Summary Working Group 4: Plasma Wakefield Acceleration

Size: px
Start display at page:

Download "Summary Working Group 4: Plasma Wakefield Acceleration"

Transcription

1 Summary Working Group 4: Plasma Wakefield Acceleration James Rosenzweig, Andrei Seryi Working group leaders On behalf of the working group AAC 2010 Annapolis, MD June 19, 2010

2 Future Experimental Facilities

3 Presented by Weiming An, UCLA

4

5

6

7 Drive Beam Shaping and Witness Bunch Generation for the Plasma Wakefield Accelerator Advanced Accelerator Research Department Stanford Linear Accelerator Center R. Joel England* J. Frederico*, M. J. Hogan*, P. Muggli, G. Travish, J. B. Rosenzweig, C. Joshi *SLAC, USC, UCLA Advanced Accelerator Concepts Workshop June 13-19, 2010

8

9 FACET Chicane Optics R cartoon: not to scale isochronous configuration: R56 = -0.1mm; T566 = -0.5mm; beta functions well-constrained 9 Advanced Accelerator Concepts Workshop June 13-19, 2010

10 PWFA facility at Budker INP, Novosibirsk (A. Petrenko) e+ Damping Ring 500 MeV Linac e- Electron beam obtained in the damping ring: PWFA facility E = MeV N(e ) = σ S = 8 mm (I peak = 50 A)

11 Main goal: demonstration of beam quality in a high gradient plasma wake-field accelerator Agenda includes long-pulse hosing, multi-bunch studies

12 Ultra-high Gradient Approaches

13 Breaking the attosecond, Å, and TV/m barriers with low-charge, ultra-fast beams J.B. Rosenzweig, et al. Proposal for ultra-short, low-q (pc) beams in FEL Unprecedented brightness Single spike operation Breaching attosecond, short wavelength frontier Scaling the PWFA to short wavelength TV/m PWFA experiment at the LCLS z Beam brightness x 100, with <fs pulses -> fs single spike (SPARX case)

14 Progress, Applications of Low-Q fs Electron Beams Marry with new undulators: Ccompact FEL,v. hard X-rays Gain evolution at 13.6 GeV, 0.15 Å LCLS experiments: 20 pc, 2 fs pulses, 0.14,0.4 mm-mrad achieved. Focus to <200 nm: allows TV/m PWFA scenario. BSI ionization, ion motion, OCTR! >TV/m long. wakes H ionization complete inside beam Ion density distortions

15 Hybrid Laser-Plasma Wakefield Acceleration Bernhard Hidding, T. Königstein, J. Osterholz, O. Willi, G. Pretzle,S. Karsch, J.B. Rosenzweig witness driver 1. LWFA/SMLWFA: double-bunches on fs-scale 12 µm 2. Driver/witness PWFA afterburner doubles witness electron energy monoenergetically Witness (and driver) is focussed to charge densities which have transversal self-fields beyond ionization thresholds May also be strategy for increased laser-to-beam transfer, and for fs-res. Bunch distance measurements (ATF, FACET PWFA?)

16 TV/m-scale fields, monoenergetic energy doubling LWFA and PWFA are (re-)coalescing! Bernhard Hidding et al., 104, 2010

17 Positively Charged Beams in PWFA

18 Update of proton driven plasma wakefield acceleration G. Xia, A. Caldwell, Max Planck Institute fur Physik, Munich, Germany Presented by P. Muggli, USC High energy stored in current proton machines like Tevatron, HERA, SPS and LHC LHC (1 TeV, 1.15e11 p/bunch) ~ 20 kj/bunch ILC (1TeV GeV, 2e10 e-/bunch) ~ 3 kj/bunch However, the proton bunches are too long to be used as driver directly. Need to compress them. If we can couple the energy of drive beam to the plasma and the witness beam efficiently, a new plasma wakefield acceleration frontier can be opened. Scientific goals: Near-term plan is to use the extracted proton beam from the PS or SPS to demonstrate the energy gain of 1 GeV within 5 m of plasma These experiments should also lead to a scheme to achieve 100 GeV energy gain per 100 m plasma

19 E acc E foc n e n b With short p + bunch and injected e - bunch: e - p + 600GeV e - bunch First experiments: Two stream instability modulates the long p + at the plasma wavelength The modulation resonantly drives wakefields in the MV/m with CERN SPS beam <1% E/E In ~500m plasma Letter of intent for experiment at CERN will be prepared soon based on the recent simulation results.

20 Concept for (multi)-tev upgrade of ILC based on protondriven plasma acceleration Presented by A. Seryi Proton bunches are accelerated together with e- (e+) bunches in 1.3 GHz SC linac of ILC, separated by a fraction of the RF wavelength. The protonphase slippage of is controlled by special sailboat chicanes inserted between linac sections. Locations and settings of the chicanes can also be optimized to compress the proton bunch, as needed for PWFA. There are many challenges in this scheme that need to be further analyzed

21 Dual path chicane similar to this one designed for FACET (which provides 5cm path length difference for 23 GeV e- and e+ bunches) will be used to control phase slippage Acceleration of a proton bunch from 8 to 20 GeV in ILC linac, modified to include phase-slippage-control double chicane sections. Different sections are indicated by different color Ballistic compression of a proton performed simultaneously with its acceleration

22 Positron driven plasma wakefields S. Pinkerton*, Y. Shi*, C. Huang, P. Muggli* A pancake shaped bunch is able to drive a similar wake to the electron case. Not in the blowout regime. Preliminary simulations suggest a better blow out comes at the cost of lower gradient. Support: NSF and US DoE *University of Southern California; Los Alamos National Lab

23 Positron driven plasma wakefields S. Pinkerton*, Y. Shi*, C. Huang, P. Muggli* Facilities SLAC s FACET can produce the positron bunch and plasma source needed to run these experiments with essentially the same equipment already in place for electron PWFA. With the installation of the sailboat chicane, an electron witness bunch will be available to sample the wake. Future Work Develop theory to find ideal bunch geometry, plasma density, and other parameters. Explore the parameter space for better blow out with a significant gradient. Run long simulations (also via OSIRIS) to investigate head erosion, phase slippage, wake evolution, etc. Design and run experiments at FACET.

