Chapter 15 Work, Power & Simple Machines

Size: px
Start display at page:

Download "Chapter 15 Work, Power & Simple Machines"

Transcription

1 Chapter 15 Work, Power & Simple Machines Essential Questions: I. What is Work? (In Physics Terms!) II. What is Power? (In Physics Terms!) III. How do machines make work easier and how efficient are they? IV. What are the 5 types of simple machines? V. What are compound machines?

2 15-1 What is Work? Work Def. Work is done when a force acts on an object along the parallel direction the object moves In order for work to be done, a force must be exerted over a distance. Ex you can push on a wall for hours, you ll be real tired, but you haven t done any work in the scientific sense, anyway

3 15-1 Work Work The amount of work done in moving an object is equal to the force applied to the object along the direction the object moves times the distance through which the object moves Work = Force x Distance Units Force is measured in Newtons, Distance is measured in meters. So, the unit is Newton X meters. A Newton meter is known as a Joule (J)

4 15-1 Work A 700 N person climbs a 50 m cliff. How much work did she perform? GIVEN: W = F * d F = 700 N d = 50 m WORK: W = F * d W = (700 N) (50 m) W = 35,000 J

5 15-1 Work An object weighing 200 N is lifted 0.5 m. How much work was required? GIVEN: W = F * d F = 200 N d = 0.5 m WORK: W = F * d W = (200 N) (0.5 m) W = 100 J

6 15-1 Work A dog does 50 N-m (Joules) of work dragging a 0.05 N bone. How far did the bone move? GIVEN: W = F * d W = 50 J F = 0.05 N WORK: W = F * d d = W F d = (50 J) (0.05 N) d = 1,000 m

7 15-1 Work Mrs. O Gorman s superhuman strength allows her to lift a pickup truck 2.0 m above the ground. How much force was required if 25.0 Joules (J) of work was done? GIVEN: W = F * d W = 25.0 J d = 2.0 m WORK: W = F * d F = W d F = 25.0 J 2.0 m F = 12.5 N

8 15-2 Power Power Def: The rate at which work is done, or the amount of work per unit time. Power tells you how fast work is being done so it is a rate similar to the way speed, velocity and acceleration are rates. Power is work per unit time. Any measurement per unit time is a rate!! Formula: Power = Work Time

9 15-2 Power Power rate at which work is done measured in watts (W) P = W t P: power (W) W: work (J) t: time (s)

10 15-2 Power Formula: Since work s formula is force X Distance, the formula for Power may ALSO be written as: Power = Force x Distance Time

11 15-2 Power Units Work is measured in Joules (J), So, the unit for Power is a Joule per second (J/s). The short way to write a J/s is a Watt (W).

12 15-2 Power When do we use Watts in our Daily Lives? They are used to express electrical power. Electric appliances and lightbulbs are rated in Watts. Ex: A 100 Watt light bulb does twice the work in one second as a 50 Watt lightbulb.

13 15-2 Power A small motor does 4000 J of work in 20 sec. What is the power of the motor in Watts? GIVEN: W = 4000 J T = 20 sec P =? WORK: P = W t P = 4000 J 20 s P = 200 J s So P = 200 W

14 P = 2400 W W = 120,000 J T =? 15-2 Power An engine moves a remote control car by performing 120,000 J of work. The power rating of the car is 2400 W. How long does it take to move the car? GIVEN: WORK: t = W P t = 120,000 J 2400 W t = 50 sec

15 15-2 Power A figure skater lift his partner who weighs 450 N, 1.5 m in 3.0 sec. How much power is required? GIVEN: P =? F = 450 N d = 1.5 m t = 3.0 sec WORK: F x d P P = F x d t P = 450 N x 1.5 m 3.0 sec P = 675 J (N m) 3.0 sec P = 225 W t

16 GIVEN: F = 300 N d = 2.0 m P = 300 W t =? 15-2 Power A sumo wrestler lifts his competitor, who weighs 300 N, 2.0 m using 300 Watts of power. How long did it take him to accomplish this show of strength? WORK: P = W t W = F x d W = (300 N)(2.0 m) = 600 J t = 600 J 300 W t = 2.0 s P W t

17 15-3 Work Input & Work Output Machine def. Any device that changes the size of a force, or its direction, is called a machine. Machines can be anything from a pair of tweezers to a bus.

18 15-3 Work Input & Work Output There are always 2 types of work involved when using a machine Work Input - The work that goes into it. Work Output - The work that comes out of it. The work output can NEVER be greater than the work input!!!

19 15-3 Work Input & Work Output So, if machines do not increase the work we put into them, how do they help us? Machines make work easier because they change either the size or the direction of the force put into the machine.

20 15-3 Work Input & Work Output Let s analyze this Machines can not increase the amount of work, so work either stays the same or decreases. The formula for work is: Work = force x distance

21 15-3 Work Input & Work Output Again, the formula for work is: Work = force x distance So, mathematically speaking, to end up with the same or less work: If the machine increases the force then the distance must decrease. If the machine increases the distance, then the force must decrease.

