( ) ( ) ( ) 8 At (,, ) Gve: a 6 a

5 a a D D [ ] [ ] d the ale betwee the suace 5 ad 5 at (,,) Soluto: Let ad,,,, ) ( At (o,,) Cos θ 6 cos θ cos θ cos 8. d the ale betwee the suaces lo ad at the pot (,,) Soluto: let lo ad,, lo,, ) lo (

6 Cos 6 5. θ 6 5 cos θ 9. d ( ) Soluto: ( ) ( ). ( ) ( ) ( ) ( ) Sce u dv u u. ( ) ( )... ( ) ( ). ( )( ). ( )( ) ( ) [ ] ( )

7 . I ad.pove that s soleodal ad s otatoal o all vectos o. Soluto: dv ( ) ( ) ( ) () Now Deetat patall w..to, Smlal, Now ( ) ( ).. ( ) ( ) om () we have ( ) dv ( ) The vecto s soleodal dv ( ) s soleodal ol - Now cul ( ) ( )

8 ( ) Cul ( ) Cul ( ) o all values o Hece s otatoal o all values o.. Pove that ( ) ( ) s cos s otatoal ad d ts scala potetal Soluto: s cos cul [ ] [ ] [ ] cos cos s otatoal. To d such that ad ( ) ( ) s cos Iteat the equato patall w..to,, espectvel ), s ( ), ( s ), (, s C s scala potetal. Pove that ).( ).( B cul A A cul B B A dv Poo : ).( B A B A dv B A B A B A B A A B

9 B A. A. B cul B. A cula. B.Pove that Soluto: culcul cul cul B us a b c a. c b a. b c.. ( ). VECTOR INTEGRATION Le, suace ad Volume Iteals Poblems based o le Iteal Eample : I ( 6) (,,) alo the cuve Evaluate. d om (,,) to t, t, t Soluto: The ed pots ae (,, ) ad (,, ) These pots coespod to t ad t d dt, d t, d t. d ( 6) d d d C C 5 7 ( t 6t ) dt t ( tdt) t ( t ) dt 6 9 ( t 8t 6t ) 9 dt t t 6t 7 ( ) [( 6) ] 5 C Eample : Show that s a cosevatve vecto eld.

10 Soluto: I s cosevatve the s a cosevatve vecto eld. Now Suace Iteals Deto: Cosde a suace S. Let deote the ut outwad omal to the suace S. Let R be the poecto o the suace o the XY plae. Let be a vecto valued deed some eo cota the suace S. The the suace teal o s deed to be Eample ; Evaluate S S.. ds d. d R.. ds whee ad S s the suace o the clde cluded the st octat betwee the plaes ad. Soluto: Gve The ut omal to the suace..

11

12

13

14 () () () INTEGRAL THEOREMS Gauss s dveece theoem Stoe s theoem Gee s theoem the plae Gee s Theoem Statemet: I M(,) ad N(,) ae cotuous uctos wth cotuous patal devatves a eo R o the plae bouded b a smple closed cuve C, the N M Md d dd, whee C s the cuve descbed the c R postve decto.

15 Ve Gee s theoem a plae o the teal ( ) d d tae aoud the ccle Soluto: Gee s theoem ves N M Md Nd dd c R Cosde ( ) d d c M N M N, N M dd R dd dd ( ) R R [Aea o the ccle] π. π. π () Now Md Nd We ow that the paametc equato o the ccle cosθ sθ d sθdθ, d cosθdθ Md Nd ( ) d d cosθ sθ sθdθ cosθ cosθ d ( )( ) ( ) θ cosθ sθ 8s θ cos θdθ Whee θ vaous om to π π ( cosθ sθ s θ ) Md Nd dθ C π cos θ s θ d θ π ( s θ 6 cos θ ) d θ cos θ s θ 6θ π π.() om () ad () π c