24 Resonant excitation of PWFA

25 Resonant Excitation of Plasma Wakefields P. Muggli, B. Allen. University of Southern California, Los Angeles, CA M. Babzien, K. Kusche, J. Park, M. Fedurin, V. Yakimenko, Brookhaven National Laboratory, Upton, Long Island, NY A train of equidistant e - bunches drives large accelerating wakefields in high density plasmas (train period z= pe, linear PWFA regime) A witness bunch gains large energy with large transformer ratio and high efficienc (with tailored charge) WARNING: NOT simulations! Experimental Data! Kimura, AAC 06 Proceedings Generate bunch train with recently demonstrated masking technique Mask can be designed to tailor train time structure for specif application For resonant PWFA: equidistant drive train ( z period) followed by witness bunch with witness at z =1.5 z

26 Send train into a capillary discharge plasma Vary the discharge-train delay to vary the plasma density, i.e., the accelerator frequency Preliminary results: Resonance clearly observed with large energy loss and energy gain All the expected physics is observed Plan: Drive wakefields with various # of drive bunches Block witness bunch to confirm origin of accelerated particles Reverse train chirp to place witness bunch at high incoming energy Tailor bunch charge with 2D mask to demonstrate large transformer ratio (>2) Focus beam tightly to explore quasi-non-linear regime Use train for DLA experiments, CSR suppression, etc. Experiments to explore the PWFA physics and test-bed for very involved high energy experiments (SLAC-FACET, etc.)

27 Optical Frequency Domain Visualization of Electron Beam Driven Plasma Wakefields (under development at BNL ATF). Rafal Zgadzaj, Michael C. Downer, (UT Austin) Patrick Muggli (USC) Vitaly Yakimenko, Karl Kusche, Marcus Babzien, Mikhail Fedurin (BNL/ATF) 2 or multi-bunch e beam STRETCHER witness drive EO CRYSTAL EO Spectrometer Electro optic signal Probe Reference Correlated measurements of bunch and laser delay, bunch profiles, and plasma wave structure. ~ 1mm witness drive FDH Spectrometer Reference Probe Frequency Domain Holography signal Laser Laser beam 1. Yb-fiber laser with τ ~ 200fs L ~ 1-2 cm H2 Discharge Capillary n e ~ to cm -3 p ~ 1.1ps to 0.35ps Electro optic (EO) sampling of e-bnches A. L. Cavalieri, Clocking Femtosecond X Rays, PRL 94, (2005). Tilborg et al., WG5, AAC 2010 Matlis et al., Plenary, AAC 2010 n e /n e ~ 10-2 Frequency Domain Iterferometry (FDI) Tokunaga et al., Optics Lett. 17, 1131 (92) Siders et al., PRL 76, 3570 (96) Marqués et al., PRL 78, 3463(97) Kotaki et al., Phys. Plasmas 9, 1392 (02) Frequency Domain Holography (FDH) Tokunaga et al., Optics Lett. 17, 1131 (92) Siders et al., PRL 76, 3570 (96) Marqués et al., PRL 78, 3463(97) Kotaki et al., Phys. Plasmas 9, 1392 (02)

28 Other approaches may be necessary and are being developed: Optical bullets (demonstrated in LWFA), Frequency Domain Streak Camera (FDSC)(demonstrated in glass), Frequency Domain Tomography (under development) Averaged projection Zhenyan Li et al., WG1, AAC 2010 Projection vs. time tail tail Z=0 front edge Probe + Reference Raw Spectrum Reconstructed amplitude of Probe Electron Spectrum Simulation: Austin Yi, Gennady Shvets, UT Austin See Xaomng Wang et al., WG1, AAC 2010 Optical Bullets Signature of bubble formation Dong, et al., Formation of Optical Bullets in Laser-Driven Plasma Bubble Accelerators, Nature Physics, 2, (2006) Also: WG1, AAC 2010 Frequency Domain Tomography (FDT) Full shape vs. time

29 The Quasi-Nonlinear Regime of the Plasma Wakefield Accelerator James Rosenzweig, Gerard Andonian, Oliver Williams, Ken Xuan (UCLA), Massimo Ferrario (INFN-LNF), Patric Muggli (USC), Vitaly Yakimenko (BNL) Multiple pulse beam-loaded operation in linear collider Critical for efficiency Accelerating beam Driving beam Need blowout for accelerating/focusing qualities But negative aspects of nonlinearities serious: Amplitude dependent period Wavebreaking, snowplow (inefficiency, heating) New regime: quasi-nonlinear Underdense n b n 0 Very narrow (low emittance, highly focusable) Low total charge 3 Q N bk p n 0 1 k p r 1

30 Quasi-linear PWFA Wakes resonant at linear plasma frequency Little wave-breaking, stable wakes 4-pulse train, Q~=0.11, n b /n 0 =20, SPARX case Experiments feasible at BNL, SPARX

31 Instabilities

32 Plasma Astrophysics in the Laboratory with Accelerator Beams P. Muggli, University of Southern California, Los Angeles, CA 90089, USA S. Martins and L.O. Silva GoLP/Instituto de Plasmas e Fusao Nuclear Instituto Superior Tenico, Lisbon, Portugal Space-time overlap of SLAC FACET equal charge e - /e + for fireball beam Ultra-relativistic, neutral, e - /e + beam/plasma: No charge, no fields, no current!! The fireball beam is subject to the transverse, EM, current filamentation instability Relativistic neutral outflows collision with interstellar matter are ubiquitous CFI could play important role in afterglow of gamma ray bursts (GRBs), in the generation of magnetic fields and radiation Numerical simulations show that the instability saturates after only 10cm of plasma at n e =2.7x10 17 cm -3

33 Beam filaments Electron and positron beam filaments and plasma density perturbation Magnetic fields The instability generates magnetic fields and plasma density gradient that w be detected by Faraday rotation and Schlieren imaging. Measurements along the plasma will yield CFI evolution/growth rate The associated (jitter?) radiation will also be detected. Experiment will be proposed and will use FACET PWFA set up.