22 15-3 Efficiency Why is it that machines can t have more work output than input? Where does all the work disappear to? A machine loses some of the input work to the force of friction that is created when the machine is used. Part of the input work is used to overcome the force of friction. There is no machine that people have made that is 100% efficient

23 15-3 Efficiency If machines make our work easier, how much easier do they make it? The ratio of how much work output there is to the amount of work input is called a machine s efficiency. Efficiency is usually expressed as a percentage (%).

24 15-3 Efficiency Efficiency measure of how completely work input is converted to work output Efficiency = W W out in 100% It is always less than 100% due to the opposing force of friction.

25 W W out E = in GIVEN: 100% F i = 500 N d i = 4.0 m F o = 1500 N d o = 1.0 m 15-3 Efficiency A worker exerts a force of 500 N to push a 1500 N sofa 4.0 m along a ramp that is 1.0 m high. What is the ramp s efficiency? WORK: W in = (500N)(4.0m) = 2000 J W out = (1500N)(1.0m) = 1500 J E = 1500 J _ J 1.0m E = 75% 1500N 500N 4.0m

26 15-3 Mechanical Advantage Mechanical Advantage is another way of expressing how efficient a machine is. Mechanical advantage is the ratio of resistance force to the effort force OR the ratio of the effort distance to the resistance distance.

27 Equations for MA Mechanical Advantage = force of resistance force of effort Mechanical Advantage = distance of effort distance of resistance

28 F MA = F GIVEN: res effort F e = 500 N F r = 1500 N Mechanical Advantage A worker exerts a force of 500 N to push a 1500 N sofa 4.0 m along a ramp that is 1.0 m high. What is the mechanical advantage of the ramp? WORK: MA = F resistance F effort MA = 1500N 500 N 500N 4.0m 1.0m MA = N

29 MA = D D effort resistance Mechanical Advantage A person is pedaling a bike with an axle radius of 3 inches. They use a pedal with a radius of 8 inches. What is the mechanical advantage of the pedal? GIVEN: D e = 8 in D r = 3 in WORK: MA = D effort D resistance MA = 8 in 3 in MA = 2.7

30 15-4 Simple & Compound Machines Simple Machines There are six types of simple machines. They are the: 1 - Inclined plane 2 - Wedge 3 - Screw 4 - Lever 5 - Pulley 6 - Wheel and axle

31 15-4 Simple & Compound Machines 1 - Inclined Plane Def - A slanted surface used to raise an object. The force needed to lift the object decreases because the distance through which the object moves increases.

32 15-4 Simple & Compound Machines 2 - Wedge - Inclined Plane Type #1 Def an inclined plane that moves in order to push things apart. Examples are forks, axes, knifes.

33 15-4 Simple & Compound Machines 3 - Screw - Inclined Plane Type #2 - Def - An inclined plane wrapped around a central bar or cylinder, to form a spiral. Ex screw duh!!!

34 15-4 Simple & Compound Machines 4 - Lever Def - A rigid bar that is free to pivot, or move around a fixed point called a fulcrum. Ex see saw There are three main types (classes) of levers.

35 15-4 Simple & Compound Machines 3 classes of levers: First-class levers have the fulcrum placed between the load and the effort, as in the seesaw, crowbar, and balance scale. Ex - a see-saw or scissors

36 15-4 Simple & Compound Machines 3 classes of levers: Second-class levers have the load between the effort and the fulcrum. Ex - a wheel barrow

37 15-4 Simple & Compound Machines 3 classes of levers: Third-class levers have the effort placed between the load and the fulcrum. The effort always travels a shorter distance and must be greater than the load. Ex - a hammer or tweezer

38 15-4 Simple & Compound Machines 5 - Pulley Def - A rope, chain or belt wrapped around a grooved wheel. It can change the direction of force or the amount of force needed to move an object.

39 15-4 Simple & Compound Machines To calculate how much mechanical advantage a pulley system creates Count the number of ropes that are attached to the MOVEABLE pulley that # is your mechanical advantage!!!

40 15-4 Simple & Compound Machines 6 - Wheel & Axle Def - Made of 2 circular objects of different sizes attached together to rotate around the same axis.

41 15-4 Simple & Compound Machines Compound Machine Def - A combination of 2 or more simple machines

Work, Power and Machines

Work, Power and Machines CHAPTER 13.1 & 13.2 Work, Power and Machines Section one: Work, Power, and Machines Objective one: Calculate Work Objective Two: Differentiate Work and Power Objective Three: Discover that machines make

More information

CHAPTER 5. Work, Power and Machines

CHAPTER 5. Work, Power and Machines CHAPTER 5 Work, Power and Machines Section one: Work, Power, and Machines Objective one: Calculate Work Objective Two: Differentiate Work and Power Objective Three: Discover that machines make work easier

More information

Work & Simple Machines. Chapter 4

Work & Simple Machines. Chapter 4 Work & Simple Machines Chapter 4 Work & Power Section 1 Work Work - occurs when a force causes an object to move in the same direction that the force is applied. Work involves motion, not just effort.