16 N M Md Nd dd c R Hece Gee s Theoem s veed. Eample Us Gee s theoems d the aea o a ccle o adus. Soluto: B Gee s theoem we ow that Aea eclosed b C d d The paametc equato o a ccle o adus s Whee θ π π C Aea o the ccle cosθ ( cosθ ) sθ ( sθ ) dθ Eample : π ( cos θ s θ ) dθ π dθ θ π π [ ] Evaluate [( ) d cosd] c cosθ, sθ s whee c s the tale wth π vetces (,),(,) ad ( π,) Soluto: Equato o OB s π π

17 N M B Gee s theoem Md Nd dd c R M Hee M s, N N cos, s [( s ) d cosd] ( s )dd C I the eo R, vaes om C ( s ) d cosd ( s ) R π π [ cos ] π π to ad vaes om to dd π π d π π π cos d π π π s π π π π π π Eample Ve Gee s theoem the plae o 8 d 6d whee C s the bouda o the eo deed ( ) ( ) C b X,, Soluto: We have to pove that

18 c N M Md Nd dd R M 8, N 6 M N 6, 6 B Gee s theoem the plae N M Md Nd dd c R ( ) dd ( ) 5 d ( ) 5 Cosde Md Nd c OA Alo OA,, vaes om to OA AB Md Nd BO 5 d [ ] Alo AB, - d d ad vaes om to. AB STOKE S THEOREM Md Nd [ 8( ) ( ) 6( ) ]d ( ) ( ) 8 8 8

19 I S s a ope suace bouded b a smple closed cuve C ad a vecto ucto s cotuous ad has cotuous patal devatves S ad o C, the cul. ds. d whee s the ut vecto omal to the c suace (e) The suace teal o the omal compoet o to the teal o the taetal compoet o tae aoud C. Eample Ve Stoe s theoem o ( ) cul s equal whee S s the uppe hal o the sphee ad C s the ccula bouda o plae. Soluto: B Stoe s theoem Hee ( ) c cul. d cul. ds [ ] ( ) ( ) s sce C s the ccula bouda o plae S aea o the ccle cul. ds S dd π ( ) π.() ON, c O C, cosθ, sθ d s θdθ, d cosθdθ θ vaes om to π. d cul. ds s

20 c. d π om () ad () Eample ( cosθ sθ )( sθ ) dθ c π π ( cosθ sθ ) d θ π s θdθ π ( s θ ) d θ π cos θ dθ π cos θ s θ θ π π (). d cul. ds Hece stoe s theoem s veed s Ve stoe s theoem o ( ) ( ) whee s s the suace o the cube,,,, ad above the plae. Soluto: B Stoe s theoem c. d cul. ds Gve ( ) ( ) s cul [ ] [ ] [ ] [ ]

21

22 Hece Stoe s theoem s veed. Eample : Ve Stoe s theoem o whee S s the uppe hal suace o the sphee ad C s ts bouda. Soluto: B stoe s theoem

23

24

25 c. d cul. ds s Gauss Dveece theoem Statemet: The suace teal o the omal compoet o a vecto ucto ove a closed suace S eclos volume V s equal to the volume teal o the dveece o tae thouhout the volume V, S. ds. dv V Evaluate dd dd dd ove the suace bouded b, h, a Soluto:

26 π π cos θd θ 6 π S a. ds

27

PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM

PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM Joual o Mathematcal Sceces: Advaces ad Applcatos Volume 6 Numbe 00 Pages 77-9 PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM DAU XUAN LUONG ad TRAN VAN AN Depatmet o Natual Sceces Quag Nh

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

Chapter 3 Vector Integral Calculus

Chapter 3 Vector Integral Calculus hapte Vecto Integal alculus I. Lne ntegals. Defnton A lne ntegal of a vecto functon F ove a cuve s F In tems of components F F F F If,, an ae functon of t, we have F F F F t t t t E.. Fn the value of the

More information

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41. Chapte I Matces, Vectos, & Vecto Calculus -, -9, -0, -, -7, -8, -5, -7, -36, -37, -4. . Concept of a Scala Consde the aa of patcles shown n the fgue. he mass of the patcle at (,) can be epessed as. M (,

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

14. MRAC for MIMO Systems with Unstructured Uncertainties We consider affine-in-control MIMO systems in the form, x Ax B u f x t

14. MRAC for MIMO Systems with Unstructured Uncertainties We consider affine-in-control MIMO systems in the form, x Ax B u f x t Lectue 8 14. MAC o MIMO Systes wth Ustuctued Ucetates We cosde ae--cotol MIMO systes the o, ABu t (14.1) whee s the syste state vecto, u s the cotol put, B s kow costat at, A ad (a dagoal at wth postve

More information

Remember: When an object falls due to gravity its potential energy decreases.