34 Study of Current Filamentation Instability of an Electron Beam in a Centimeter Long Capillary Plasma Brian Allen - University of Southern California Current Filamentation Instability (CFI): Basic, purely transverse plasma instability Results in breakup of the beam into narrow high current filament, enhances the generation of magnetic fields and generates radiation Occurs when r >>c/ pe and >>1 BNL-ATF: e - beam/capillary plasma discharge r =100 m, c/ pe =10 m, =110, n e =5x10 17 cm -3 Satisfies CFI criteria Simulations with QuickPIC: Filament size 4 µm Filament spacing 20 µm Both c/ pe 34

35 Study of Current Filamentation Instability of an Electron Beam in a Centimeter Long Capillary Plasma Brian Allen - University of Southern California BNL-ATF Allows independent control of beam and plasma Similar experiment/parameters to PWFA Experiment underway at ATF to characterize CFI Q=400pC Magnetic Energy (A.U.) Q=250pC Q=200pC Q=100pC Growth in magnetic energy as a function of plasma length Propagation Distance (cm)

36 Preventing Ion Motion using High Temperature Presenter: Reza Gholizadeh (USC) 2 2 i K 2 b 3 d d 2 2 ne b Kb 2 Mc vx kt B i c c M ions Electron beam Envelope Equation for Plasma ions Emittance of Ion Beam K b 4 2 i 2 Ne T b k B z 5 Matching Condition ev Initial Temperature for no Ion Motion

37 Normalized Ion Density Cold Plasma T=20 KeV T=40 KeV T=200 KeV T=340 KeV Ions ' (micron) 40 QuickPIC simulation results. Focusing Field (MV/m) Cold Plasma T=20 KeV T=40 KeV T=200 KeV T=340 KeV x (microns)

38 Injection and Capture

39 Presenter: S. Austin Yi

40

41 An Experiment to Demonstrate Plasma Wave Bunching of a Low Energy Injected Electron Beam James Rosenzweig, Atsushi Fukasawa, Bernhard Hidding, Pietro Musumeci, Pardis Niknejadi, Brendan O'Shea, Diktys Stratakis, Oliver William (UCLA Physics and Astronomy), Sergei Tochitsky, Chan Joshi (UCLA EE) Investigate proposal by van Dijk to capture e-beam injected ahead of LWFA pulse 1D analysis inspires: 3D study for Neptune expt.

42 Neptune scenario >15 TW laser, 3 ps FWHM, p =1.8 mm, n 0 =3E14/cc Focus to w=280 micron (a=0.5) Low energy beam (2.5 MeV) to get slippage, capture Notable 3D effects in wakes Test bunching; CTR diagnostic Wakefield from VORPAL Hamiltonian model for dynamics VORPAL bunching (x10)

43 Thanks to all!

First observation of Current Filamentation Instability (CFI)

First observation of Current Filamentation Instability (CFI) First observation of Current Filamentation Instability (CFI) PI - Patric Muggli: University of Southern California Vitaly Yakimenko, Mikhail Fedurin, Karl Kusche, Marcus Babzien: Brookhaven National Laboratory

More information

Electron Acceleration in a Plasma Wakefield Accelerator E200 FACET, SLAC

Electron Acceleration in a Plasma Wakefield Accelerator E200 FACET, SLAC Electron Acceleration in a Plasma Wakefield Accelerator E200 Collaboration @ FACET, SLAC Chan Joshi UCLA Making Big Science Small : Moving Toward a TeV Accelerator Using Plasmas Work Supported by DOE Compact

More information

Plasma-based Acceleration at SLAC

Plasma-based Acceleration at SLAC Plasmabased Acceleration at SLAC Patric Muggli University of Southern California muggli@usc.edu for the E167 collaboration E167 Collaboration: I. Blumenfeld, F.J. Decker, P. Emma, M. J. Hogan, R. Iverson,

More information

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory J. Duris 1, L. Ho 1, R. Li 1, P. Musumeci 1, Y. Sakai 1, E. Threlkeld 1, O. Williams 1, M. Babzien 2,

More information

A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration based on CERN SPS

A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration based on CERN SPS J. Plasma Physics (2012), vol. 78, part 4, pp. 347 353. c Cambridge University Press 2012 doi:.17/s0022377812000086 347 A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration

More information

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN Patric Muggli, Max Planck Institute for Physics E-mail: muggli@mpp.mpg.de AWAKE is a plasma wakefield acceleration experiment

More information

Accelerating Electrons with Protons The AWAKE Project Allen Caldwell Max-Planck-Institut für Physik

Accelerating Electrons with Protons The AWAKE Project Allen Caldwell Max-Planck-Institut für Physik Accelerating Electrons with Protons The AWAKE Project Allen Caldwell Max-Planck-Institut für Physik 1. Motivation for plasma wakefield acceleration 2. How it works & challenges 3. The AWAKE project: evolution

More information

Results of the Energy Doubler Experiment at SLAC

Results of the Energy Doubler Experiment at SLAC Results of the Energy Doubler Experiment at SLAC Mark Hogan 22nd Particle Accelerator Conference 2007 June 27, 2007 Work supported by Department of Energy contracts DE-AC02-76SF00515 (SLAC), DE-FG03-92ER40745,

More information

Non-neutral fireball and possibilities for accelerating positrons with plasma

Non-neutral fireball and possibilities for accelerating positrons with plasma Instituto Superior Técnico GoLP/IPFN Non-neutral fireball and possibilities for accelerating positrons with plasma J.Vieira GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon

More information

FACET*, a springboard to the accelerator frontier of the future

FACET*, a springboard to the accelerator frontier of the future Going Beyond Current Techniques: FACET*, a springboard to the accelerator frontier of the future Patric Muggli University of Southern California muggli@usc.edu *Facilities for Accelerator Science and Experimental

More information

Proton-driven plasma wakefield acceleration

Proton-driven plasma wakefield acceleration Proton-driven plasma wakefield acceleration Matthew Wing (UCL) Motivation : particle physics; large accelerators General concept : proton-driven plasma wakefield acceleration Towards a first test experiment

More information

Plasma Wakefield Acceleration of. Positron Bunches. Jorge Vieira

Plasma Wakefield Acceleration of. Positron Bunches. Jorge Vieira GoLP/IPFN Instituto Superior Técnico Plasma Wakefield Acceleration of Jorge Vieira! Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://epp.ist.utl.pt[/jorgevieira]

More information

Outlook for PWA Experiments

Outlook for PWA Experiments Outlook for PWA Experiments Ralph Assmann, Steffen Hillenbrand, Frank Zimmermann CERN, BE Department, ABP Group KET Meeting Dortmund 25 October 2010 themes community interest and potential first demonstration

More information

Linac Driven Free Electron Lasers (III)

Linac Driven Free Electron Lasers (III) Linac Driven Free Electron Lasers (III) Massimo.Ferrario@lnf.infn.it SASE FEL Electron Beam Requirements: High Brightness B n ( ) 1+ K 2 2 " MIN r #$ % &B! B n 2 n K 2 minimum radiation wavelength energy

More information

Particle Driven Acceleration Experiments

Particle Driven Acceleration Experiments Particle Driven Acceleration Experiments Edda Gschwendtner CAS, Plasma Wake Acceleration 2014 2 Outline Introduction Motivation for Beam Driven Plasmas Wakefield Acceleration Experiments Electron and proton

More information

Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET

Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET N. Vafaei-Najafabadi 1, a), C.E. Clayton 1, K.A. Marsh 1, W. An 1, W. Lu 1,, W.B. Mori 1, C. Joshi 1, E. Adli

More information

E200: Plasma Wakefield Accelera3on

E200: Plasma Wakefield Accelera3on E200: Plasma Wakefield Accelera3on Status and Plans Chan Joshi University of California Los Angeles For the E200 Collabora3on SAREC Mee3ng, SLAC : Sept 15-17 th 2014 Work Supported by DOE Experimental

More information

Proton-driven plasma wakefield acceleration

Proton-driven plasma wakefield acceleration Proton-driven plasma wakefield acceleration Konstantin Lotov Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia AWAKE Collaboration Motivation

More information

Beam-plasma Physics Working Group Summary

Beam-plasma Physics Working Group Summary Beam-plasma Physics Working Group Summary P. Muggli, Ian Blumenfeld Wednesday: 10:55, Matt Thompson, LLNL, "Prospect for ultra-high gradient Cherenkov wakefield accelerator experiments at SABER 11:25,

More information

AWAKE: The Proton Driven Plasma Wakefield Acceleration Experiment at CERN. Alexey Petrenko on behalf of the AWAKE Collaboration

AWAKE: The Proton Driven Plasma Wakefield Acceleration Experiment at CERN. Alexey Petrenko on behalf of the AWAKE Collaboration AWAKE: The Proton Driven Plasma Wakefield Acceleration Experiment at CERN Alexey Petrenko on behalf of the AWAKE Collaboration Outline Motivation AWAKE at CERN AWAKE Experimental Layout: 1 st Phase AWAKE

More information

Multi-GeV electron acceleration using the Texas Petawatt laser

Multi-GeV electron acceleration using the Texas Petawatt laser Multi-GeV electron acceleration using the Texas Petawatt laser X. Wang, D. Du, S. Reed, R. Zgadzaj, P.Dong, N. Fazel, R. Korzekwa, Y.Y. Chang, W. Henderson M. Downer S.A. Yi, S. Kalmykov, E. D'Avignon

More information

Plasma Wakefield Accelerator Experiments and their Diagnostics Patric Muggli University of Southern California

Plasma Wakefield Accelerator Experiments and their Diagnostics Patric Muggli University of Southern California Plasma Wakefield Accelerator Experiments and their Diagnostics Patric Muggli University of Southern California muggli@usc.edu Work supported by US Dept. of Energy OUTLINE Motivation Plasma Wakefield Accelerator

More information

Observation of Ultra-Wide Bandwidth SASE FEL

Observation of Ultra-Wide Bandwidth SASE FEL Observation of Ultra-Wide Bandwidth SASE FEL Gerard Andonian Particle Beam Physics Laboratory University of California Los Angeles The Physics and Applications of High Brightness Electron Beams Erice,

More information

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator R. Joel England J. B. Rosenzweig, G. Travish, A. Doyuran, O. Williams, B. O Shea UCLA Department

More information

Measuring very low emittances using betatron radiation. Nathan Majernik October 19, 2017 FACET-II Science Workshop

Measuring very low emittances using betatron radiation. Nathan Majernik October 19, 2017 FACET-II Science Workshop Measuring very low emittances using betatron radiation Nathan Majernik October 19, 2017 FACET-II Science Workshop Plasma photocathode injection Trojan horse High and low ionization threshold gases Blowout

More information

First results from the plasma wakefield acceleration transverse studies at FACET

First results from the plasma wakefield acceleration transverse studies at FACET First results from the plasma wakefield acceleration transverse studies at FACET Erik Adli (University of Oslo, Norway and SLAC) For the FACET E200 collaboration : M.J. Hogan, S. Corde, R.J. England, J.

More information

Chan Joshi UCLA With help from Weiming An, Chris Clayton, Xinlu Xu, Ken Marsh and Warren Mori

Chan Joshi UCLA With help from Weiming An, Chris Clayton, Xinlu Xu, Ken Marsh and Warren Mori E-doubling with emittance preservation and pump depletion Generation of Ultra-low Emittance Electrons Testing a new concept for a novel positron source Chan Joshi UCLA With help from Weiming An, Chris

More information

Compressor and Chicane Radiation Studies at the ATF. Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA

Compressor and Chicane Radiation Studies at the ATF. Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA Compressor and Chicane Radiation Studies at the ATF Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA Collaboration UCLA PBPL G. Andonian, A. Cook, M. Dunning, E. Hemsing, A. Murokh, S.