More information

Work, Power, & Machines

Work, Power, & Machines Work, Power, & Machines What is work? The product of the force applied to an object and the distance through which that force is applied. Is work being done or not? Mowing the lawn Weight-lifting Moving

More information

Work, Power, & Machines

Work, Power, & Machines Work, Power, & Machines 1 What is work? To many people, the word work means something they do to earn money. The word work also means exerting a force with your muscles. 1 What is work? Someone might say

More information

Chapter: Work and Machines

Chapter: Work and Machines Table of Contents Chapter: Work and Machines Section 1: Work Section 2: Using Machines Section 3: Simple Machines 1 Work What is work? To many people, the word work means something they do to earn money.

More information

Broughton High School

Broughton High School 1 Physical Science Vocabulary Vocabulary for Chapter 5 - Work and Machines No.# Term Page # Definition 2 1. Compound Machine 2. Efficiency 3. Inclined Plane 4. Input force 5. Lever 6. Machine 7. Mechanical

More information

Work, Power and Simple Machines. Chapter 4 Physical Science

Work, Power and Simple Machines. Chapter 4 Physical Science Work, Power and Simple Machines Chapter 4 Physical Science Work, Power and Simple Machines Machines make jobs easier by increasing the applied force on an object. The trade-off is that this also requires

More information

Check out Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Check out  Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Name: Mr. Willis Conceptual Physics: Date: Unit IV Work, Power, and Machines Need extra help? Check out http://www.bayhicoach.com Unit IV Study Guide Multiple Choice Identify the letter of the choice that

More information

Unit 10: Work and Energy. * When the object moves, it must move in the same direction as the force for there to be work.

Unit 10: Work and Energy. * When the object moves, it must move in the same direction as the force for there to be work. Work: Occurs as a force is applied over a distance. Ex: *It is a vector. (Has a number and direction) Unit 10: Work and Energy *If there is no movement, there is no work on that object. * When the object

More information

acceleration weight load

acceleration weight load Instructions for Vocabulary Cards: Please photocopy the following pages onto heavy card stock (back to back, so the word is printed on the back side of the matching definition). Then, laminate each page.

More information

Section 1: Work and Power. Section 2: Using Machines. Section 3: Simple Machines

Section 1: Work and Power. Section 2: Using Machines. Section 3: Simple Machines Table of Contents Chapter: Work and Simple Machines Section 1: Work and Power Section 2: Using Machines Section 3: Simple Machines 1 Work and Power What is work? Work is done when a force causes an object

More information

7.P Simple Machines Study Guide Multiple Choice: Identify the letter of the choice that best completes the statement or answers the question.

7.P Simple Machines Study Guide Multiple Choice: Identify the letter of the choice that best completes the statement or answers the question. 7.P.2.4 - Simple Machines Study Guide Multiple Choice: Identify the letter of the choice that best completes the statement or answers the question. 1. For work to be done on an object, a. some force need

More information

Chapter 8 Study Questions

Chapter 8 Study Questions Chapter 8 Study Questions Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Work is being done when a. you apply a force to an object. b. an

More information

Date Period Name. Energy, Work, and Simple Machines Vocabulary Review

Date Period Name. Energy, Work, and Simple Machines Vocabulary Review Date Period Name CHAPTER 10 Study Guide Energy, Work, and Simple Machines Vocabulary Review Write the term that correctly completes the statement. Use each term once. compound machine joule resistance

More information

Mechanical Advantage & Simple Machines. Physics 5 th Six Weeks

Mechanical Advantage & Simple Machines. Physics 5 th Six Weeks Mechanical Advantage & Simple Machines Physics 5 th Six Weeks And now, for an appetizer: Bill Nye and using Mechanical Advantage Mechanical Advantage A machine is something that makes doing work easier

More information

WORK, ENERGY, AND MACHINES

WORK, ENERGY, AND MACHINES WORK, ENERGY, AND MACHINES Vocabulary Review Write the term that correctly completes the statement. Use each term once. compound machine joule resistance force efficiency kinetic energy translational kinetic

More information

Work & Energy. Chapter 4 pg

Work & Energy. Chapter 4 pg Work & Energy Chapter 4 pg 106-127 Today s Learning Objectives 1) Know the vocabulary of this chapter. 2) What is the two-pronged test to see if something qualifies as work? 3) Solve and calculate problems

More information

Simple Machines. Bởi: OpenStaxCollege

Simple Machines. Bởi: OpenStaxCollege F Simple Machines Simple Machines Bởi: OpenStaxCollege Simple machines are devices that can be used to multiply or augment a force that we apply often at the expense of a distance through which we apply

More information

Physics Unit: Force & Motion

Physics Unit: Force & Motion Physics Unit: Force & Motion What is physical science? A. Physical science is a field of science that studies matter and energy. B. Physical science has 2 main branches: 1. PHYSICS: the study of how matter