Remember: When an object falls due to gravity its potential energy decreases. Chapte 5: lectc Potental As mentoned seveal tmes dung the uate Newton s law o gavty and Coulomb s law ae dentcal n the mathematcal om. So, most thngs that ae tue o gavty ae also tue o electostatcs! Hee

More information

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the

More information

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M Dola Bagayoko (0) Integal Vecto Opeatons and elated Theoems Applcatons n Mechancs and E&M Ι Basc Defnton Please efe to you calculus evewed below. Ι, ΙΙ, andιιι notes and textbooks fo detals on the concepts

More information

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles. Seeth Edto CHPTER 4 VECTOR MECHNICS FOR ENINEERS: DYNMICS Fedad P. ee E. Russell Johsto, J. Systems of Patcles Lectue Notes: J. Walt Ole Texas Tech Uesty 003 The Mcaw-Hll Compaes, Ic. ll ghts eseed. Seeth

More information

The Divergence Theorem

The Divergence Theorem 13.8 The ivegence Theoem Back in 13.5 we ewote Geen s Theoem in vecto fom as C F n ds= div F x, y da ( ) whee C is the positively-oiented bounday cuve of the plane egion (in the xy-plane). Notice this

More information

Non-axial symmetric loading on axial symmetric. Final Report of AFEM

Non-axial symmetric loading on axial symmetric. Final Report of AFEM No-axal symmetc loadg o axal symmetc body Fal Repot of AFEM Ths poject does hamoc aalyss of o-axal symmetc loadg o axal symmetc body. Shuagxg Da, Musket Kamtokat 5//009 No-axal symmetc loadg o axal symmetc

More information

GCE AS and A Level MATHEMATICS FORMULA BOOKLET. From September Issued WJEC CBAC Ltd.

GCE AS and A Level MATHEMATICS FORMULA BOOKLET. From September Issued WJEC CBAC Ltd. GCE AS d A Level MATHEMATICS FORMULA BOOKLET Fom Septeme 07 Issued 07 Pue Mthemtcs Mesuto Suce e o sphee = 4 Ae o cuved suce o coe = heght slt Athmetc Sees S = + l = [ + d] Geometc Sees S = S = o < Summtos

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

SYSTEMS OF NON-LINEAR EQUATIONS. Introduction Graphical Methods Close Methods Open Methods Polynomial Roots System of Multivariable Equations

SYSTEMS OF NON-LINEAR EQUATIONS. Introduction Graphical Methods Close Methods Open Methods Polynomial Roots System of Multivariable Equations SYSTEMS OF NON-LINEAR EQUATIONS Itoduto Gaphal Method Cloe Method Ope Method Polomal Root Stem o Multvaale Equato Chapte Stem o No-Lea Equato /. Itoduto Polem volvg o-lea equato egeeg lude optmato olvg

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS

GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS FORMULA BOOKLET Fom Septembe 07 Issued 07 Mesuto Pue Mthemtcs Sufce e of sphee = 4 Ae of cuved sufce of coe = slt heght Athmetc Sees S l d

More information

Objectives. Learning Outcome. 7.1 Centre of Gravity (C.G.) 7. Statics. Determine the C.G of a lamina (Experimental method)

Objectives. Learning Outcome. 7.1 Centre of Gravity (C.G.) 7. Statics. Determine the C.G of a lamina (Experimental method) Ojectves 7 Statcs 7. Cete of Gavty 7. Equlum of patcles 7.3 Equlum of g oes y Lew Sau oh Leag Outcome (a) efe cete of gavty () state the coto whch the cete of mass s the cete of gavty (c) state the coto

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if Subject: Mathematics-I Question Bank Section A T T. Find the value of fo which the matix A = T T has ank one. T T i. Is the matix A = i is skew-hemitian matix. i. alculate the invese of the matix = 5 7