More information

SL_COMB. The SL_COMB experiment at SPARC_LAB will operate in the so-called quasinonlinear regime, defined by the dimensionless charge quantity

SL_COMB. The SL_COMB experiment at SPARC_LAB will operate in the so-called quasinonlinear regime, defined by the dimensionless charge quantity SL_COMB E. Chiadroni (Resp), D. Alesini, M. P. Anania (Art. 23), M. Bellaveglia, A. Biagioni (Art. 36), S. Bini (Tecn.), F. Ciocci (Ass.), M. Croia (Dott), A. Curcio (Dott), M. Daniele (Dott), D. Di Giovenale

More information

Electron acceleration behind self-modulating proton beam in plasma with a density gradient. Alexey Petrenko

Electron acceleration behind self-modulating proton beam in plasma with a density gradient. Alexey Petrenko Electron acceleration behind self-modulating proton beam in plasma with a density gradient Alexey Petrenko Outline AWAKE experiment Motivation Baseline parameters Longitudinal motion of electrons Effect

More information

Accelerators Beyond LHC and ILC

Accelerators Beyond LHC and ILC Accelerators Beyond LHC and ILC Rasmus Ischebeck, Stanford Linear Accelerator Center Accelerators for TeV-Energy electrons Present Technologies Advanced Accelerator Research at SLAC Electron beam driven

More information

Proton Driven Plasma Wakefield Acceleration

Proton Driven Plasma Wakefield Acceleration Proton Driven Plasma Wakefield Acceleration Guoxing Xia Max-Planck Planck-Institute für f r Physik March 30, 2010 Large Hadron Collider-collision today! LHC: the world biggest accelerator, both in energy

More information

Overview of accelerator science opportunities with FACET ASF

Overview of accelerator science opportunities with FACET ASF Overview of accelerator science opportunities with FACET ASF Bob Siemann DOE FACET Review, February 19-20, 2008 OUTLINE I. Plasma Wakefield Acceleration II. Plasma Wakefield Based Linear Colliders III.

More information

Demonstration of Energy Gain Larger than 10GeV in a Plasma Wakefield Accelerator

Demonstration of Energy Gain Larger than 10GeV in a Plasma Wakefield Accelerator Demonstration of Energy Gain Larger than 10GeV in a Plasma Wakefield Accelerator Patric Muggli University of Southern California Los Angeles, USA muggli@usc.edu THANK YOU to my colleagues of the E167 Collaboration:

More information

Wakefield Acceleration in Dielectric Structures

Wakefield Acceleration in Dielectric Structures Wakefield Acceleration in Dielectric Structures J.B. Rosenzweig UCLA Dept. of Physics and Astronomy Future Light Sources SLAC, March 2, 2010 Scaling the accelerator in size Lasers produce copious power

More information

Generation and characterization of ultra-short electron and x-ray x pulses

Generation and characterization of ultra-short electron and x-ray x pulses Generation and characterization of ultra-short electron and x-ray x pulses Zhirong Huang (SLAC) Compact XFEL workshop July 19-20, 2010, Shanghai, China Ultra-bright Promise of XFELs Ultra-fast LCLS Methods

More information

3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators

3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators 3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators Asher Davidson, Ming Zheng,, Wei Lu,, Xinlu Xu,, Chang Joshi, Luis O. Silva, Joana Martins, Ricardo Fonseca

More information

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team Short Pulse, Low charge Operation of the LCLS Josef Frisch for the LCLS Commissioning Team 1 Normal LCLS Parameters First Lasing in April 10, 2009 Beam to AMO experiment August 18 2009. Expect first user

More information

Emergency information

Emergency information Emergency information Fire Evacuate. Be aware of building exits. Follow building residents to the assembly area. Do not leave until you are accounted for, and have been instructed to. Earthquake Remain

More information

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme.

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. A.G. Khachatryan, F.A. van Goor, J.W.J. Verschuur and K.-J. Boller

More information

Wakefield Acceleration in Dielectric Structures

Wakefield Acceleration in Dielectric Structures Wakefield Acceleration in Dielectric Structures J.B. Rosenzweig UCLA Dept. of Physics and Astronomy ICFA Workshop on Novel Concepts for Linear Accelerators and Colliders SLAC, July 8, 2009 Future colliders:

More information

Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo)

Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo) Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo) in collaboration with Spencer Gessner (CERN) presented by Erik Adli (University of Oslo) FACET-II Science Workshop

More information

E-157: A Plasma Wakefield Acceleration Experiment

E-157: A Plasma Wakefield Acceleration Experiment SLAC-PUB-8656 October 2 E-157: A Plasma Wakefield Acceleration Experiment P. Muggli et al. Invited talk presented at the 2th International Linac Conference (Linac 2), 8/21/2 8/25/2, Monterey, CA, USA Stanford

More information

Accelerator Activities at PITZ

Accelerator Activities at PITZ Accelerator Activities at PITZ Plasma acceleration etc. Outline > Motivation / Accelerator Research & Development (ARD) > Plasma acceleration Basic Principles Activities SINBAD > ps-fs electron and photon

More information

Study of a THz IFEL prebuncher for laser-plasma accelerators

Study of a THz IFEL prebuncher for laser-plasma accelerators Study of a THz IFEL prebuncher for laser-plasma accelerators C. Sung 1, S. Ya. Tochitsky 1, P. Musumeci, J. Ralph 1, J. B. Rosenzweig, C. Pellegrini, and C. Joshi 1 Neptune Laboratory, 1 Department of