More information

Section 1 Work, Power, and Machines

Section 1 Work, Power, and Machines Chapter 12 Work and Energy Section 1 Work, Power, and Machines Section 2 Simple Machines Section 3 What is Energy? Section 4 Conservation of Energy Skills Experiment Design SI Units and SI unit conversions

More information

Science 9 Physics CHAPTER 13: WORK AND ENERGY MR. MILLER

Science 9 Physics CHAPTER 13: WORK AND ENERGY MR. MILLER Science 9 Physics CHAPTER 13: WORK AND ENERGY MR. MILLER WORK Work: The transfer of energy to an object by the application of a force that causes the object to move in the direction of the force. WORK

More information

Chapter 09 Multiple Choice Test

Chapter 09 Multiple Choice Test Class: Date: Chapter 09 Multiple Choice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A simple machine can multiply: a. forces only. b. energy only.

More information

A machine* is a device that makes work easier, changes the direction of the work, or changes the speed of the work

A machine* is a device that makes work easier, changes the direction of the work, or changes the speed of the work Simple Machines A machine* is a device that makes work easier, changes the direction of the work, or changes the speed of the work A simple machine works with only one movement There are six simple machines

More information

Section 1: Work, Power, and Machines. Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage

Section 1: Work, Power, and Machines. Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage Section 1 Section 1: Work, Power, and Machines Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage Section 1 Key Ideas How is work calculated? What is the relationship

More information

Work and Simple Machines

Work and Simple Machines Work Work and Simple Machines Simple Machines Mechanical Advantage Calculating MA Misc. 200 200 200 200 200 400 400 400 400 400 600 600 600 600 600 800 800 800 800 800 1000 1000 1000 1000 1000 FINAL JEOPARDY

More information

l Every object in a state of uniform motion tends to remain in that state of motion unless an

l Every object in a state of uniform motion tends to remain in that state of motion unless an Motion and Machine Unit Notes DO NOT LOSE! Name: Energy Ability to do work To cause something to change move or directions Energy cannot be created or destroyed, but transferred from one form to another.

More information

Name Date Class. This section describes the six kinds of simple machines. It also explains how to calculate the advantage of using simple machines.

Name Date Class. This section describes the six kinds of simple machines. It also explains how to calculate the advantage of using simple machines. Simple Machines This section describes the six kinds of simple machines. It also explains how to calculate the advantage of using simple machines. Use Target Reading Skills Before you read the section,

More information

Physics Unit: Force & Motion

Physics Unit: Force & Motion Physics Unit: Force & Motion What is physical science? A. Physical science is a field of science that studies matter and energy. B. Physical science has 2 main branches: 1. PHYSICS: the study of how matter

More information

produce sugar, which contains stored chemical energy. Most of the energy that we use on Earth originally came from the Sun.

produce sugar, which contains stored chemical energy. Most of the energy that we use on Earth originally came from the Sun. Conservation of Energy Energy can be in many different forms. Students should know sources and properties of the following forms of energy: Heat energy is the transfer of thermal energy (energy that is

More information

Simple machines and the lever

Simple machines and the lever Simple machines and the lever Objectives Define mechanical advantage. Calculate and demonstrate the mechanical advantage of a lever. Draw a free-body diagram of a simple machine. 1. What is mechanical

More information

Unit 1 Lesson 1.1 Mechanisms. Simple Machines. The Six Simple Machines. The Six Simple Machines. Project Lead The Way, Inc.

Unit 1 Lesson 1.1 Mechanisms. Simple Machines. The Six Simple Machines. The Six Simple Machines. Project Lead The Way, Inc. Mechanisms Simple Machines Lever, Wheel and Axle, and Pulley 2012 Simple Machines Mechanisms that manipulate magnitude of force and distance. The Six Simple Machines Lever Wheel and Axle Pulley The Six

More information

CHAPTER 4 TEST REVIEW

CHAPTER 4 TEST REVIEW CHAPTER 4 TEST REVIEW Work = Force x Distance 1. Work is measured in. a. Newtons b. Joules c. Centimeters d. Grams 2. Sir Isaac Newton is famous for discovering the. a. Laws of motion b. Laws of work c.

More information

Force and Motion Test 2 Review

Force and Motion Test 2 Review Force and Motion Test 2 Review Name: S8P5a. Investigate and explain that electric currents and magnets can exert force on each other. 1. What happens to a compass needle when it is placed next to a wire

More information

CPO Science Foundations of Physics

CPO Science Foundations of Physics CPO Science Foundations of Physics Unit 4, Chapter 10 Chapter 9 Unit 4: Energy and Momentum Chapter 10 Work and Energy 10.1 Machines and Mechanical Advantage 10.3 Energy and Conservation of Energy Chapter

More information

Mechanisms Simple Machines. Lever, Wheel and Axle, & Pulley

Mechanisms Simple Machines. Lever, Wheel and Axle, & Pulley Mechanisms Simple Machines Lever, Wheel and Axle, & Pulley Simple Machines Mechanisms that manipulate magnitude of force and distance. The Six Simple Machines Lever Wheel and Axle Pulley The Six Simple

More information

Lesson 1: How can you describe motion?