More information

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT Link to: phsicspages home page. To leave a comment o epot an eo, please use the auilia blog. Refeence: d Inveno, Ra, Intoducing Einstein s Relativit

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

Green s Identities and Green s Functions

Green s Identities and Green s Functions LECTURE 7 Geen s Identities and Geen s Functions Let us ecall The ivegence Theoem in n-dimensions Theoem 7 Let F : R n R n be a vecto field ove R n that is of class C on some closed, connected, simply

More information

LECTURE 8: Topics in Chaos Ricker Equation. Period doubling bifurcation. Period doubling cascade. A Quadratic Equation Ricker Equation 1.0. x x 4 0.

LECTURE 8: Topics in Chaos Ricker Equation. Period doubling bifurcation. Period doubling cascade. A Quadratic Equation Ricker Equation 1.0. x x 4 0. LECTURE 8: Topcs Chaos Rcker Equato (t ) = (t ) ep( (t )) Perod doulg urcato Perod doulg cascade 9....... A Quadratc Equato Rcker Equato (t ) = (t ) ( (t ) ). (t ) = (t ) ep( (t )) 6. 9 9. The perod doulg

More information

, the tangent line is an approximation of the curve (and easier to deal with than the curve).

, the tangent line is an approximation of the curve (and easier to deal with than the curve). 114 Tangent Planes and Linea Appoimations Back in-dimensions, what was the equation of the tangent line of f ( ) at point (, ) f ( )? (, ) ( )( ) = f Linea Appoimation (Tangent Line Appoimation) of f at

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

VIII Dynamics of Systems of Particles

VIII Dynamics of Systems of Particles VIII Dyacs of Systes of Patcles Cete of ass: Cete of ass Lea oetu of a Syste Agula oetu of a syste Ketc & Potetal Eegy of a Syste oto of Two Iteactg Bodes: The Reduced ass Collsos: o Elastc Collsos R whee:

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & .. Linea Combinations: (a) (b) (c) (d) Given a finite set of vectos a b c,,,... then the vecto xa + yb + zc +... is called a linea combination of a, b, c,... fo any x, y, z... R. We have the following

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

So, if we are finding the amount of work done over a non-conservative vector field F r, we do that long ur r b ur =

So, if we are finding the amount of work done over a non-conservative vector field F r, we do that long ur r b ur = 3.4 Geen s Theoem Geoge Geen: self-taught English scientist, 793-84 So, if we ae finding the amount of wok done ove a non-consevative vecto field F, we do that long u b u 3. method Wok = F d F( () t )

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit.

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit. tomc uts The atomc uts have bee chose such that the fudametal electo popetes ae all equal to oe atomc ut. m e, e, h/, a o, ad the potetal eegy the hydoge atom e /a o. D3.33564 0-30 Cm The use of atomc

More information

2012 GCE A Level H2 Maths Solution Paper Let x,

2012 GCE A Level H2 Maths Solution Paper Let x, GCE A Level H Maths Solutio Pape. Let, y ad z be the cost of a ticet fo ude yeas, betwee ad 5 yeas, ad ove 5 yeas categoies espectively. 9 + y + 4z =. 7 + 5y + z = 8. + 4y + 5z = 58.5 Fo ude, ticet costs

More information

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE O The Covegece Theoems... (Muslm Aso) ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE Muslm Aso, Yosephus D. Sumato, Nov Rustaa Dew 3 ) Mathematcs

More information

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law Physcs 11b Lectue # Electc Feld Electc Flux Gauss s Law What We Dd Last Tme Electc chage = How object esponds to electc foce Comes n postve and negatve flavos Conseved Electc foce Coulomb s Law F Same

More information

Multivector Functions

Multivector Functions I: J. Math. Aal. ad Appl., ol. 24, No. 3, c Academic Pess (968) 467 473. Multivecto Fuctios David Hestees I a pevious pape [], the fudametals of diffeetial ad itegal calculus o Euclidea -space wee expessed

More information

Motion and Flow II. Structure from Motion. Passive Navigation and Structure from Motion. rot