More information

UCLA Neptune Facility for Advanced Accelerator Studies

UCLA Neptune Facility for Advanced Accelerator Studies UCLA Neptune Facility for Advanced Accelerator Studies Sergei Ya. Tochitsky, 1 Christopher E. Clayton, 1 Kenneth A. Marsh, 1 James B. Rosenzweig, 2 Claudio Pellegrini 2 and Chandrashekhar Joshi 1 Neptune

More information

External Injection in Plasma Accelerators. R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang

External Injection in Plasma Accelerators. R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang External Injection in Plasma Accelerators R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang Why Plasma Accelerators? Conventional RF cavities: 50-100 MV/m due to electrical breakdown Plasma: E>100 GV/m

More information

O rion. The ORION Facility at SLAC. Bob Siemann AAC Workshop, June 15, 2000

O rion. The ORION Facility at SLAC. Bob Siemann AAC Workshop, June 15, 2000 The ORION Facility at SLAC Bob Siemann AAC Workshop, June 15, 2000 1. Introduction 2. The ORION Workshop 3. What s Next? 4. Concluding Remarks http://www-project.slac.stanford.edu/orion/ Introduction Advanced

More information

E-162: Positron and Electron Dynamics in a Plasma Wakefield Accelerator

E-162: Positron and Electron Dynamics in a Plasma Wakefield Accelerator E-162: Positron and Electron Dynamics in a Plasma Wakefield Accelerator Presented by Mark Hogan for the E-162 Collaboration K. Baird, F.-J. Decker, M. J. Hogan*, R.H. Iverson, P. Raimondi, R.H. Siemann,

More information

A Meter-Scale Plasma Wakefield Accelerator

A Meter-Scale Plasma Wakefield Accelerator A Meter-Scale Plasma Wakefield Accelerator Rasmus Ischebeck, Melissa Berry, Ian Blumenfeld, Christopher E. Clayton, Franz-Josef Decker, Mark J. Hogan, Chengkun Huang, Richard Iverson, Chandrashekhar Joshi,

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam On behalf of SPARCLAB collaboration EMITTANCE X X X X X X X X 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current

More information

Experimental Observation of Energy Modulation in Electron Beams Passing. Through Terahertz Dielectric Wakefield Structures

Experimental Observation of Energy Modulation in Electron Beams Passing. Through Terahertz Dielectric Wakefield Structures Experimental Observation of Energy Modulation in Electron Beams Passing Through Terahertz Dielectric Wakefield Structures S. Antipov 1,3, C. Jing 1,3, M. Fedurin 2, W. Gai 3, A. Kanareykin 1, K. Kusche

More information

Characterization of an 800 nm SASE FEL at Saturation

Characterization of an 800 nm SASE FEL at Saturation Characterization of an 800 nm SASE FEL at Saturation A.Tremaine*, P. Frigola, A. Murokh, C. Pellegrini, S. Reiche, J. Rosenzweig UCLA, Los Angeles, CA 90095 M. Babzien, I. Ben-Zvi, E. Johnson, R. Malone,

More information

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004 Beam Dynamics Gennady Stupakov DOE High Energy Physics Review June 2-4, 2004 Beam Dynamics Research in ARDA Broad expertise in many areas: lattice design, collective effects, electron cloud, beam-beam

More information

Plasma Accelerator Based FELs Status of SLAC Task Force Efforts

Plasma Accelerator Based FELs Status of SLAC Task Force Efforts Plasma Accelerator Based FELs Status of SLAC Task Force Efforts FACET-II Science Workshop October 17-20, 2017 Mark J. Hogan FACET-II Project Scientist FACET-II CD-2/3A Director s Review, August 9, 2016

More information

Status of the Transverse Diagnostics at FLASHForward

Status of the Transverse Diagnostics at FLASHForward Journal of Physics: Conference Series PAPER OPEN ACCESS Status of the Transverse Diagnostics at FLASHForward To cite this article: P Niknejadi et al 2018 J. Phys.: Conf. Ser. 1067 042010 View the article

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

Echo-Enabled Harmonic Generation

Echo-Enabled Harmonic Generation Echo-Enabled Harmonic Generation G. Stupakov SLAC NAL, Stanford, CA 94309 IPAC 10, Kyoto, Japan, May 23-28, 2010 1/29 Outline of the talk Generation of microbunching in the beam using the echo effect mechanism

More information

arxiv: v1 [physics.acc-ph] 1 Jan 2014

arxiv: v1 [physics.acc-ph] 1 Jan 2014 The Roads to LPA Based Free Electron Laser Xiongwei Zhu Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 arxiv:1401.0263v1 [physics.acc-ph] 1 Jan 2014 January 3, 2014 Abstract

More information

Plasma Wakefield Acceleration Presented by: Bob Siemann On behalf of: The E157, E162, E-164, E-164X, E167 Collaborations

Plasma Wakefield Acceleration Presented by: Bob Siemann On behalf of: The E157, E162, E-164, E-164X, E167 Collaborations Bob Siemann SLAC HEPAP Subpanel on Accelerator Research Plasma Wakefield Acceleration Facilities and Opportunities Concluding Remarks Dec 21, 2005 HEPAP Accel Research Subpanel 1 Plasma Wakefield Acceleration

More information

Opportunities and Challenges for X

Opportunities and Challenges for X Opportunities and Challenges for X -ray Free Electron Lasers for X-ray Ultrafast Science J. Hastings Stanford Linear Accelerator Center June 22, 2004 European XFEL Laboratory How Short is short? defined

More information

The VISA II Experiment

The VISA II Experiment The VISA II Experiment A study in electron beam dynamics and high gain, ultra short pulses in SASE FEL. Gerard Andonian PBPL UCLA DoE Review May 18, 2004 Experiment Timeline VISA I Re-commissioning FEL

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam EMITTANCE X X X X X X X X Introduction to SPARC_LAB 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current can be