Lesson 1: How can you describe motion? Lesson 1 Summary Use with pp. 407 409 Lesson 1: How can you describe motion? Vocabulary velocity the speed and direction of an object s motion Types of Motion Motion is movement. When you see something

More information

PHY 126 Lecture Notes Chapter 10

PHY 126 Lecture Notes Chapter 10 Chapter 10 Simple Machines OBJECTIVES Define a machine Examine energy transfer in machine to determine Mechanical Advantage and Energy Efficiency KEY WORDS: Simple and complex machines, Effort and resistance

More information

Chapter 12 - Work and Energy. Section 1 - Work, Power, and Machines

Chapter 12 - Work and Energy. Section 1 - Work, Power, and Machines Chapter 12 - Work and Energy Section 1 - Work, Power, and Machines 1 Imagine trying to lift a car without a jack You might be exerting a lot of force, but not moving the It would feel like you have done

More information

Motion. Definition a change of position

Motion. Definition a change of position Potential energy Definition stored energy an object has because of its position Characteristics the higher up an object is, the greater its potential energy Example book sitting on the desk Kinetic energy

More information

SPH 4C Unit 2 Mechanical Systems

SPH 4C Unit 2 Mechanical Systems SPH 4C Unit 2 Mechanical Systems Forces and Free Body Diagrams Learning Goal: I can consistently identify and draw Free Body Diagrams for given real world situations. There are 4 fundamental forces Gravity

More information

Concepts of Physics. Wednesday, October 14th

Concepts of Physics. Wednesday, October 14th 1206 - Concepts of Physics Wednesday, October 14th Demonstrations he spinning chair, etc. hank you Mark! Remember the ice skater example? An ice skater is spinning with both arms and a leg outstretched

More information

W = Fd. KE = 1 2 mv2

W = Fd. KE = 1 2 mv2 Ch 10 Energy, Work and Simple Machines work: moving an object in the direction of the force exerted upon it (Joules) work W = Fd force (Newtons) (meters) distance object is displaced in the direction of

More information

The Technological World. Forces and Engineering

The Technological World. Forces and Engineering The Technological World s and Engineering Geological Phenomena Review Earthquakes: What is an earthquake? Movement of the Earth s crust What causes this movement? Contact between two tectonic plates -

More information

How Do Objects Move? Describing Motion. Different Kinds of Motion

How Do Objects Move? Describing Motion. Different Kinds of Motion How Do Objects Move? Describing Motion Different Kinds of Motion Motion is everywhere. The planets are in motion around the Sun. Cars are in motion as they are driven down the street. There s even motion

More information

Unit 2: Energy THERMAL ENERGY HEAT TRANSFER POTENTIAL VS. KINETIC ENERGY WORK POWER SIMPLE MACHINES

Unit 2: Energy THERMAL ENERGY HEAT TRANSFER POTENTIAL VS. KINETIC ENERGY WORK POWER SIMPLE MACHINES Unit 2: Energy THERMAL ENERGY HEAT TRANSFER POTENTIAL VS. KINETIC ENERGY WORK POWER SIMPLE MACHINES Bellringer Day 01 1. What is energy? 2. There are different forms of energy. Name two. What is Energy?

More information

gear gravity heat inclined plane

gear gravity heat inclined plane Equal and opposite forces which occur in pairs Upward force acting on objects when they are placed in water Substance which allows electric current to pass through it Force applied at one point of a machine

More information

What Will You Learn From This Module?

What Will You Learn From This Module? What Is This Module About? Imagine what life would be like without the various means of transportation at present. How would you reach far places then? Look at what you are wearing. How is cloth made into

More information

The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES. SPH4C Findlay

The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES. SPH4C Findlay The student will learn about the main purposes and the basic components of all machines. SIMPLE MACHINES SPH4C Findlay What do you think of when you hear the word machine? Simple Machines Machines created

More information

Work and Energy Chapter 4 and 5

Work and Energy Chapter 4 and 5 Section 1 Work and Energy Chapter 4 and 5 Motion Read Chapter 4 pages 100 121 and Chapter 5 pages: 126-153 Objectives: - Distinguish between kinetic and potential energy; calculate kinetic energy, describe

More information

Energy, Work, and Power

Energy, Work, and Power Energy, Work, and Power I. Energy - kinetic and potential - conservation II. Work - dot product - work-energy relations III. Springs IV. Power - machines and efficiency The student will be able to: 1 Define

More information

Pre and Post-Visit Activities

Pre and Post-Visit Activities Pre and Post-Visit Activities Simple Machines Table of Contents: Important Information: 2 Vocabulary: 3 Pre-Visit Activities: 4 Post-Visit Activities: 5 Vocabulary Word Search: 6 2 Important Information

More information

Milford Public Schools Curriculum

Milford Public Schools Curriculum Milford Public Schools Curriculum Department: SCIENCE Course Name: Grade 8 Course Description Physical Science UNIT 1 - Motion LEARNING GOALS Enduring Understanding(s): Motion is relative to a reference

More information

FORCES AND MOTION UNIT TEST. Multiple Choice: Draw a Circle Completely around the ONE BEST answer.