Motion and Flow II. Structure from Motion. Passive Navigation and Structure from Motion. rot Moto ad Flow II Sce fom Moto Passve Navgato ad Sce fom Moto = + t, w F = zˆ t ( zˆ ( ([ ] =? hesystemmoveswth a gd moto wth aslat oal velocty t = ( U, V, W ad atoalvelocty w = ( α, β, γ. Scee pots R =

More information

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each 01 Log1 Cotest Roud Theta Complex Numbers 1 Wrte a b Wrte a b form: 1 5 form: 1 5 4 pots each Wrte a b form: 65 4 4 Evaluate: 65 5 Determe f the followg statemet s always, sometmes, or ever true (you may

More information

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS RNDOM SYSTEMS WTH COMPETE CONNECTONS ND THE GUSS PROBEM FOR THE REGUR CONTNUED FRCTONS BSTRCT Da ascu o Coltescu Naval cademy Mcea cel Bata Costata lascuda@gmalcom coltescu@yahoocom Ths pape peset the

More information

MOLECULAR VIBRATIONS

MOLECULAR VIBRATIONS MOLECULAR VIBRATIONS Here we wsh to vestgate molecular vbratos ad draw a smlarty betwee the theory of molecular vbratos ad Hückel theory. 1. Smple Harmoc Oscllator Recall that the eergy of a oe-dmesoal

More information

16 Homework lecture 16

16 Homework lecture 16 Quees College, CUNY, Departmet of Computer Scece Numercal Methods CSCI 361 / 761 Fall 2018 Istructor: Dr. Sateesh Mae c Sateesh R. Mae 2018 16 Homework lecture 16 Please emal your soluto, as a fle attachmet,

More information

The formulae in this booklet have been arranged according to the unit in which they are first

The formulae in this booklet have been arranged according to the unit in which they are first Fomule Booklet Fomule Booklet The fomule ths ooklet hve ee ge og to the ut whh the e fst toue. Thus te sttg ut m e eque to use the fomule tht wee toue peeg ut e.g. tes sttg C mght e epete to use fomule

More information

PHZ 3113 Fall 2017 Homework #5, Due Friday, October 13

PHZ 3113 Fall 2017 Homework #5, Due Friday, October 13 PHZ 3113 Fall 2017 Homewok #5, Due Fiday, Octobe 13 1. Genealize the poduct ule (fg) = f g +f g to wite the divegence Ö (Ù Ú) of the coss poduct of the vecto fields Ù and Ú in tems of the cul of Ù and

More information

Counting Functions and Subsets

Counting Functions and Subsets CHAPTER 1 Coutig Fuctios ad Subsets This chapte of the otes is based o Chapte 12 of PJE See PJE p144 Hee ad below, the efeeces to the PJEccles book ae give as PJE The goal of this shot chapte is to itoduce

More information

ON THE STRUCTURE OF THE EULER MAPPING

ON THE STRUCTURE OF THE EULER MAPPING Electocal tacpto Mathematcal Ittute, Slea Uet Opaa, Cech Republc Mach Th tet a electoc tacpto o the ogal eeach pape D. upa, O the tuctue o the Eule mappg, Ach. Math., Scpta Fac. Sc. Nat. UJEP Bue, X: 55-6,

More information

Consider two masses m 1 at x = x 1 and m 2 at x 2.

Consider two masses m 1 at x = x 1 and m 2 at x 2. Chapte 09 Syste of Patcles Cete of ass: The cete of ass of a body o a syste of bodes s the pot that oes as f all of the ass ae cocetated thee ad all exteal foces ae appled thee. Note that HRW uses co but

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

The formulae in this booklet have been arranged according to the unit in which they are first

The formulae in this booklet have been arranged according to the unit in which they are first Fomule Booklet Fomule Booklet The fomule ths ooklet hve ee ge ccog to the ut whch the e fst touce. Thus cte sttg ut m e eque to use the fomule tht wee touce peceg ut e.g. ctes sttg C mght e epecte to use

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

This may involve sweep, revolution, deformation, expansion and forming joints with other curves.