More information

Collider design issues based on proton-driven plasma wakefield acceleration

Collider design issues based on proton-driven plasma wakefield acceleration Collider design issues based on proton-driven plasma wakefield acceleration G. Xia a,b, O. Mete a,b, A. Aimidula b,c, C. Welsch b,c, S. Chattopadhyay a,b,c, S. Mandry d, M. Wing d,e a School of Physics

More information

γmy =F=-2πn α e 2 y or y +ω β2 y=0 (1)

γmy =F=-2πn α e 2 y or y +ω β2 y=0 (1) Relativistic Weibel Instability Notes from a tutorial at the UCLA Winter School, January 11, 2008 Tom Katsouleas USC Viterbi School of Engineering, LA, CA 90089-0271 Motivation: Weibel instability of relativistic

More information

AWAKE, the Advanced Proton Driven Plasma Wakefield Accelera9on Experiment at CERN

AWAKE, the Advanced Proton Driven Plasma Wakefield Accelera9on Experiment at CERN AWAKE, the Advanced Proton Driven Plasma Wakefield Accelera9on Experiment at CERN Ulrik Uggerhøj many slides from a presenta0on at PSI by Edda Gschwendtner, CERN Main Driver for PWFA: Linear Collider è

More information

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE LCLS-TN-10-1, January, 2010 VARIABLE GAP UNDULATOR FOR 1.5-48 KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE C. Pellegrini, UCLA, Los Angeles, CA, USA J. Wu, SLAC, Menlo Park, CA, USA We study

More information

Beam Echo Effect for Generation of Short Wavelength Radiation

Beam Echo Effect for Generation of Short Wavelength Radiation Beam Echo Effect for Generation of Short Wavelength Radiation G. Stupakov SLAC NAL, Stanford, CA 94309 31st International FEL Conference 2009 Liverpool, UK, August 23-28, 2009 1/31 Outline of the talk

More information

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Explanation of the Basic Principles and Goals Visit to the CTF3 Installation Roger Ruber Collider History p p hadron collider

More information

Monoenergetic Proton Beams from Laser Driven Shocks

Monoenergetic Proton Beams from Laser Driven Shocks Monoenergetic Proton Beams from Laser Driven Shocks Dan Haberberger, Department of Electrical Engineering, UCLA In collaboration with: Sergei Tochitsky, Chao Gong, Warren Mori, Chan Joshi, Department of

More information

Research Topics in Beam Physics Department

Research Topics in Beam Physics Department Introduction Research Topics in Beam Physics Department The physics of particle beams has been a broad and vibrant research field encompassing the study of charged particle beams and their interactions.

More information

AWAKE : A proton-driven plasma wakefield acceleration experiment

AWAKE : A proton-driven plasma wakefield acceleration experiment AWAKE : A proton-driven plasma wakefield acceleration experiment Matthew Wing (UCL/DESY) Motivation : particle physics; large accelerators General concept : proton-driven plasma wakefield acceleration

More information

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme Li Hua Yu for DUV-FEL Team National Synchrotron Light Source Brookhaven National Laboratory FEL2004 Outline The DUVFEL

More information

OPTIMIZING RF LINACS AS DRIVERS FOR INVERSE COMPTON SOURCES: THE ELI-NP CASE

OPTIMIZING RF LINACS AS DRIVERS FOR INVERSE COMPTON SOURCES: THE ELI-NP CASE OPTIMIZING RF LINACS AS DRIVERS FOR INVERSE COMPTON SOURCES: THE ELI-NP CASE C. Vaccarezza, D. Alesini, M. Bellaveglia, R. Boni, E. Chiadroni, G. Di Pirro, M. Ferrario, A. Gallo, G. Gatti, A. Ghigo, B.

More information

Wakefield in Structures: GHz to THz

Wakefield in Structures: GHz to THz Wakefield in Structures: GHz to THz Chunguang Jing Euclid Techlabs LLC, / AWA, Argonne National Laboratory AAC14, July, 2014 Wakefield (beam structure) Measured Wakefield: GHz to THz Wz S. Antipov et.

More information

Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

Ultra-High Gradient Dielectric Wakefield Accelerator Experiments SLAC-PUB-12420 Ultra-High Gradient Dielectric Wakefield Accelerator Experiments M.C. Thompson, H. Badakov, J.B. Rosenzweig, G. Travish, M. Hogan, R. Ischebeck, N. Kirby, R. Siemann, D. Walz, P. Muggli,

More information

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS LCLS Technical Advisory Committee December 10-11, 2001. SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS Patrick Krejcik LCLS Technical Advisory Committee Report 1: July 14-15, 1999 The

More information

An Introduction to Plasma Accelerators

An Introduction to Plasma Accelerators An Introduction to Plasma Accelerators Humboldt University Research Seminar > Role of accelerators > Working of plasma accelerators > Self-modulation > PITZ Self-modulation experiment > Application Gaurav

More information

Reinventing the accelerator for the high-energy frontier

Reinventing the accelerator for the high-energy frontier Reinventing the accelerator for the high-energy frontier J. B. Rosenzweig UCLA Department of Physics and Astronomy, June 16, 2006 Particle physics and particle accelerators have a shared history, destiny

More information

WG4: (Particle) Beamdriven. Summary. Sergey Antipov and Sebastien Corde

WG4: (Particle) Beamdriven. Summary. Sergey Antipov and Sebastien Corde WG4: (Particle) Beamdriven Acceleration Summary Sergey Antipov and Sebastien Corde 35 talks (+ discussions) and 13 posters Plasma (Sebastien Corde) Experimental progress Projects and simulations Plasma

More information

STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT. Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration

STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT. Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration OUTLINE Basic E-157 Acelleration, Focusing Plasma Source Diagnostics:

More information

Laser-driven undulator source

Laser-driven undulator source Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G.