FORCES AND MOTION UNIT TEST. Multiple Choice: Draw a Circle Completely around the ONE BEST answer. Name: Date: Period: FORCES AND MOTION UNIT TEST Multiple Choice: Draw a Circle Completely around the ONE BEST answer. 1. A force acting on an object does no work if a. a machine is used to move the object.

More information

1. List the six simple machines and give three examples (8:3)

1. List the six simple machines and give three examples (8:3) Unit 3 Study Guide Name 2017 Key Section 1. ist the six simple machines and give three examples (8:3) Machine xample 1 xample 2 xample 3 1. Pulley lag Pole Curtains Crane 2. Wheel and Axle Steering Wheel

More information

transfer of heat energy by conduction, convection, and radiation Doppler effect static electricity

transfer of heat energy by conduction, convection, and radiation Doppler effect static electricity Energy, Force, and Motion identifying energy transformations; Identifying and analyzing the transfer of heat energy by conduction, convection, and radiation interpreting a phase diagram; describing and

More information

3. A bicycle tire of radius 0.33 m and a mass 1.5 kg is rotating at 98.7 rad/s. What torque is necessary to stop the tire in 2.0 s?

3. A bicycle tire of radius 0.33 m and a mass 1.5 kg is rotating at 98.7 rad/s. What torque is necessary to stop the tire in 2.0 s? Practice 8A Torque 1. Find the torque produced by a 3.0 N force applied at an angle of 60.0 to a door 0.25 m from the hinge. What is the maximum torque this force could exert? 2. If the torque required

More information

Chapter 10-Work, Energy & Power

Chapter 10-Work, Energy & Power DULLES HIGH SCHOOL Chapter 10-Work, Energy & Power Energy Transformations Judy Matney 1/12/2016 In this chapter, we will study the concepts of force and work; we will understand the transformations of

More information

Physical Science Unit Exam Review. Date Period

Physical Science Unit Exam Review. Date Period 1. Give an example of gravitational potential energy. Frog at the top of its jump Rock at the edge of a hill Skateboarder at the top of the ramp Pendulum at the top of its swing 2. Use Newton s 2 nd law

More information

1. The type of energy described by Energy C is which type of energy?

1. The type of energy described by Energy C is which type of energy? Energy A Energy B Energy C Energy D Energy E Energy stores within a particle (measured by the particle s temperature). Energy generated by the sun. Energy released when particles react to form a new substance.

More information

UNIT 5: WORK and ENERGY RECORD ALL ANSWERS ON ANSWER SHEET.

UNIT 5: WORK and ENERGY RECORD ALL ANSWERS ON ANSWER SHEET. PHYSICAL SCIENCE UNIT 5: WORK and ENERGY RECORD ALL ANSWERS ON ANSWER SHEET. name 1. Which of the following processes requires the most work? a. A 10 kg weight rests on a table. b. A person holds a 1 kg

More information

Name Date P Lesson 4 Forces and Simple Machines

Name Date P Lesson 4 Forces and Simple Machines Lesson 4 Forces and Simple Machines OAA Science Lesson 4 40 Lesson 4: Forces and Simple Machines Student s Reference Sheet: 6 Simple Machines: Screw - Swivel Stool - Spiral Stair Case - Inclined Plane

More information

Science Olympiad. Machines. Roger Demos

Science Olympiad. Machines. Roger Demos Science Olympiad Machines. Roger Demos Some Basic Physics Concepts What do Machines do? Do they allow one to do more work? Not really, at best they make completing a task easier. So then what do Machines

More information

Unit D: Mechanical Systems Topic 1: Levels and Inclined Planes

Unit D: Mechanical Systems Topic 1: Levels and Inclined Planes Unit D: Mechanical Systems Topic 1: Levels and Inclined Planes Photo from educatorsoutlet.com 1 A. Introduction 1. Lever a) Is a rigid bar or plank that can rotate around a fixed point called a pivot,

More information

UNIT D: MECHANICAL SYSTEMS

UNIT D: MECHANICAL SYSTEMS 1 UNIT D: MECHANICAL SYSTEMS Science 8 2 Section 2.0 AN UNDERSTANDING OF MECHANICAL ADVANTAGE AND WORK HELPS IN DETERMINING THE EFFICIENCY OF MACHINES. 1 3 MACHINES MAKE WORK EASIER Topic 2.1 4 WHAT WOULD

More information

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

More information

Answers. Forces. Year 7 Science Chapter 8

Answers. Forces. Year 7 Science Chapter 8 Answers Forces Year 7 Science Chapter 8 p173 1 Steering a car involves pulling on the steering wheel. A climb in the plane involves a pull from the propellor and a pull from gravity on the plane. A horse

More information

1 Work, Power, and Machines

1 Work, Power, and Machines CHAPTER 13 1 Work, Power, and Machines SECTION Work and Energy KEY IDEAS As you read this section, keep these questions in mind: What is work, and how is it measured? How are work and power related? How

More information

WEP-Work and Power. What is the amount of work done against gravity as an identical mass is moved from A to C? J J J 4.