This may involve sweep, revolution, deformation, expansion and forming joints with other curves. 5--8 Shapes ae ceated by cves that a sface sch as ooftop of a ca o fselage of a acaft ca be ceated by the moto of cves space a specfed mae. Ths may volve sweep, evolto, defomato, expaso ad fomg jots wth

More information

Harmonic Curvatures in Lorentzian Space

Harmonic Curvatures in Lorentzian Space BULLETIN of the Bull Malaya Math Sc Soc Secod See 7-79 MALAYSIAN MATEMATICAL SCIENCES SOCIETY amoc Cuvatue Loetza Space NEJAT EKMEKÇI ILMI ACISALIOĞLU AND KĀZIM İLARSLAN Aaa Uvety Faculty of Scece Depatmet

More information

Traditional Approaches to Analyzing Mechanical Tolerance Stacks

Traditional Approaches to Analyzing Mechanical Tolerance Stacks P A R T 3 DESIGN Chapte 9 Tadtoal Appoaches to Aalyzg Mechacal Toleace Stacks Paul Dake 9. Itoducto Toleace aalyss s the pocess o takg kow toleaces ad aalyzg the combato o these toleaces at a assembly

More information

Chapter I Vector Analysis

Chapter I Vector Analysis . Chpte I Vecto nlss . Vecto lgeb j It s well-nown tht n vecto cn be wtten s Vectos obe the followng lgebc ules: scl s ) ( j v v cos ) ( e Commuttv ) ( ssoctve C C ) ( ) ( v j ) ( ) ( ) ( ) ( (v) he lw

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13 ECE 338 Applied Electicity and Magnetism ping 07 Pof. David R. Jackson ECE Dept. Notes 3 Divegence The Physical Concept Find the flux going outwad though a sphee of adius. x ρ v0 z a y ψ = D nˆ d = D ˆ

More information

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws. AP-C WEP 1. Wok a. Calculate the wok done by a specified constant foce on an object that undegoes a specified displacement. b. Relate the wok done by a foce to the aea unde a gaph of foce as a function

More information

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Mathematcal ad Computatoal Applcatos, Vol. 3, No., pp. 9-36 008. Assocato fo Scetfc Reseach A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Ahmed M.

More information

Advanced Higher Formula List

Advanced Higher Formula List Advaced Highe Fomula List Note: o fomulae give i eam emembe eveythig! Uit Biomial Theoem Factoial! ( ) ( ) Biomial Coefficiet C!! ( )! Symmety Idetity Khayyam-Pascal Idetity Biomial Theoem ( y) C y 0 0

More information

Lecture 6: October 16, 2017

Lecture 6: October 16, 2017 Ifomatio ad Codig Theoy Autum 207 Lectue: Madhu Tulsiai Lectue 6: Octobe 6, 207 The Method of Types Fo this lectue, we will take U to be a fiite uivese U, ad use x (x, x 2,..., x to deote a sequece of

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems Apil 5, 997 A Quick Intoduction to Vectos, Vecto Calculus, and Coodinate Systems David A. Randall Depatment of Atmospheic Science Coloado State Univesity Fot Collins, Coloado 80523. Scalas and vectos Any

More information

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays Appled Mathematcal Sceces, Vol. 3, 29, o. 23, 5-25 Stablty Aalyss fo Lea me-delay Systems Descbed by Factoal Paametezed Models Possessg Multple Iteal Costat Dscete Delays Mauel De la Se Isttuto de Ivestgacó

More information

Impact of Polarimetric Dimensionality of Forest Parameter Estimation by Means of Polarimetric SAR interferometry

Impact of Polarimetric Dimensionality of Forest Parameter Estimation by Means of Polarimetric SAR interferometry Impact of Polametc Dmensonalty of Foest Paamete Estmaton by Means of Polametc SAR ntefeomety Jun Su Km, Seung-Kuk Lee, Konstantnos Papathanassou, and Iena Hajnsek Geman Aeospace Cente Mcowaves and Rada