More information

High energy gains in field-ionized noble gas plasma accelerators

High energy gains in field-ionized noble gas plasma accelerators High energy gains in field-ionized noble gas plasma accelerators Laser and Plasma Accelerators Workshop 2013 Sébastien Corde, September 05, 2013 Outline - High energy gains in Ar - Energy Doubling, up

More information

Par$cle- Driven Plasma Wakefield Accelera$on

Par$cle- Driven Plasma Wakefield Accelera$on Par$cle- Driven Plasma Wakefield Accelera$on James Holloway University College London, London, UK PhD Supervisors: Professor MaHhew wing University College London, London, UK Professor Peter Norreys Central

More information

MATTHEW COLIN THOMPSON

MATTHEW COLIN THOMPSON MATTHEW COLIN THOMPSON Office: University of California, Los Angeles 3-166 Knudsen Hall e-mail: mct@physics.ucla.edu Phone: 310 825-9982 EDUCATION Doctor of Philosophy Physics, June 2004, University of

More information

Wakefields and beam hosing instability in plasma wake acceleration (PWFA)

Wakefields and beam hosing instability in plasma wake acceleration (PWFA) 1 Wakefields and beam hosing instability in plasma wake acceleration (PWFA) G. Stupakov, SLAC DESY/University of Hamburg accelerator physics seminar 21 November 2017 Introduction to PWFA Plasma wake excited

More information

TeV Acceleration. in a Tiny Chip. T. Tajima, UCI and IZEST

TeV Acceleration. in a Tiny Chip. T. Tajima, UCI and IZEST TeV Acceleration in a Tiny Chip IZEST Romanian Embassy, Paris,Sept. 18, 2014 T. Tajima, UCI and IZEST Acknowledgments for Collaboration: G. Mourou, N. Naumova, K. Nakajima, S. Bulanov, A. Suzuki, T. Ebisuzaki,

More information

High quality beam genera1on in density downramp injec1on and its early applica1ons

High quality beam genera1on in density downramp injec1on and its early applica1ons 2017 FEACT-II Science Workshop 17-20 October, 2017 SLAC, Menlo Park, CA High quality beam genera1on in density downramp injec1on and its early applica1ons Xinlu Xu, Thamine Dalichaouch, Weiming An, Shiyu

More information

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS L. Giannessi, S. Spampinati, ENEA C.R., Frascati, Italy P. Musumeci, INFN & Dipartimento di Fisica, Università di Roma La Sapienza, Roma, Italy Abstract

More information

Laser Wakefield Acceleration. Presented by Derek Schaeffer For Advanced Optics, Physics 545 Professor Sergio Mendes

Laser Wakefield Acceleration. Presented by Derek Schaeffer For Advanced Optics, Physics 545 Professor Sergio Mendes Laser Wakefield Acceleration Pioneering Studies Conducted by the Lasers, Optical Accelerator Systems Integrated Studies (L OASIS) Program at Lawrence Berkeley National Laboratory Presented by Derek Schaeffer

More information

Fundamental and Harmonic Microbunching Measurements in a High-Gain, Self-amplified, Spontaneous Emission Free-Electron Laser

Fundamental and Harmonic Microbunching Measurements in a High-Gain, Self-amplified, Spontaneous Emission Free-Electron Laser Fundamental and Harmonic Microbunching Measurements in a High-Gain, Self-amplified, Spontaneous Emission Free-Electron Laser A. Tremaine 1, X.J. Wang 2, M. Babzien 2, I. Ben-Zvi 2, M. Cornacchia 3, A.

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

Plasma Accelerators (III)--- Proton-driven plasma wakefield acceleration

Plasma Accelerators (III)--- Proton-driven plasma wakefield acceleration Cockcroft Institute Lectures on Accelerator Physics Plasma Accelerators (III)--- Proton-driven plasma wakefield acceleration 11/05/2015 Cockcroft Institute Lecture 1 Outline Why proton-driven PWFA Short

More information

Calculation of wakefields for plasma-wakefield accelerators

Calculation of wakefields for plasma-wakefield accelerators 1 Calculation of wakefields for plasma-wakefield accelerators G. Stupakov, SLAC ICFA mini-workshop on Impedances and Beam Instabilities in Particle Accelerators 18-22 September 2017 2 Introduction to PWFA

More information

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 X-band RF driven hard X-ray FELs Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 Motivations & Contents Motivations Develop more compact (hopefully cheaper) FEL drivers, L S C X-band (successful

More information

Power efficiency vs instability (or, emittance vs beam loading) Sergei Nagaitsev, Valeri Lebedev, and Alexey Burov Fermilab/UChicago Oct 18, 2017

Power efficiency vs instability (or, emittance vs beam loading) Sergei Nagaitsev, Valeri Lebedev, and Alexey Burov Fermilab/UChicago Oct 18, 2017 Power efficiency vs instability (or, emittance vs beam loading) Sergei Nagaitsev, Valeri Lebedev, and Alexey Burov Fermilab/UChicago Oct 18, 2017 Acknowledgements We would like to thank our UCLA colleagues

More information

LOLA: Past, present and future operation

LOLA: Past, present and future operation LOLA: Past, present and future operation FLASH Seminar 1/2/29 Christopher Gerth, DESY 8/5/29 FLASH Seminar Christopher Gerth 1 Outline Past Present Future 8/5/29 FLASH Seminar Christopher Gerth 2 Past

More information

Acceleration at the hundred GV/m scale using laser wakefields

Acceleration at the hundred GV/m scale using laser wakefields Acceleration at the hundred GV/m scale using laser wakefields C.G.R. Geddes LOASIS Program at LBNL cgrgeddes @ lbl.gov E. Esarey, A.J. Gonsalves, W. Isaacs, V.Leurant, B. Nagler, K. Nakamura, D. Panasenko,

More information

SINBAD. Ralph W. Aßmann Leading Scientist, DESY. LAOLA Collaboration Meeting, Wismar

SINBAD. Ralph W. Aßmann Leading Scientist, DESY. LAOLA Collaboration Meeting, Wismar SINBAD Ralph W. Aßmann Leading Scientist, DESY LAOLA Collaboration Meeting, Wismar 28.05.2013 Reminder: Helmholtz Roadmap > The latest Helmholtz-roadmap for research infrastructure was published in 2011.

More information