WEP-Work and Power. What is the amount of work done against gravity as an identical mass is moved from A to C? J J J 4. 1. The work done in accelerating an object along a frictionless horizontal surface is equal to the change in the object s 1. momentum 2. velocity 3. potential energy 4. kinetic energy 2. The graph below

More information

9 Energy. Ch 9 Energy. Be able to explain and calculate the work in and out of a machine. Identify and label three types of levers.

9 Energy. Ch 9 Energy. Be able to explain and calculate the work in and out of a machine. Identify and label three types of levers. Ch 9 Energy Be able to explain and calculate the work in and out of a machine. Identify and label three types of levers. 9.1 Work Work is the product of the force on an object and the distance through

More information

Section 14.1 Work and Power

Section 14.1 Work and Power Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved. Name Class Date Chapter 14 Work, Power, and Machines Section 14.1 Work and Power (pages 412 416) Work and Power Content

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 4 - LIFTING MACHINES

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 4 - LIFTING MACHINES EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 4 - LIFTING MACHINES CONTENT Be able to determine the operating characteristics of lifting

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

Identify levers. Calculate the mechanical advantage of a lever. Calculate forces and lengths related to levers. Distinguish and explain the

Identify levers. Calculate the mechanical advantage of a lever. Calculate forces and lengths related to levers. Distinguish and explain the Module 2: LEVERS Identify levers. Calculate the mechanical advantage of a lever. Calculate forces and lengths related to levers. Distinguish and explain the difference between the three classes of levers.

More information

is energy in particles of matter. Chemical energy can be released, for example in or, when these particles react to form new substances.

is energy in particles of matter. Chemical energy can be released, for example in or, when these particles react to form new substances. TYPES OF ENERGY Energy can be in many different. Students should know sources and properties of the following forms of energy: is the transfer of energy (energy that is associated with the of the particles

More information

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 8 Friction CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Contents Introduction Laws of Dry Friction.

More information

GRADE:-6 PHYSICS Chapter-5 PRESSURE Answer the following in a word or two or in a sentence. 1. What is the SI unit of pressure? Ans: Pascal 2.

GRADE:-6 PHYSICS Chapter-5 PRESSURE Answer the following in a word or two or in a sentence. 1. What is the SI unit of pressure? Ans: Pascal 2. GRADE:-6 PHYSICS Chapter-5 PRESSURE Answer the following in a word or two or in a sentence. 1. What is the SI unit of pressure? Ans: Pascal 2. How are force, area of application of force and pressure related

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

Teacher Version. Winnetonka 9th Grade Physics: Work, Energy, Power

Teacher Version. Winnetonka 9th Grade Physics: Work, Energy, Power Teacher Version Winnetonka 9th Grade Physics: Work, Energy, Power 1. What is the formula to calculate work? a. w =!! b. w = F d c. w =!! d. w = F t 2. When force increases, distance stays the same, work.

More information

Work Forms of Energy Power Conservation of Energy Kepler s Laws of Motion Simple Machines Mechanical Advantage

Work Forms of Energy Power Conservation of Energy Kepler s Laws of Motion Simple Machines Mechanical Advantage Energy LCHS Work Forms of Energy Power Conservation of Energy Kepler s Laws of Motion Simple Machines Mechanical Advantage machine energy lever friction mechanical advantage input force mechanical system

More information

4 Conservation of Energy

4 Conservation of Energy CHAPTER 13 4 Conservation of Energy SECTION Work and Energy KEY IDEAS As you read this section, keep these questions in mind: How can energy change from one form to another? What is the law of conservation

More information

Simple Machines. Changes effort, displacement or direction and magnitude of a load 6 simple machines. Mechanical Advantage

Simple Machines. Changes effort, displacement or direction and magnitude of a load 6 simple machines. Mechanical Advantage Simple Machine Simple Machines Changes effort, displacement or direction and magnitude of a load 6 simple machines Lever Incline plane Wedge Screw Pulley Wheel and Axle Mechanical Advantage Ideal: IMA

More information

ISN X: WORK, POWER, MACHINES

ISN X: WORK, POWER, MACHINES name: per ISN X: WORK, POWER, MACHINES page # Item Check-in Point Value 1-2 Table of Contents/Things 2 Know no check for this --------------------- text Reading & Text Questions on 67-73 * 2 3 Eureka Work