More information

COORDINATE SYSTEMS, COORDINATE TRANSFORMS, AND APPLICATIONS

COORDINATE SYSTEMS, COORDINATE TRANSFORMS, AND APPLICATIONS Dola Bagaoo 0 COORDINTE SYSTEMS COORDINTE TRNSFORMS ND PPLICTIONS I. INTRODUCTION Smmet coce of coodnate sstem. In solvng Pscs poblems one cooses a coodnate sstem tat fts te poblem at and.e. a coodnate

More information

Force and Work: Reminder

Force and Work: Reminder Electic Potential Foce and Wok: Reminde Displacement d a: initial point b: final point Reminde fom Mechanics: Foce F if thee is a foce acting on an object (e.g. electic foce), this foce may do some wok

More information

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2.

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2. Paabola Volume 5, Issue (017) Solutions 151 1540 Q151 Take any fou consecutive whole numbes, multiply them togethe and add 1. Make a conjectue and pove it! The esulting numbe can, fo instance, be expessed

More information

MATH /19: problems for supervision in week 08 SOLUTIONS

MATH /19: problems for supervision in week 08 SOLUTIONS MATH10101 2018/19: poblems fo supevisio i week 08 Q1. Let A be a set. SOLUTIONS (i Pove that the fuctio c: P(A P(A, defied by c(x A \ X, is bijective. (ii Let ow A be fiite, A. Use (i to show that fo each

More information

ENGI 4430 Numerical Integration Page 5-01

ENGI 4430 Numerical Integration Page 5-01 ENGI 443 Numercal Itegrato Page 5-5. Numercal Itegrato I some o our prevous work, (most otaly the evaluato o arc legth), t has ee dcult or mpossle to d the dete tegral. Varous symolc algera ad calculus

More information

PARAMETRIC STUDY ON PARETO, NASH MIN- MAX DIFFERENTIAL GAME

PARAMETRIC STUDY ON PARETO, NASH MIN- MAX DIFFERENTIAL GAME Euopea Scetc Joual Jauay 5 edto vol., No.3 ISSN: 857 788 (t) e - ISSN 857-743 ARAETRIC STUDY ON ARETO, NASH IN- AX DIFFERENTIAL GAE.S.Oma, o. th o Ramada Uvety, Egypt N.A. El-Kholy, D. Tata Uvety, Faculty

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapte : Decptve Stattc Peequte: Chapte. Revew of Uvaate Stattc The cetal teecy of a oe o le yetc tbuto of a et of teval, o hghe, cale coe, ofte uaze by the athetc ea, whch efe a We ca ue the ea to ceate

More information

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles /4/04 Chapte 7 Lnea oentu Lnea oentu of a Sngle Patcle Lnea oentu: p υ It s a easue of the patcle s oton It s a vecto, sla to the veloct p υ p υ p υ z z p It also depends on the ass of the object, sla

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

Math 209 Assignment 9 Solutions

Math 209 Assignment 9 Solutions Math 9 Assignment 9 olutions 1. Evaluate 4y + 1 d whee is the fist octant pat of y x cut out by x + y + z 1. olution We need a paametic epesentation of the suface. (x, z). Now detemine the nomal vecto:

More information

Conjugate Gradient (CG) Method

Conjugate Gradient (CG) Method Optimization II Conugate Gaient CG Metho Anothe metho oes not equie explicit secon eivatives, an oes not even stoe appoximation to Hessian matix CG geneates sequence of conugate seach iections, implicitly

More information

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS J. N. E DDY ENEGY PINCIPLES AND VAIATIONAL METHODS IN APPLIED MECHANICS T H I D E DI T IO N JN eddy - 1 MEEN 618: ENEGY AND VAIATIONAL METHODS A EVIEW OF VECTOS AND TENSOS ead: Chapte 2 CONTENTS Physical

More information

Phys 332 Electricity & Magnetism Day 13. This Time Using Multi-Pole Expansion some more; especially for continuous charge distributions.

Phys 332 Electricity & Magnetism Day 13. This Time Using Multi-Pole Expansion some more; especially for continuous charge distributions. Phys 33 Electcty & Magetsm Day 3 Mo. /7 Wed. /9 Thus / F., / 3.4.3-.4.4 Multpole Expaso (C 7)..-..,.3. E to B; 5..-.. Loetz Foce Law: felds ad foces (C 7) 5..3 Loetz Foce Law: cuets HW4 Mateals Aoucemets

More information

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses Mmzg sphecal abeatos Explotg the exstece of cojugate pots sphecal leses Let s ecall that whe usg asphecal leses, abeato fee magg occus oly fo a couple of, so called, cojugate pots ( ad the fgue below)

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Lecture Notes Forecasting the process of estimating or predicting unknown situations

Lecture Notes Forecasting the process of estimating or predicting unknown situations Lecture Notes. Ecoomc Forecastg. Forecastg the process of estmatg or predctg ukow stuatos Eample usuall ecoomsts predct future ecoomc varables Forecastg apples to a varet of data () tme seres data predctg

More information

Suppose the medium is not homogeneous (gravity waves impinging on a beach,

Suppose the medium is not homogeneous (gravity waves impinging on a beach, Slowly vaying media: Ray theoy Suppose the medium is not homogeneous (gavity waves impinging on a beach, i.e. a vaying depth). Then a pue plane wave whose popeties ae constant in space and time is not

More information

CS475 Parallel Programming

CS475 Parallel Programming CS475 Parallel Programmg Deretato ad Itegrato Wm Bohm Colorado State Uversty Ecept as otherwse oted, the cotet o ths presetato s lcesed uder the Creatve Commos Attrbuto.5 lcese. Pheomea Physcs: heat, low,

More information

1969 AP Calculus BC: Section I

1969 AP Calculus BC: Section I 969 AP Calculus BC: Section I 9 Minutes No Calculator Note: In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e).. t The asymptotes of the graph of the parametric

More information

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it Pncples of Dnamcs: Newton's Laws of moton. : Foce Analss 1. A bod wll eman n a state of est, o of unfom moton n a staght lne unless t s acted b etenal foces to change ts state.. The ate of change of momentum

More information

Chapter IV Vector and Tensor Analysis IV.2 Vector and Tensor Analysis September 29,

Chapter IV Vector and Tensor Analysis IV.2 Vector and Tensor Analysis September 29, hapte I ecto and Tenso Analyss I. ecto and Tenso Analyss eptembe 9, 08 47 hapte I ecto and Tenso Analyss I. ecto and Tenso Analyss eptembe 9, 08 48 I. ETOR AND TENOR ANALYI I... Tenso functon th Let A

More information

Chapter 10 Sample Exam

Chapter 10 Sample Exam Chapte Sample Exam Poblems maked with an asteisk (*) ae paticulaly challenging and should be given caeful consideation.. Conside the paametic cuve x (t) =e t, y (t) =e t, t (a) Compute the length of the

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6 MOTION IN A PLANE 1. Scala Quantities Physical quantities that have only magnitude and no diection ae called scala quantities o scalas. e.g. Mass, time, speed etc. 2. Vecto Quantities Physical quantities

More information

Electromagnetic Theory 1

Electromagnetic Theory 1 / lectomagnetic Theoy uestion : lectostatic Potential negy A sphee of adius caies a positive chage density ρ constant Obviously the spheical coodinates system is appopiate hee Take - C m - and cm τ a)

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx SUPPLEMENTARY MATERIAL 613 7.6.3 CHAPTER 7 ( px + q) a x + bx + c dx. We choose constants A and B such that d px + q A ( ax + bx + c) + B dx A(ax + b) + B Compaing the coefficients of x and the constant

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

Born-Oppenheimer Approximation. Kaito Takahashi

Born-Oppenheimer Approximation. Kaito Takahashi o-oppehee ppoato Kato Takahah toc Ut Fo quatu yte uch a ecto ad olecule t eae to ue ut that ft the=tomc UNT Ue a of ecto (ot kg) Ue chage of ecto (ot coulob) Ue hba fo agula oetu (ot kg - ) Ue 4pe 0 fo

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION EPER S AWS OF PANETARY MOTION 1. Intoduction We ae now in a position to apply what we have leaned about the coss poduct and vecto valued functions to deive eple s aws of planetay motion. These laws wee

More information