More information

Lever Lab: First Class Lever

Lever Lab: First Class Lever Lever Lab 2 Name: Lever Lab: First Class Lever Objective: To investigate the use of a lever as a simple machine. Materials: Workshop Stand, Lever, Bolt, Hooked Masses Background: A lever is one of the

More information

SKYRIDE: SOARING TO NEW HEIGHTS. Pre-Trip Information

SKYRIDE: SOARING TO NEW HEIGHTS. Pre-Trip Information SKYRIDE: SOARING TO NEW HEIGHTS Pre-Trip Information Soaring to New Heights is the perfect place to introduce your students to forces, motion, and simple machines with a fun circus theme! There will be

More information

Chapter 8 Rotational Motion and Equilibrium. 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction

Chapter 8 Rotational Motion and Equilibrium. 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction Chapter 8 Rotational Motion and Equilibrium Name 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction 1. The distance between a turning axis and the

More information

Engineering Mechanics. Friction in Action

Engineering Mechanics. Friction in Action Engineering Mechanics Friction in Action What is friction? Friction is a retarding force that opposes motion. Friction types: Static friction Kinetic friction Fluid friction Sources of dry friction Dry

More information

Unit 1 Lesson 1.1 Mechanisms

Unit 1 Lesson 1.1 Mechanisms Simple Machines Inclined Plane, Wedge, and Screw Principles of ngineering 2012 The Six Simple Machines Inclined Plane Wedge Screw Mechanical Advantage (MA) atio of the magnitude of the resistance and effort

More information

The student will be able to: 1 Determine the torque of an applied force and solve related problems.

The student will be able to: 1 Determine the torque of an applied force and solve related problems. Honors Physics Assignment Rotational Mechanics Reading Chapters 10 and 11 Objectives/HW The student will be able to: HW: 1 Determine the torque of an applied force and solve related problems. (t = rx r

More information

L-8-5 (L-8-5) 1. This graph shows the velocity of a car. Which statement BEST explains how the car is moving?

L-8-5 (L-8-5) 1. This graph shows the velocity of a car. Which statement BEST explains how the car is moving? Name: Date: 1. This graph shows the velocity of a car. Which statement BEST explains how the car is moving? A. Velocity is increasing, so the car is accelerating. B. Velocity is decreasing, so the car

More information

Welcome. I will be using your LBCC to communicate with you about the class.

Welcome. I will be using your LBCC  to communicate with you about the class. Welcome David Ruiz I will be using your LBCC email to communicate with you about the class. I will NEVER send scores/grades to your email address unless you ask me to do so. Syllabus Read over carefully

More information

2016 Junior Lesson One

2016 Junior Lesson One 2016 Junior Lesson One To complete this lesson make sure you answer all the questions in bold and do one of the projects at the end of the lesson. Parts marked ADVANCED are for the curious. This year we

More information

Name: ANSWER KEY Quarter 3 Benchmark Review. 3. m/s km/hr. 7. (Vf Vi) / t. 8. m/s m/s F = ma

Name: ANSWER KEY Quarter 3 Benchmark Review. 3. m/s km/hr. 7. (Vf Vi) / t. 8. m/s m/s F = ma Name: ANSWER KEY Quarter 3 Benchmark Review Velocity 1. Define Velocity: Date: Period: 1. Distance divided by time in a specific direction 2. What is the difference between speed and velocity? 2. Velocity

More information

Physical Science midterm study guide. Chapter 1 and 2

Physical Science midterm study guide. Chapter 1 and 2 Physical Science midterm study guide Chapter 1 and 2 1. Explain the difference between a scientific law and a scientific theory a. Laws generalize observations b. Theories explain observations 2. Select

More information

Unit 6. Forces and motion

Unit 6. Forces and motion Unit 6. Forces and motion Index 1. What is a force?...2 2. Forces and flexible objects. Hooke's law...2 3. Forces and changes in velocity...3 4. Simple machines...10 5. Types of forces...12 Practice exam...14

More information

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW Pagpalain ka! (Good luck, in Filipino) Date Chapter 8 - Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body

More information

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius.

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius. Warm up A remote-controlled car's wheel accelerates at 22.4 rad/s 2. If the wheel begins with an angular speed of 10.8 rad/s, what is the wheel's angular speed after exactly three full turns? AP Physics

More information

Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1

Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 1. A 50-kg boy and a 40-kg girl sit on opposite ends of a 3-meter see-saw. How far from the girl should the fulcrum be placed in order for the

More information

Torque and levers * Free High School Science Texts Project. 1 Torque and Levers

Torque and levers * Free High School Science Texts Project. 1 Torque and Levers OpenStax-CNX module: m38992 1 Torque and levers * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 Torque and

More information

7 th Grade Science Unit 5 NCFE Review

7 th Grade Science Unit 5 NCFE Review 7 th Grade Science Unit 5 NCFE Review Motion Mo#on: defined as a change in the posi#on of an object results in movement judged rela#ve to a reference point Speed the distance an object covers over #me

More information